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Automated customization of large-scale 
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Understanding brain function is facilitated by constructing computational 
models that accurately reproduce aspects of brain activity. Networks of 
spiking neurons capture the underlying biophysics of neuronal circuits, yet 
their activity’s dependence on model parameters is notoriously complex. 
As a result, heuristic methods have been used to configure spiking network 
models, which can lead to an inability to discover activity regimes complex 
enough to match large-scale neuronal recordings. Here we propose an 
automatic procedure, Spiking Network Optimization using Population 
Statistics (SNOPS), to customize spiking network models that reproduce 
the population-wide covariability of large-scale neuronal recordings. We 
first confirmed that SNOPS accurately recovers simulated neural activity 
statistics. Then, we applied SNOPS to recordings in macaque visual and 
prefrontal cortices and discovered previously unknown limitations of 
spiking network models. Taken together, SNOPS can guide the development 
of network models, thereby enabling deeper insight into how networks of 
neurons give rise to brain function.

Computational models help us understand brain function by repro-
ducing specific aspects of brain activity. Single-neuron models have 
provided a mechanistic foundation for the generation of action poten-
tials1. Small neural circuit models, such as the stomatogastric ganglion 
(STG) model of crustaceans2, have been used to understand the gen-
eration of rhythmic motor patterns. At the systems level, large-scale 
network models, including rate-based recurrent neural networks3–5 
and convolutional neural networks6, have informed how neural circuits 
perform complex brain computations. Although neurons communi-
cate through temporally complex spike trains, these network models 
focus on replicating neuronal firing rates without spikes. To better 

link computational models and biological spiking neurons, large-scale 
spiking neural networks (SNNs) have been proposed. These SNNs aim 
to produce population spike trains whose time course and/or variability 
mimic that of neuronal recordings7–12. SNNs are increasingly important 
large-scale models in computational neuroscience: studying mecha-
nisms of the biologically realistic circuit of a SNN is a critical step in 
understanding complex processing in cortical circuits.

A key goal in constructing network models is to customize their 
parameters to recapitulate some aspect of the recorded neuronal 
activity. In single-neuron models and small neural circuit models, each 
model parameter corresponds to a specific biological component 
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a cost function, defined below). The cost function is based on a set of 
activity statistics, which are computed for both the generated and 
recorded spike trains.

In the following sections, we first introduce the activity statistics 
used in this work and the SNOPS optimization framework. We next 
validate SNOPS using simulated activity. We then apply SNOPS to 
customize the CBN and its extension, the spatial balanced network 
(SBN)11,26, to macaque visual area V4 and prefrontal cortex (PFC) record-
ings. We reveal that SBNs are better suited to reproduce key aspects of 
neuronal recordings than CBNs, and identify the specific combinations 
of activity statistics that the CBN cannot capture well.

Activity statistics for comparing models with neuronal 
activity
We first introduce the activity statistics used to compare the spike 
trains produced by the network model and the recorded spike trains. 
For all activity statistics, we begin by counting spikes within predefined 
time bins (Fig. 2a, left). This activity from individual neurons recorded 
simultaneously can be represented in a population activity space, where 
each axis represents the activity level of one neuron (Fig. 2a, center). We 
then compute activity statistics based on individual neurons, pairs of 
neurons and populations of neurons (Fig. 2a, right), as described below.

We considered two single-neuron statistics: the mean firing rate 
(fr) and ff (Fig. 2b). The mean fr is defined as the average level of activ-
ity across all neurons in the population and across all time bins. The ff 

and can often be measured experimentally1,2. Larger-scale models, 
including rate networks and SNNs, are more difficult to customize 
because of the larger parameter space that comes with a larger number 
of neurons13,14. Furthermore, the lack of a one-to-one correspondence 
between each neuron in the model network and each recorded neu-
ron challenges the comparison between model activity and neuronal 
recordings15. In particular, the number of neurons within the model 
network is often far smaller than the biological network that the model 
is intended to describe.

Different approaches have been used to circumvent the need for 
a one-to-one correspondence between model neurons and recorded 
neurons. One approach is to construct network models whose output, 
such as limb movement9,16 or decisions17, reproduces subject behavior 
given a network input. Such models are customized by optimizing 
a cost function representing the difference between model output 
and behavior. These network models have shown impressively simi-
lar activity features to activity recorded in the brain, albeit without 
explicit matching of neuronal activity in the cost function. The cost 
function can be optimized using methods such as first-order reduced 
and controlled error (FORCE)13 or backpropagation18 because it has a 
closed-form expression with respect to model parameters.

Another approach is to reproduce statistical measures of neuronal 
activity. SNNs are often designed to reproduce variability in individual 
neuron activity (for example, Fano factor (ff) of spike counts19–22) and 
pairwise spike count correlation14,23–25. SNNs have also been designed 
to reproduce population-wide covariability in neuronal recordings26. 
The cost function, representing differences in spiking activity statistics 
between the model and recordings, has no closed-form expression with 
the model parameters because it depends on computationally demand-
ing numerical simulations and cannot be directly evaluated. So far, the 
parameters of these SNNs have been hand tuned26, customized using 
exhaustive search14,27 or customized using Bayesian deep-learning 
approaches when the network simulation time is small28. This has 
limited the exploration and understanding of the full range of activity 
regimes that large-scale SNNs are capable of exhibiting.

For example, different activity regimes have been identified for 
the classical balanced network (CBN)7,29,30, the most widely studied 
SNN (Fig. 1a). Searching the high-dimensional parameter space to find 
a set of parameters that produces spike trains with specified prop-
erties is difficult. Simulating networks using all possible combina-
tions of parameters can be computationally intractable due to the 
exponential growth in combinations of parameters. Furthermore, it is 
unknown a priori whether there even exists a combination of param-
eters (referred to as a parameter set) that produces spiking activity with 
the specified properties. Hence there is a clear need for an automated 
framework to search the parameter space.

We propose an automatic framework, Spiking Network Opti-
mization using Population Statistics (SNOPS), for customizing the 
parameters of a large-scale SNN to reproduce observed spiking activ-
ity statistics. SNOPS uses Bayesian optimization (BO) to determine 
model parameters, a technique widely applied in machine learning 
for optimizing cost functions without a closed-form expression. We 
include population-wide activity statistics based on dimensionality 
reduction to obtain a closer match of the network model to neuronal 
recordings than using statistics defined only on individual neurons and 
pairs of neurons31,32. SNOPS provides a guided search of the parameter 
space and can help accelerate the development of SNNs, especially in 
settings where the network simulation time is large.

Results
Model overview
SNOPS is designed to automatically customize a SNN to neuronal 
recordings (Fig. 1b). It is based on iteratively updating the model 
parameters to improve the correspondence between the spike trains 
generated by the network model and the recorded spike trains (using 
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Fig. 1 | Framework for automated customization of a spiking network model 
to neuronal recordings. a, A SNN has a complicated dependency between 
its parameters and spiking output. For example, different parameter sets 
correspond to each of four previously identified activity regimes of a CBN: 
asynchronous irregular, synchronous regular, synchronous irregular and 
asynchronous regular. In this work, the SNN has eight parameters, including 
those that govern the connection strength between neurons as well as the 
timescale of synaptic decay (Supplementary Table 1). b, Our customization 
framework matches activity statistics of spike trains produced by the network 
model to those of neuronal recordings. It uses a guided searching algorithm to 
iteratively update the model parameters. The activity statistics are defined by the 
user and can include single-neuron, pairwise and population activity statistics.
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captures the activity variability of individual neurons across time33. 
For the pairwise statistic, we computed the spike count correlation 
between pairs of neurons (rsc, Fig. 2b), which is widely used to measure 
the correlated variability among neurons34. Both single-neuron and 
pairwise statistics have been widely used to customize network models 
to neuronal recordings9,13,17,20,26,35.

There can also be structure in the population-wide variability that 
is not apparent when considering only single-neuron and pairwise sta-
tistics32. Previous studies have used population-wide activity statistics 
to compare network models with recorded activity26,31,36,37. Thus we 
also considered population activity statistics based on dimensionality 
reduction38. Specifically, we used factor analysis (FA), which is the most 
basic dimensionality reduction method that separates the variance that 
is shared among neurons from the variance that is independent to each 
neuron. We computed the following three population activity statistics 
based on FA (Fig. 2b, Methods and Supplementary Fig. 1): (1) the percent 
shared variance (%sh) is the fraction of a neuron’s activity variance that 
is shared with one or more of the other neurons in the recorded popu-
lation. This value is first computed per neuron, then averaged across 
neurons. A high %sh indicates that the population of neurons strongly 
covary, whereas zero %sh indicates that neurons are independent of 
each other. While %sh is related to rsc, it is not identical and captures a 
different aspect of population activity32. For example, a zero rsc might 
correspond to a case where some pairs of neurons have positive correla-
tions and some have negative correlations. In this case, the %sh will be 
nonzero, reflecting the presence of shared activity among neurons. (2) 
We measured the dimensionality as the number of dimensions needed 

to explain the shared variance among neurons (dsh). If the neurons 
all simply increase and decrease their activity together, dsh will equal 
one. If the neurons covary in more complex ways, dsh will be greater 
than one. (3) The eigenspectrum (es) of the shared covariance matrix 
measures the relative dominance of the dimensions identified above. 
It may be that the first dimension explains far more shared variance 
than the other dimensions (in which case the eigenspectrum would 
have a sharp dropoff) or that all dimensions explain a similar amount 
of shared variance (in which case the eigenspectrum would be flat).

Manual customization of SNNs to neuronal activity
It is challenging to manually customize a SNN to neuronal recordings 
because it can be difficult to intuit the activity of the network result-
ing from changes to its parameters. To get around this difficulty, one 
might ask whether any of the four CBN activity regimes shown in Fig. 1a 
capture the key aspects of neuronal recordings (Fig. 2a, left). We thus 
computed the single-neuron, pairwise and population activity statistics 
of the spike trains shown in Fig. 1a for each of the four activity regimes 
(Fig. 2b, colored shapes). We compared them with the activity statistics 
computed from neuronal recordings in macaque visual area V4 dur-
ing a spatial attention task (Fig. 2b, dashed lines). Recordings were 
performed using a 100 electrode Utah array in a 10 × 10 configuration. 
We analyzed activity from 19 experimental sessions. We took spike 
counts within a 200 ms window preceding the onset of each stimulus 
presentation. To compare the activity statistics from network models 
and neuronal recordings on equal footing, we subsampled the record-
ings from each session down to 50 neurons and 700 spike count bins. 
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in macaque visual area V4 (dashed lines) were challenging to reproduce by the 
four parameter regimes of a CBN (colored symbols, cf. Fig. 1a, mean across five 
network instantiations of network connectivity graphs and initial membrane 
potentials corresponding to the same network parameter set). None of the 
four activity regimes accurately reproduced the activity statistics of the V4 
population recordings (dashed lines). The V4 activity statistics are shown as 
the mean ± 1 s.d. across 19 recording sessions (Methods). The spike counts 
for V4 were computed using a fixed 200 ms time window preceding the onset 
of each stimulus presentation. All activity statistics were based on randomly 
subsampling 50 neurons from each CBN or V4 dataset.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 4 | September 2024 | 690–705 693

Article https://doi.org/10.1038/s43588-024-00688-3

We found that none of the four previously identified CBN activity 
regimes recapitulated all of the activity statistics of the V4 neurons. 
Thus, we needed an automatic method to search the parameter space 
to determine whether there existed a parameter set whose activity 
better resembled neuronal recordings.

Customizing SNNs using BO
The central contribution of this work is an automatic framework, SNOPS 
(Fig. 3), to address this need. SNOPS iteratively updates the parameters 
of the SNN so that the activity statistics of the model-generated activity 
(Fig. 3a) better match those of the recorded neuronal activity (Fig. 3b). 
To quantify how well matched are the two sets of activity statistics, we 
define a cost function (Fig. 3c) as a linear combination of the squared 
difference between the two sets of activity statistics (Methods).

Assessing how adjusting any model parameter influences the 
cost requires generating spiking activity from the network model. 
Therefore, the cost function cannot be expressed in a closed form 
with respect to the model parameters and cannot be optimized using 
gradient methods. Meanwhile, exhaustive search methods, such as 
random search, may yield excessive running time because they are 
computationally demanding for the network model to generate spikes. 
Instead, we need a guided way of searching the parameter space. BO is 
a natural choice to optimize a cost function whose evaluation depends 
on a time-consuming simulation39. It automatically proposes the next 
model parameter set to evaluate based on the cost of the previously 
evaluated parameter sets. The key idea is that more similar model 
parameter sets should correspond to more similar costs. In our method, 
this relationship is described by a Gaussian process (GP), a common 
choice for BO due to its closed-form expressions. The algorithm uses 
the GP to propose model parameters whose predicted cost is low (that 
is, parameter sets that may be better than those already considered) 
and whose uncertainty about the predicted cost is high (to sample 
from unvisited areas of the parameter space). This defines an exploita-
tion–exploration tradeoff.

The GP (Fig. 3d, solid line) approximates the cost function c(θ) 
(Fig. 3d, dashed red line), which is a priori unknown, using all evalu-
ations of the cost function from previous iterations and the current 
iteration (Fig. 3d, dots). BO will then construct an acquisition func-
tion (Fig. 3e) based on the GP-predicted cost and its uncertainty at 
each setting of the model parameters θ (Methods). The parameters 
θ⋆ that maximize the acquisition function are selected for the next 
iteration, and the entire process restarts (that is, the new parameter 
set θ⋆ is used to simulate spike trains from the SNN, whose activity 
statistics are then computed and so on). With more iterations, BO 
will probably sample parameter sets with lower cost until a stopping 
criterion has been reached (see example in Supplementary Fig. 2). To 
further accelerate the customization procedure, we introduced two 
computational innovations in SNOPS: (1) running a short simulation 
to assess whether a parameter set is likely to yield valid spike trains 
(feasibility constraint; Methods) and (2) dynamically increasing the 
number of simulations to reduce the variance of the estimated cost 
(intensification; Methods).

Recovering activity statistics in simulation using SNOPS
To validate SNOPS, we first generated activity from a CBN and com-
puted its activity statistics (Fig. 4a). These served as the target activity 
statistics in the customization procedure, in place of activity statistics 
computed from neuronal recordings. We then used SNOPS to customize 
a separate CBN to these activity statistics. In this case, there is no model 
mismatch. Thus, there exists a CBN parameter set that reproduces the 
target activity statistics exactly.

For comparison, we repeated the customization task with two 
other optimization algorithms applicable to large-scale SNNs that do 
not have a closed-form cost function: random search and its acceler-
ated variant. Random search proceeds by sampling parameter sets 

from the search region uniformly at random. This method is similar to 
the exhaustive search approach in previous literature14 and provides 
a benchmark for performance comparisons. The accelerated random 
search incorporates two computational innovations that we intro-
duced in SNOPS (feasibility constraint and intensification; Methods). 
Therefore, when going from random search to its accelerated variant, 
the only difference is incorporating the two innovations in SNOPS. 
Going from accelerated random search to SNOPS, the only difference 
is replacing random search with BO. This arrangement enables us to 
systematically qualify the benefits of the two key features of SNOPS: 
BO and the two innovations.

SNOPS (Fig. 4b and Supplementary Fig. 3, blue) outperformed 
accelerated random search (Fig. 4b and Supplementary Fig. 3, red), 
indicating that BO achieves a lower cost than random search after 
the same amount of computer running time. Accelerated random 
search outperformed random search (Fig. 4b and Supplementary Fig. 3, 
green), indicating that the two innovations of SNOPS are beneficial. 
Furthermore, all three methods yielded a CBN whose activity statistics 
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of θk (not shown). e, An acquisition function is defined based on the two GPs in d 
to determine the next parameter set, θk+1, to evaluate. The acquisition function 
implements an exploration–exploitation tradeoff, where areas of low predicted 
cost and high uncertainty are desirable.
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better match the target activity statistics with increasing running 
time, as expected (Fig. 4b and Supplementary Fig. 3). Another related 
method, Sequential Neural Posterior Estimator (SNPE)28, returns a 
distribution of parameter sets and requires generating a large number 
of SNN simulations upfront. We compare SNOPS with SNPE (Supple-
mentary Figs. 4 and 12 and Discussion) and a genetic algorithm (Sup-
plementary Fig. 3). SNOPS outperforms both methods in customizing 
network models to a variety of datasets.

The cost (Fig. 4b, vertical axis) is a summary of how accurately 
the activity statistics of the customized CBN match the target activ-
ity statistics. To further understand the difference in performance 
between these methods, we then compared the individual activity 
statistics returned by each method with their target values. Consist-
ent with Fig. 4b, SNOPS was better able to match the target activity 
statistics than the other methods (Fig. 4c). Across all 40 customization 
runs, SNOPS successfully identified CBNs whose activity statistics 
closely matched the target activity statistics (Fig. 4d, all the dots are 
located near the diagonal). In sum, SNOPS customizes a spiking net-
work model to neuronal activity more quickly and accurately than the 
other methods.

Customizing SNNs to V4 and PFC population recordings
We next present a case study of using SNOPS to customize SNNs to 
neuronal population recordings in macaque monkeys (from Utah arrays 
implanted in visual cortical area V4 and in PFC).

In Fig. 2b, we demonstrated that none of the four CBN activ-
ity regimes from Fig. 1a recapitulated the V4 dataset (mean cost 
± s.d., asynchronous irregular: 13.56 ± 0.12; synchronous regular: 
1,823.67 ± 190.06; synchronous irregular: 1,489.71 ± 124.25; asynchro-
nous regular: 361.44 ± 9.30). Here, we used SNOPS to automatically 
customize a CBN to the same V4 datasets and obtained a substan-
tially lower cost (2.71 ± 24, P < 1 × 10−5 for each of the four comparisons, 
one-sided t-test). In other words, SNOPS reproduced the activity statis-
tics more accurately than any of the four previously identified activity 
regimes (Fig. 5a, compare with Fig. 2b).

Despite this improvement, there were activity statistics that were 
not accurately reproduced. Specifically, the rsc for the customized CBN 
was substantially smaller than that of the V4 datasets (mean ± s.d., 
0.00085 ± 0.0011 versus 0.054 ± 0.015, P < 1 × 10−4, one-sided t-test) 
(Fig. 5a). To verify the reliability of this disagreement, we reran SNOPS 
with different initializations and obtained the same disagreement in 
rsc (Supplementary Fig. 5). This indicates that the disagreement in rsc 
was probably not due to a limitation of SNOPS.

We did not observe such a disagreement in rsc when we customized 
the CBN to the simulated activity generated by CBNs across a wide range 
of model parameters (Fig. 4d, third graph). This led us to hypothesize 
that the CBN model framework is not flexible enough to capture the full 
complexity of the V4 datasets, as measured by the six activity statistics. 
We thus explored a more powerful SNN model with the goal of more 
accurately capturing the properties of spiking activity in the V4 datasets.
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The SBN, an extension of the CBN, has been recently proposed as 
a SNN framework capable of producing a wider range of population 
statistics11,26. Neurons in a SBN are organized over a two-dimensional 
spatial lattice and have connection probabilities that depend on the dis-
tance between neuron pairs. The SBN captures well-known spatial effects 
of activity statistics, such as the dependence of rsc on distance26,40. This 
introduces three additional model parameters, for a total of 11 param-
eters (Methods). This is in contrast to a CBN model, which lacks spatial 
connectivity and has connection probabilities that are the same for all 
neuron pairs. SBNs have been heuristically shown to produce activity that 
resembles the V4 population activity26. However, this claim has not been 
quantitatively verified. We next used SNOPS to systematically explore 
the capacity for SBNs to capture a wider range of population activity.

We first verified that SNOPS can accurately customize a SBN to 
simulated activity (Supplementary Figs. 5b and 6), mirroring our results 
with the CBN (Fig. 4d and Supplementary Fig. 5a). We then customized a 
SBN to V4 population activity and found that a SBN is able to more accu-
rately reproduce the activity statistics of the V4 population recordings 
than a CBN (mean cost ± s.d., 0.26 ± 0.10 versus 2.71 ± 0.24, P < 1 × 10−5, 
one-sided t-test; Fig. 5b). To test whether the benefit of the SBN over CBN 
is data specific, we customized both models to each of the 16 ‘datasets’, 
comprising four task conditions with recordings in two brain areas  
(V4 and PFC) from two monkeys (Methods). Across these datasets, the 
SBN consistently outperformed the CBN in reproducing the activity 
statistics of the neuronal recordings (Fig. 5c and Supplementary Fig. 7). 
We can also customize a SBN with task-dependent parameters to neu-
ronal recordings from multiple task conditions (Supplementary Fig. 8).

Revealing limits of network model flexibility using tradeoffs in 
activity statistics
To understand why the SBN outperforms the CBN, we customized 
each SNN to each activity statistic individually rather than all six activ-
ity statistics together. We found that the CBN was able to accurately 
reproduce each activity statistic individually, including rsc (Fig. 6a). 
This suggests that the reason why the CBN is unable to reproduce all 
six activity statistics simultaneously is due to tradeoffs between dif-
ferent statistics: adjusting the model parameters to better reproduce 
one statistic can affect how accurately another statistic is reproduced.

We thus defined a tradeoff cost, which measures whether more 
accurately reproducing one activity statistic leads to less accurately 
reproducing another activity statistic. For example, a model might 
be able to accurately reproduce the %sh, but at the expense of making 
rsc too low. In this case, there is a nonzero tradeoff cost, indicated by 
a combined cost of customizing the two statistics simultaneously 

that is greater than customizing them individually (Fig. 6b). Note that 
the tradeoff cost is distinct from the overall cost, in that an accurate 
model with a low overall cost might still have a nonzero tradeoff cost 
for particular pairs of statistics.

We used the tradeoff cost to understand why the SBN can more 
accurately reproduce activity statistics of neuronal recordings than 
the CBN (cf. Fig. 5). We found that the CBN suffers from a tradeoff cost 
between rsc and ff, as well as between rsc and the population statistics 
(Fig. 6c, top). By contrast, the SBN has a small tradeoff cost for all pairs 
of statistics (Fig. 6c, bottom). This is due to the flexibility afforded 
to the SBN by the extra parameters that control the spatial scales of 
connection probabilities that the CBN lacks (Methods). Note that the 
average number of incoming connections is the same for the CBN and 
SBN. The primary distinction between the two models is that the SBN 
tends to have more connections between nearby neurons (controlled 
by the connection widths), whereas in the CBN connection probability 
does not depend on distance. A consequence of this flexibility is that the 
SBN needs to be appropriately constrained during the customization 
process. For example, if we customize a SBN using only single-neuron 
and pairwise statistics, the population statistics of the SBN are not 
accurately reproduced (Supplementary Fig. 10). This demonstrates the 
value of including population statistics in the customization process, 
especially for more flexible models such as the SBN.

Tradeoffs can also occur among more than two statistics.  
To investigate this, we systematically increased the number of statistics 
included in the cost function. The average cost of the customized sta-
tistics increases as more statistics are included (Fig. 6d). This illustrates 
how customizing a model to simultaneously reproduce more statistics 
imposes more constraints on the model customization process. For the 
CBN, there is already a marked increase in cost when going from one 
statistic to two statistics included in the cost function (Fig. 6d, top). In 
particular, there is a high cost of customizing rsc and ff simultaneously 
(highlighted dot), consistent with Fig. 6c (top). By contrast, the average 
cost for the SBN remains low for even up to all six simultaneously cus-
tomized statistics (Fig. 6d, bottom). Hence the pairwise tradeoff cost 
we show in Fig. 6c is sufficient for the comparison of model flexibility. 
In the multidimensional space of activity statistics, these tradeoffs 
form a boundary of combinations of statistics that each model is able 
to reproduce (Supplementary Fig. 11): the tighter boundary of the CBN 
than the SBN confirms its higher tradeoffs, as shown in Fig. 6c.

Discussion
A major application of SNOPS is to facilitate the development of more 
flexible models and thereby further our scientific understanding of 
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Fig. 5 | Reproducing activity statistics of macaque V4 and PFC recordings 
with the CBN and SBN. a, Left: stylized representation of the CBN. Right: 
activity statistics of the CBN (circles, mean across five network instantiations 
corresponding to the same identified parameter set) after being customized 
using SNOPS to the same V4 dataset as in Fig. 2b. The dashed line and shading 
represent the mean ± 1 s.d. across 19 sessions. b, Left: stylized representation of 
the SBN. The SBN is different from the CBN in that the connection probability 

depends on the distance between neurons. Right: activity statistics of the SBN 
(triangles, mean across five network instantiations corresponding to the same 
identified parameter set) after being customized using SNOPS to the same V4 
datasets as in a. c, The SBN more accurately reproduced activity statistics than 
the CBN across 16 datasets, comprising four task conditions with recordings in 
two brain areas (V4 and PFC) in each of the two monkeys. The arrow indicates the 
example V4 dataset shown in a and b.
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brain function. This is achieved in the following two ways. First, if cer-
tain activity statistics are not accurately reproduced during manual 
customization, it is unclear whether one needs to continue to manually 
tune the model parameters in hopes of reproducing all activity statistics 
or to consider a new class of models (for example, by introducing spatial 
connectivity). SNOPS performs a guided search of the high-dimensional 
parameter space, thereby providing greater confidence about when 
a new class of models needs to be considered. Second, the automatic 
optimization algorithm in SNOPS enables repeated customization 
of a model with different subsets of activity statistics, facilitating a 
more complete understanding of a model’s limitations. For example, 
customization of a CBN to neuronal recordings might suggest that the 
CBN is incapable of reproducing experimentally observed rsc values  
(cf. Fig. 5a). In this case, one could be misled to invest time in modifying 
the network model specifically so that it can reproduce the experi-
mentally observed rsc. Using SNOPS, we found that customizing rsc, in 
itself was not problematic. Instead, it was the tradeoff between rsc and 
other activity statistics that limited the CBN (cf. Fig. 6c). Such insights 
will not only profoundly influence plans for making the model more 
flexible, but also shed light on how different network architectures (for 
example, CBN versus SBN) lead to different model flexibility.

We emphasize the benefit of incorporating population statis-
tics to compare the activity of network models and neuronal record-
ings. Indeed, population statistics have been widely used to study 

decision-making17, working memory41, attention26,42, motor control43, 
learning44 and more. Including population statistics yields a more 
faithful reproduction of the neuronal activity compared with including 
only single-neuron or pairwise statistics (cf. Supplementary Fig. 10).

There are several key considerations when selecting which method 
to use for customizing a network model: properties of the cost func-
tion, the simulation time of the model, the number of customized 
models desired for the scientific goal and the available computational 
resources. The first consideration is whether the cost function has 
a closed-form expression with respect to model parameters. If so, 
evaluating the cost can be fast and one can utilize algorithms such as 
FORCE13 to customize the network model. If the cost function is also 
differentiable with respect to the model parameters, one can custom-
ize a network model using methods that utilize the gradient, such as 
backpropagation18 and emergent property inference (EPI)45. These 
approaches are computationally fast and scalable to a large number of 
parameters. By contrast, the cost function of large-scale SNNs typically 
has no closed-form expression with respect to the model parameters 
and hence falls outside the scope of the aforementioned methods. 
In such cases, three types of algorithms can be used: (1) evolutionary 
algorithms, which are biologically inspired, have been applied to the 
Hodgkin–Huxley model46–48; (2) SNPE28, a method based on deep neural 
networks and Bayesian inference, has also been applied to customize 
these models to find a distribution of the parameter sets whose activity 
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a, Activity statistics of the CBN (circles, mean across five network instantiations 
corresponding to the same identified parameter set) and SBN (triangles, 
mean across five network instantiations corresponding to the same identified 
parameter set) after being customized using SNOPS to one V4 activity statistic 
(dashed line) at a time. The same V4 dataset as Fig. 2b was used. b, A high tradeoff 
cost represents the case where customizing the network to reproduce two 
activity statistics simultaneously yields a higher average cost of the two statistics 
than customizing each statistic individually (top). By contrast, a low tradeoff 
cost represents the case where the cost of customizing two activity statistics 
simultaneously yields a similar cost to customizing each statistic individually 

(bottom). c, Tradeoff costs between pairs of statistics for the CBN (top) and  
SBN (bottom) on the same V4 dataset as Fig. 2b. We observed similar effects  
when customizing these models to PFC recordings (Supplementary Fig. 9).  
d, Customizing the CBN and SBN to different numbers of activity statistics 
included in the cost function simultaneously, on the same V4 dataset as Fig. 2b. 
Each dot represents one particular subset of activity statistics (for example, 
highlighted dot indicates the average cost of rsc and ff when including only those 
two activity statistics in the cost function). The cost of each dot was computed 
over five network instantiations corresponding to the same identified parameter 
set of that dot. Each bar indicates the average cost across all subsets of the 
corresponding number of activity statistics.
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statistics mimic those of the recordings; finally, (3) BO, as we propose 
here in SNOPS, can be used to customize large-scale SNNs.

The second consideration is the simulation time of the network 
model. SNPE requires generating a large number of simulations to 
train the deep neural networks. This is feasible for models with short 
simulation time, such as Hodgkin–Huxley and stomatogastric ganglion 
models. Once trained, SNPE can be used to customize the network 
model repeatedly to a large number of datasets without the need to 
run additional simulations (Supplementary Fig. 12). Large-scale SNNs, 
however, have a long simulation time due to the large number of neu-
rons in the network, which poses a challenge for simulation-intensive 
methods such as SNPE. In such settings, optimization-based methods, 
such as BO, are preferred as they minimize the cost function itera-
tively without needing to pregenerate a large number of simulations  
(Supplementary Fig. 4).

The third consideration is the number of customized models 
desired for the scientific goal. Most studies to date customize a single 
model to the neuronal recordings (for example, refs. 6,7,9,11,14,26). 
In this case, SNOPS is preferred because it finds a single customized 
model more quickly and probably better reproduces the recorded 
activity than SNPE (cf. Supplementary Fig. 4). SNPE can also be used 
in this case by selecting the mode of the posterior distribution. 
However, the running time would be substantially greater for SNPE 
because it aims to capture the entire distribution of the parameters, 
which requires substantially more network simulations. Interest-
ingly, there may exist different combinations of parameters that 
lead to the same network activity49. One may seek to interrogate 
how different parameters compensate each other to produce the 
same activity28,45. Although SNOPS can be used in this scenario, it 
requires repeated customization runs with different starting points 
to obtain multiple solutions, which is computationally demanding. In 
this case, deep neural networks, such as EPI and SNPE, are preferred 
because they return a distribution of multiple parameter sets that 
lead to the same activity properties. However, doing so requires 
either differentiability (EPI) or the ability to generate a large number 
of simulations quickly (SNPE).

The fourth consideration is the available computing resources. 
The large number of simulations needed for training the deep neural 
network in SNPE can be parallelized, thereby reducing the overall run-
ning time. By contrast, parallelizing SNOPS can be more challenging 
due to its iterative nature. It is still possible to leverage multiple cores to 
concurrently evaluate different parameter sets during BO (Methods), 
thereby accelerating the SNOPS customization.

Our approach is modular and each component of SNOPS can be 
tailored to the scientific goals of the user. First, we can task SNOPS with 
replicating additional features of neuronal activity (for example, time-
scales of activity) by incorporating the appropriate activity statistics 
(for example, autocorrelation50,51) in the cost function. Second, we 
can consider replacing GPs with a more scalable model, such as neural 
processes52, to accelerate the customization process. Third, we can 
compare the distribution of the activity statistics, instead of their mean, 
in the cost function using distributional metrics such as the Wasserstein 
distance or Kullback–Leibler divergence. These and other extensions 
of the SNOPS framework may be necessary when applying SNOPS to 
other brain areas and/or when using other types of network models 
(for example, refs. 53,54).

Advancements in neuronal recording technologies are enabling 
measurements of brain activity at unprecedented scale. Large-scale 
models and large-scale neuronal recordings are closely related: 
large-scale models provide a systematic and mechanistic understand-
ing of large-scale neuronal recordings, whereas large-scale neuronal 
recordings can further expose limitations of large-scale models. SNOPS 
can be used to accelerate this cycle and facilitate the synergy between 
model-based (mathematical) approaches and empirical measurements 
of brain activity to further our understanding of the brain.

Methods
Components for customizing a network model
Here, we list the components one needs for customizing a network 
model to neuronal population activity. Each of these components is 
described in detail in the sections below.

•	 Neuronal recordings: neuronal activity recorded from a popula-
tion of neurons (or generated from a network model). In this 
study, the neuronal activity is in the form of spike trains either 
recorded experimentally or generated by a spiking network 
model.

•	 Network model with unknown parameters: a mathematical 
model to be customized to the neuronal recordings. In this 
study, we use a CBN7 and a SBN26.

•	 Activity statistics: types of activity statistics that are used to 
measure how similar the activity produced by the network 
model is to the neuronal recordings. The user can define their 
own activity statistics depending on their needs. In this study, 
we use mean fr, ff, spike count correlation (rsc), percent shared 
variance (%sh), dimensionality (dsh) and the eigenspectrum of the 
shared variance (es).

•	 Cost function: a function that takes as input the activity statis-
tics of the network model and those of the neuronal recordings, 
and outputs a scalar that summarizes how different are the two 
sets of activity statistics. In this study, we use a weighted sum of 
squared differences.

•	 Optimization algorithm: an algorithm for adjusting the param-
eters of the network model so that its activity resembles the neu-
ronal recordings (that is, to minimize the cost). In SNOPS, we use 
BO. Users can also incorporate other optimization algorithms, 
such as random search and evolutionary algorithms.

Spiking network models
Model details. Since both CBNs and SBNs are composed of the same 
single-neuron model, we will present both network models together. 
Each network has one feedforward layer and one recurrent layer. The 
feedforward layer contains NF = 2,500 excitatory neurons emitting 
spikes according to independent Poisson processes with a uniform 
rate of 10 spikes per second. As in ref. 26, here, we use homogeneous 
Poisson processes as the feedforward input to primarily attribute the 
rsc observed in the SBN to its spatial connectivity, rather than correla-
tions inherited from the inputs. Note that other approaches, such as 
using external inputs with specified input correlations, have been 
explored to induce neuronal correlations within network models25,55. 
There are Ne = 2,500 excitatory neurons and Ni = 625 inhibitory neurons 
in the recurrent layer. Note that this number is smaller than our past 
work26 (where NF = 2,500, Ne = 40,000 and Ni = 10,000); this was done 
to reduce the simulation time while maintaining similarly rich network 
activity (Supplementary Fig. 13). The membrane potential of a neuron 
j in population α ∈ {e, i}, Vα

j

, in the recurrent layer obeys exponential 
integrate-and-fire membrane dynamics56
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The passive membrane properties are given by the leak conduct-
ance gL, the leak reversal potential EL and the membrane capacitance 
Cm. The second term on the right hand side of equation (1) models the 
excitable membrane nonlinearity that causes an explosive spike onset 
for V α

j

 above the soft threshold VT (∆T gives the sensitivity of spike 
onset). Each time V α

j

(t) exceeds a voltage threshold Vth, the neuron 
spikes and the membrane potential are held for a refractory period τref, 
then reset to a fixed value V

re

. Here, V
re

< V

T

< V

th

. The neuron model 
parameters are set to τm = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV, 
Vth = −10 mV, ∆T = 2 mV, Vre = −65 mV and τref = 1.5 ms. For inhibitory 
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neurons, τm = 10 ms, ∆T = 0.5 mV and τref = 0.5 ms. Similar model formu-
lations have been used in past studies11,26,57, and we used the same 
parameters and constants as in our previous work26 unless otherwise 
specified. There are also model parameters that are not fully explored 
in previous literature and need to be determined as the goal of the 
customization. We call them ‘free parameters’, to be introduced below.

Let the spike train from neuron k in population α ∈ {e, i, F} be 
y

α

k

(t) = ∑

n

δ(t − t

α

kn

), where δ(t − s) is the Dirac delta function centered 
at time t = s. The total synaptic current to a neuron j in population α is
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where N = Ne + Ni = 3,125, asterisk denotes convolution and 
µα = 0 mV ms−1 is the static external input. The synaptic connection 
strength J αβ

jk

 is equal to Jαβ if neuron k in population β connects to neuron 
j in population α, otherwise it is set to zero (α ∈ {e, i} and β ∈ {e, i, F}). 
There are then six total synaptic connection strengths: Jei, Jii, Jie, Jee, JeF 
and JiF, which are free parameters. The synaptic kernel from population 
β, ηβ(t), is given by

η
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(t) =
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where H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. The time constants 
τer = τir = τFr = 1 ms, τFd = 5 ms and τed and τid are free parameters.

For the CBN, the connection probability from a presynaptic neuron 
in population β to a postsynaptic neuron in population α is set to a 
constant ̄

p

αβ. Throughout we used ̄

p

ee

= 0.15 , ̄

p

ei

= 0.6 , ̄

p

ie

= 0.45 , 
̄

p

ii

= 0.6, ̄

p

eF

= 0.1  and ̄

p

iF

= 0.05, to enable the network to display a 
similar average number of connections as the model in our previous 
work26.

For the SBN, neurons in the two layers are arranged uniformly on 
a 1 mm square grid. The probability of a connection from presynaptic 
neuron k in population β located at position (xk, yk) to postsynaptic 
neuron j in population α located at position (xj, yj) is

p =
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where g(x;σ) = 1
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) is a wrapped Gaussian distribu-
tion. The connection widths (σee = σie = σe, σei = σii = σi, σeF = σiF = σF) are 
free parameters for the SBN. Note that mathematically, the SBN is more 
flexible than the CBN because the latter can be considered a special 
case of the former: setting the three parameters that control connectiv-
ity width to infinity will turn a SBN into a CBN. For both the CBN and 
SBN, self-connections are allowed. There can be more than one con-
nection between any given pair of neurons, in which case the effective 
connection strength between the neurons is the number of connections 
times Jαβ.

The summary of the free parameters common to both the CBN 
and SBN network models is presented in Supplementary Table 1. The 
SBN model has additional free parameters presented in Supplemen-
tary Table 2.

Model simulation. To simulate activity from the network, we first 
instantiated a network model. This involves generating a network con-
nectivity graph based on the connection probabilities, and setting the 
initial membrane potential of each neuron from a uniform distribution 
between −65 and −50 mV, as in our previous work26. We will discuss the 
impact of the randomness induced by the realization of the connectiv-
ity graph and initial membrane potentials in the following sections. 
After model instantiation, the differential equations were solved by 
the forward Euler method using a time step of 0.05 ms for a duration 
of the simulation predetermined by the user. Future work may use a 

more efficient integration scheme in place of the Euler’s method. For 
example, the fourth-order Runge–Kutta method with adaptive step 
size can be used to adjust the step size based on the estimated error of 
the numerical solution to speed up the simulation process. However, 
to take advantage of the increased accuracy from higher-order numeri-
cal integration methods, we will need to interpolate within the time 
step when the voltage crosses the spike threshold (that is, Vα

j

(t) ≥ V

th

) 
so as to identify the spike time with an accuracy that matches the order 
of the numerical scheme58.

Identifying the four activity regimes for the CBN. For Figs. 1 and 2, 
we needed to identify CBN parameters that correspond to each of the 
four activity regimes introduced in ref. 30. As the network architecture 
in ref. 30 is different from ours (in terms of the number of neurons, 
choice of integrate-and-fire neuron model and so on), the parameter 
values in their paper are not directly applicable to our network. Thus, 
we randomly sampled 5,000 parameter sets from the search range of 
the CBN (Supplementary Table 1). We then selected parameter sets that 
produced each of the following four combinations of statistics: low rsc 
and high ff (asynchronous irregular), high rsc and low ff (synchronous 
regular), high rsc and high ff (synchronous irregular) and low rsc and 
low ff (asynchronous regular). Figure 1a shows the spike trains of 50 
randomly selected neurons over a period of 200 ms for each activ-
ity regime. For the analysis in Fig. 2b, we simulated 140.5 s of spiking 
activity and computed the activity statistics of 50 randomly sampled 
neurons for each of the four activity regimes (see ‘Estimating activity 
statistics’ section).

Activity statistics
Let X ∈ ℝ

N

s

×T  be a matrix of spike counts taken in a fixed time window 
(defined below) for Ns sampled neurons (either from the neuronal 
recordings or SNN) and T time bins. On the basis of X, we computed the 
following activity statistics (illustrated in Supplementary Fig. 1):

Single-neuron statistics. We considered two commonly used 
single-neuron statistics: fr and ff. The fr is defined as the mean fr across 
all neurons and trials. Specifically, we average all elements of X and 
divide by the duration of the spike count window.

The ff measures the trial-to-trial variability of the activity of each 
neuron. For each neuron (that is, row of X), we compute its ff as the 
variance of the T values divided by the mean of the T values. We then 
average these ff values across all neurons. For reference, if the spike 
counts for each neuron were Poisson distributed, then ff would equal 1.

Pairwise statistic. We considered the pairwise spike count correlation 
(rsc), commonly used to measure how pairs of neurons covary34. The rsc 
was computed by first computing the Pearson correlation for each pair 
of neurons across the T trials, then averaging the correlation values 
across all Ns(Ns − 1) pairs of neurons. We applied the Fisher transforma-
tion40 when comparing rsc values in the cost function because it makes 
the rsc values more Gaussian distributed, as in previous work40:

z =

1

2

log (

1 + r

sc

1 − r

sc

) . (5)

Population statistics. We considered three statistics that characterize 
population-wide covariability: the percent shared variance (%sh), the 
dimensionality of the shared variance (dsh) and the eigenspectrum of 
the shared variance (es)31,32. These statistics are based on FA, the most 
basic dimensionality reduction method that partitions variance that is 
shared among neurons from the variance that is independent to each 
neuron. Note that principal component analysis does not distinguish 
between these two types of variance.

Using the spike count matrix X, we can compute the Ns × Ns covari-
ance matrix C. For consistency, we used exactly the same spike counts 
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for computing the single-neuron, pairwise and population statistics 
(that is, we counted spikes in the same time bins). FA performs the 
decomposition C ≈ LLT + Ψ, where L ∈ ℝ

N

s

×m  is the loading matrix, 
Ψ ∈ ℝ

N

s

×N

s is a diagonal matrix containing the independent variance of 
each neuron and m is the number of latent dimensions. The matrix LLT 
represents the variance shared among neurons (termed the ‘shared 
covariance matrix’) and Ψ represents the variance independent to each 
neuron. The FA parameters L and Ψ are estimated from the neuronal 
activity using the expectation-maximization algorithm. The number 
of latent dimensions m is determined by maximizing the fivefold 
cross-validated data likelihood.

On the basis of these FA parameters, we define three population 
statistics. The %sh quantifies the percentage of each neuron’s variance 
that is shared with one or more of the other simultaneously recorded 
neurons. This value is then averaged across neurons. Specifically,  
we compute

%

sh

=

1

N

s

N

s

∑

j=1

L

j,∶

L

T

j,∶

L

j,∶

L

T

j,∶

+Ψ

j

, (6)

where Lj,: represents the j-th row of L, and Ψj represents the j-th diagonal 
element of Ψ. Note that %sh is related, but not equivalent, to rsc

32.
The dsh measures the complexity of the shared variance among 

neurons (that is, the number of population activity patterns needed 
to describe the shared variance). For example, if all neurons increased 
and decreased their activity together, dsh would equal 1. In principle, 
we should choose dsh = m. In practice, we first found m by maximizing 
the cross-validated data likelihood, as described above. Then, we chose 
dsh as the number of dimensions needed to explain 95% of the shared 
variance (based on the eigenspectrum of LLT). This procedure increases 
the reliability of the estimated dimensionality31.

The es measures the relative dominance of the dimensions of 
shared variance. For example, m might equal 3, but one dimension 
might explain far more shared variance than the other two dimen-
sions. Specifically, es is defined as the vector of Ns eigenvalues of LLT, 
where the eigenvalues are ordered from largest to smallest. Only the 
first m eigenvalues are nonzero. We define es in this way so that two 
eigenspectra with different m can be directly compared.

Estimating activity statistics. To estimate the activity statistics of the 
SNN with a given parameter set, we first instantiated the model (which 
includes generating a network connectivity graph and initial membrane 
potentials, see ‘Model simulation’ section). For estimating the activity 
statistics in Figs. 2 and 4–6, we repeated this network instantiation 
procedure five times and averaged the estimated statistics over these 
repetitions to increase estimation reliability (see below). For a given 
network instantiation, we simulated the network (see ‘Spiking network 
models’ section) to obtain 140.5 s of spiking activity. We then removed 
the first 500 ms of the spike train to ensure the statistics are computed 
on the spike trains when the network has reached a stable state, similar 
to Huang et al.26. We also excluded neurons whose fr is less than 0.5 
spikes per second for stable estimation of variance-based statistics 
(see ‘Feasibility constraints’ section). We then binned the remaining 
140 s into 700 bins, each of duration 200 ms. We used 140 s of activity 
with 700 bins because empirically such a number of bins is sufficient 
for a stable estimation of the aforementioned activity statistics while 
still keeping the simulation time reasonably low (average of 373 s, see 
‘SNOPS running time’ section) for our spiking network model with 
5,625 neurons.

For the spike trains corresponding to a given network instantia-
tion, we computed their activity statistics using 50 randomly sampled 
excitatory neurons in the recurrent layer (similar to Huang et al.26). We 
sampled 50 neurons to compare model output spike trains directly 
with that of recorded neuronal population activity, where the number 

of recorded neurons is typically around 50. We repeatedly sampled 50 
neurons without replacement from the network model ten times. The 
activity statistics were then computed for each sampled population 
and averaged across the ten samplings. This reduces the sampling 
variance in the estimation of the activity statistics. If there are five 
network instantiations, we further averaged the activity statistics over 
these instantiations.

For the neuronal recordings, we first excluded neurons with frs less 
than 0.5 spikes per second. We then randomly sampled 50 neurons and 
700 trials without replacement for each recording session and condi-
tion, where each trial corresponds to a single stimulus presentation 
(see ‘Neuronal recordings’ section). Within each trial, we took spike 
counts in a 200 ms bin preceding stimulus onset. Hence, the activity 
statistics for the network model and neuronal recordings are both 
computed using 50 neurons and 700 trials to ensure consistency for 
the comparisons.

Neuronal recordings
Experiments were approved by the Institutional Animal Care and Use 
Committee of the University of Pittsburgh and were performed in 
accordance with the United States National Research Council’s Guide 
for the Care and Use of Laboratory Animals. We reanalyzed data from 
experiments reported in previous studies42,59. In brief, we trained two 
rhesus macaque monkeys (monkeys P and W) to perform a spatial atten-
tion task. At the beginning of each task trial, the animal first fixated on 
a central dot for 300–500 ms. Gabor stimuli were presented, one on 
each side of fixation, for 400 ms. One of the two stimulus locations 
was block cued to change its orientation with 90% probability. After 
the end of the stimulus presentation, a blank interstimulus period of 
300–500 ms followed. The described sequence repeated and on each 
presentation, there was a fixed probability of one of the Gabor stimuli 
changing orientation at each presentation (that is, a flat hazard func-
tion). The task of the animal was to detect a change in orientation of 
one of the two stimuli and make a saccade to the stimulus that changed. 
Thus, the animal would benefit from maintaining constant attention 
to the cued location throughout the task trial.

Two 100 electrode Utah arrays (Blackrock Microsystems, one in 
V4 and one in PFC) were used to record neuronal activity in V4 and PFC 
simultaneously during the spatial attention task. There were two cue 
conditions (attention directed to the aggregate V4 receptive field or to 
the other hemifield) and two stimulus orientations (45° and 135° with 
the hemifields always containing orthogonal orientations), leading to 
four unique task conditions with different frs and population statistics. 
For each condition, we included only recording sessions with at least 
50 neurons whose fr is greater than 0.5 spikes per second each and at 
least 700 stimulus presentations for accurate estimation of the activ-
ity statistics (see ‘Estimating activity statistics’ section). This yielded 
10 sessions for V4 of monkey W, 20 sessions for PFC of monkey W,  
19 sessions for V4 of monkey P and 19 sessions for PFC of monkey P. 
More sessions were excluded for V4 than PFC for monkey W because 
many V4 neurons in monkey W had frs less than 0.5 spikes per second. 
We included both successful and failed trials because we looked at the 
200 ms bin preceding stimulus onset which was largely unaffected by 
the eventual trial result. Since on each trial the monkey saw multiple 
flashes of the stimulus, we took a 200 ms spike count bin immediately 
preceding each flash (that is, stimulus onset), leading to multiple spike 
count bins per task trial. We customized the network models to each 
of the four conditions separately (see ‘Customizing CBN and SBN to 
neuronal recordings’ section).

Cost function
We measured the discrepancy between the SNN-generated activity and 
neuronal recordings using a cost function. Specifically, our cost func-
tion is a weighted linear combination of the normalized distance of 
each activity statistic from its target value. Let S be the set of statistics 
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included in the cost function. For example, S = {fr, ff, rsc, %sh, dsh, es} 
indicates that all six activity statistics are used for customizing the SNN. 
Let strue

j

 and sj(θ) denote the jth activity statistic of the neuronal record-
ings (that is, the target value) and that of a network model under param-
eter set θ, respectively, where j ∈ S. The cost function is defined as:

c

S

(θ) =

1

∑

j∈S

w

j

∑

j∈S

w

j

d (s

true

j

, s

j

(θ))

v

true

j

, (7)

where d(⋅, ⋅) is a distance function. In this work, d(strue
j

, s

j

(θ))  
= (s

true

j

− s

j

(θ))

2. The weight, wj ∈ (0, 1), indicates the relative importance 
of each statistic and is predefined by the user. If a weight is zero, the 
corresponding activity statistic is not used during the customization 
procedure. In this work, we set wj = 1 for all j because we wanted to weigh 
each statistic equally. The terms strue

j

 and vtrue
j

 are the mean and variance 
of the j-th activity statistic across simulations or recording sessions 
(defined below). The variance term serves to downweight a statistic if 
its variance is large, indicating the estimation is unreliable. For the 
eigenspectrum of the shared covariance matrix (es), d(⋅,  ⋅) is defined 
as the sum of squared differences of the corresponding elements in 
the eigenspectra. The variance term for es is then computed across 
sessions or recording sessions using this scalar value.

For the network model (Fig. 4), strue
j

 and vtrue
j

 are the mean and 
variance, respectively, of the corresponding statistic over five network 
instantiations with randomly generated graphs and initial membrane 
potentials corresponding to the same ground truth parameter set. For 
neuronal recordings (Figs. 5 and 6), strue

j

 and vtrue
j

 are the mean and vari-
ance, respectively, across multiple recording sessions from the same 
monkey and experimental condition. In the sections below, we will 
refer to cS(θ) as simply c(θ), where S will be clear from the context.

Optimization algorithm
Problem setup. The goal of the optimization algorithm is to find a 
parameter set θ ∈ ℝ

d  in the search region Θ that minimizes c(θ) as

min

θ∈Θ

c(θ). (8)

In practice, c(θ) does not have a closed-form expression in terms 
of the model parameters and cannot be optimized using gradient- 
based methods. This is because, for a large-scale spiking network 
model, c(θ) depends on several activity statistics, which in turn 
depend on the computationally demanding numerical simulation 
of the SNN (see ‘SNOPS running time’ section). Hence, for a given θ, 
we cannot compute c(θ) directly as a function of θ. Instead, we simu-
late the network to obtain an estimate of c(θ), denoted ̂

c(θ). The 
estimation error is c(θ) − ̂

c(θ) and arises from several sources. First, 
for a given θ, network connectivity graphs are randomly generated. 
This is because the network connectivity graph is not a parameter 
of the network model, but is instead drawn from probability distribu-
tions specified by the parameters θ. Second, for a given graph, initial 
membrane potentials of each neuron are drawn randomly to ensure 
diversity of membrane potentials in the neuronal population, as in 
our previous work26. Third, the network has multiple layers, where 
the neurons in the first layer (the feedforward layer) emit spikes 
according to independent Poisson processes. Hence the spike trains 
from the first layer will differ under the same connectivity graph and 
initial membrane potentials.

In the following sections, we will introduce two optimization algo-
rithms (BO and random search) to minimize c(θ), and two innovations 
(feasibility constraints and intensification) to accelerate optimization. 
Both innovations can be incorporated into BO or random search. We 
term BO with both innovations ‘SNOPS’ (Fig. 4, blue), random search 
with both innovations ‘accelerated random search’ (Fig. 4, red) and 
random search without innovations ’random search’ (Fig. 4, green).

Random search. An intuitive approach to minimizing c(θ) without a 
closed-form expression is random search. Random search is commonly 
used as a benchmark in optimization and has been shown to have simi-
lar performance to more advanced algorithms in many optimization 
tasks60. At each iteration, the algorithm randomly samples a parameter 
set uniformly from the search region Θ and evaluates its cost. The 
algorithm terminates after a user-defined number of iterations, K, has 
been reached (Algorithm 1).

To reduce the variance of ̂

c(θ), we repeatedly simulate spike trains 
with randomly generated graphs and initial membrane potentials using 
the same parameter set for R repetitions (R = 5 in this work). For each 
repetition, we evaluate the cost, then average across the repetitions 
(Algorithm 1, the inner loop). Note that we will improve this 
variance-reduction method using one of the innovations (that is, inten-
sification) to be introduced later.

Algorithm 1: Random search for SNN customization.
   Input: search region Θ; max number of iterations K; number of 

repeated simulations R.
  Initialization: previously sampled parameter sets ̂

Θ = {} and their 
costs ̂

C = {}.
 for k ← 1: K do
  θk ~ uniform(Θ).
  for r ← 1: R do
    Evaluate ̂

c(θ

k

)

r

 by simulating spike trains with a randomly gener-
ated graph and initial membrane potentials.

  end for
  ̂

c(θ

k

) =

1

R

∑

R

r=1

̂

c(θ

k

)

r

.
  ̂

ϴ ←

̂

ϴ ∪ {θ

k

}.
  ̂

C ←

̂

C ∪ {

̂

c(θ

k

)}.
 end for
 return 

θ

⋆

← argmin

θ∈

̂

ϴ

̂

C

.

Algorithm 2: BO for SNN customization. 
  Input: search region Θ; max number of iterations K; number of 

repeated simulations R.
  Initialization: sample 50 initial parameter sets, either uniformly at 

random or according to a prior distribution, to obtain Θ. For each 
element θ ∈

̂

ϴ, estimate its cost ̂

c(θ) =

1

R

∑

R

r=1

̂

c(θ)

r

, where the cost 
estimate is averaged over R repeated simulations. Then, define 
̂

C = {

̂

c(θ) ∶ θ ∈ ϴ}.
 for k ← 1: K do
  Fit 𝒢𝒢𝒢𝒢 to ( ̂

ϴ,

̂

C).
   Compute θ

k

← argmax

θ∈ϴ

a(θ), where a(θ) is the acquisition function 
in equation (10).

  for r ← 1: R do
    Evaluate ̂

c(θ

k

)

r

 by simulating spike trains with a randomly gener-
ated graph and initial membrane potentials.

  end for
  ̂

c(θ

k

) =

1

R

∑

R

r=1

̂

c(θ

k

)

r

.
  ̂

ϴ ←

̂

ϴ ∪ {θ

k

}.
  ̂

C ←

̂

C ∪ {

̂

c(θ

k

)}.
 end for
 return 

θ

⋆

← argmin

θ∈

̂

ϴ

̂

C

.

BO. Random search samples parameter sets independently at each 
iteration and is not guided by the previously sampled parameter sets. 
To accelerate the algorithm, we turn to BO. BO utilizes previous evalu-
ations of the cost to guide the parameter search in a way that promotes 
both exploration and exploitation. BO has been demonstrated to opti-
mize cost functions with fewer iterations than random search in various 
optimization tasks39.

BO involves two major components: (1) a GP model to approxi-
mate the cost function and (2) an acquisition function to determine the 

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 4 | September 2024 | 690–705 701

Article https://doi.org/10.1038/s43588-024-00688-3

parameter set to sample at the next iteration. The full algorithm of BO 
involves iteratively updating the GP model and proposing the next param-
eter set using the acquisition function. This is outlined in Algorithm 2.

First, BO uses a GP to approximate c(θ). If two sets of parameters, 
θ1 and θ2 are similar, we expect the corresponding costs c(θ1) and c(θ2) 
to also be similar. To capture this intuition, BO approximates the cost 
function as a smooth function of the model parameters using a GP. 
The GP will allow us to predict c(θ) (posterior mean of the GP) and our 
uncertainty about the value of c(θ) (posterior variance of the GP) for 
a candidate θ without performing the computationally demanding 
evaluation of c(θ) explicitly. Specifically, we write

̂

c(θ) ∼ GP( μ(θ), κ(⋅, ⋅)), (9)

where μ(θ) ∶ ϴ ↦ ℝ is the mean function of the GP and is set as a con-
stant, 0, without loss of generality. The covariance function, 
κ(⋅, ⋅) ∶ ϴ ×ϴ ↦ ℝ, is a positive definite kernel function defined on any 
two points in the search region, Θ. We use the automatic relevance 
determination Matérn 5/2 kernel. The Matérn 5/2 kernel is commonly 
used in BO because it allows for possible nonsmoothness of a cost 
function. Its automatic relevance determination variant fits a different 
length scale for each of the d elements of θ, as determined by data. Note 
that incorporating prior knowledge of parameter interactions into the 
kernel can be beneficial (Supplementary Fig. 14). We use the MATLAB 
function fitgpr for fitting a GP model to the sampled parameter sets 
and their associated costs. In practice, the GP is fit to the cost estimated 
by averaging the estimate over R = 5 network instantiations of the same 
parameter set to reduce variance (as in random search). The uncertainty 
in the estimated costs is captured by the signal standard deviation in 
the Matérn 5/2 kernel, which is fit along with other hyperparameters in 
the kernel. We also log-transformed the cost values when fitting the GP 
to mitigate the effect of extreme cost values. At the beginning of the 
optimization, a set of initial parameter sets, Θ, is sampled uniformly to 
fit the GP since we assume no prior knowledge about the location of 
the optimal parameter set (Algorithm 2). One may sample Θ according 
to a prior distribution other than the uniform distribution to guide the 
initial optimization process if one has such knowledge. We sampled 50 
initial parameter sets for Θ, although this number can be varied based 
on user need. The larger this number, the better the initial GP estimate 
of c(θ) will be, but the longer the initialization process will take.

Second, BO uses an acquisition function based on the posterior 
mean and variance of the GP in equation (9) to decide the next param-
eter set to evaluate. BO selects the parameter set at which the acquisi-
tion function value is maximized. This corresponds to a combination of 
low posterior cost (exploitation, where the cost is predicted to be low) 
and high posterior variance (exploration, where we have not sampled 
many parameter sets).

Let ̂

μ(θ) denote the posterior mean and ̂σ(θ) denote the posterior 
standard deviation of the GP at θ. Let f− be the minimum of ̂

c(θ) over the 
sampled parameter sets so far. We use the expected improvement39 as 
the acquisition function

a(θ) = ( f

−

−

̂

μ(θ))Φ (

f

−

−

̂

μ(θ)

̂

σ(θ)

) +

̂

σ(θ)ϕ (

f

−

−

̂

μ(θ)

̂

σ(θ)

) , (10)

where Φ and φ are the normal cumulative distribution function and 
probability distribution function, respectively. Equation (10) is derived 
based on the goal of preferring θ whose posterior mean, ̂

μ(θ), is as small 
as possible compared with f− (for the complete derivation, see Brochu 
et al.39). The first term of the equation represents exploitation: as ̂

μ(θ) 
becomes smaller, this term will dominate because f

−

−

̂

μ(θ) will increase 
and Φ will approach 1, while φ in the second term will approach zero. 
The second term represents exploration: as ̂σ(θ) becomes larger, this 
term will dominate because the first term will approach 0.5 while the 
second term will increase as φ goes toward its peak.

The acquisition function, a(θ), also does not have an analytical 
form with respect to θ because ̂

μ(θ) and ̂σ(θ) have a nonstraightforward 
dependence on θ. However, ̂

μ(θ) and ̂σ(θ) are fast to compute using 
fitgpr in MATLAB (typically less than a microsecond for one evaluation). 
Hence we evaluate a(θ) on a large number of randomly sampled θ to 
quickly maximize a(θ) (as in the bayesopt function in MATLAB). In 
particular, we first evaluate a(θ) on 100,000 randomly sampled param-
eter sets. We then select ten parameter sets with the largest a(θ). We 
run fminsearchbnd to search locally around each of these ten param-
eter sets to refine the solution. The final maximizer of a(θ) is the maxi-
mizer from these ten local searches.

In Algorithm 2, the algorithm stops once the maximum number of 
iterations, K, has been reached. Depending on the specific use case, one 
can specify other stopping criteria, such as when a maximum amount 
of customization time has been reached, the cost function is no longer 
decreasing, or the cost is below a user-defined threshold.

Feasibility constraints. Our first innovation seeks to accelerate the 
optimization process using feasibility constraints. A parameter set, 
θ, is labeled ‘infeasible’ if, for a particular connectivity graph and 
initial membrane potentials (a single iteration in the inner loop in 
Algorithms 1 and 2), it leads to neuronal population activity gener-
ated from the network model that falls into either of the following 
two categories.

First, θ may lead to extreme frs. Low frs are undesirable because 
the resulting spike count matrices are mostly zeros. This can lead to 
unstable estimates of the variance-based activity statistics (for exam-
ple, ff, rsc and population statistics). High frs are biologically unrealistic 
(typically <10 spikes per second for V4 and PFC recordings; Supple-
mentary Fig. 5). We set the low fr threshold as <0.5 spikes per second 
and the high fr threshold as >60 spikes per second (mean fr across all 
neurons and time).

Second, θ may lead to unstable solutions. The network activity 
may take a period of time to reach a stable state, defined by when the 
mean fr across the neuronal population converges. As noted above, 
a standard preprocessing step is to remove the first 500 ms of the 
network-generated spike trains (the period when the network has not 
yet stabilized)26. However, some parameter sets may lead to networks 
that take more time to stabilize or may never reach the stable state 
(for example, switching between multiple stable states). These cases 
need to be excluded from the customization process because they 
represent unstable solutions and are not typically used to compare 
with recorded neuronal activity. Specifically, to determine if a given θ 
leads to an unstable solution, we first run change point detection (using 
the findchangepts function in MATLAB)61 on the time course of the 
population-averaged mean fr after removing the first 500 ms. We then 
deem θ to be infeasible if the mean fr (across neurons and time) before 
the change point and that after the change point exceeds a threshold. 
The threshold is computed as three standard deviations of the mean 
fr (across neurons and time) after the change point.

To speed up the customization process, we wish to rule out infea-
sible parameter sets with minimal computation. We propose to use a 
‘freeze–thaw’ method62 by first running a short simulation to generate 
10 s of spike trains to estimate the feasibility of a parameter set and 
only proceed to the full simulation (140 s, see ‘Estimating activity 
statistics’ section) if the parameter set is feasible. We use 10 s for the 
short simulation because the two constraints only depend on the fr, 
and empirically the estimation of the fr tends to stabilize within 10 s. 
However, estimating population statistics, for example, %sh, requires 
substantially more simulation time, hence a full simulation is still 
needed to compute all activity statistics.

For random search, feasibility constraints can be incorporated in 
a straightforward manner: for each sampled parameter set, if feasible, 
the algorithm will run the full simulation of 140 s to compute the cost. 
If the sampled parameter set is infeasible, it will simply proceed to the 
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next sampled parameter set. Note that feasibility is evaluated at each of 
the R repetitions in the inner loop (Algorithm 1). The inner loop aborts 
as soon as the parameter set is deemed infeasible.

For BO, we incorporated the feasibility constraint into the opti-
mization problem63

min

θ∈ϴ

c(θ) such that g(θ) = 1, (11)

where g(θ) = 1 if θ is feasible and g(θ) = 0 otherwise.
To incorporate this constraint, two parts of BO will change. First, 

in addition to the GP that approximates the cost function (the GP in 
equation (9)), there is a separate GP that represents the feasibility 
function, g(θ), which is fit to the sampled parameter sets and their 
feasibility values (which are binary). Second, the acquisition function 
will now incorporate the GP for the feasibility function. Let GP

c

 repre-
sent the GP on c(θ) as in equation (9) and GP

g

 represent the GP on g(θ). 
Let ̂

μ

c

(θ),

̂

σ

c

(θ) denote the posterior mean and s.d., respectively, of GP
c

. 
Similar to equation (10), f− is the minimum of ̂

μ

c

(θ) over the parameter 
sets evaluated so far. The expected improvement (that is, acquisition) 
function for the constrained Bayesian optimization becomes63
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(12)

This differs from equation (10) in the term Φ (

̂

μ

g

(θ)−0.5

̂

σ

g

(θ)

)

, which yields a 

larger acquisition value if the feasibility posterior mean is high. Note 
that even though GP

g

 is fit to binary values (g(θ) is either 0 or 1), its 
posterior mean, ̂

μ

g

(θ), is continuous valued. Furthermore, in this term, 
̂

μ

g

(θ) is referenced to 0.5 to ensure symmetry.
It is also possible to replace the short simulation for evaluating the 

feasibility of a parameter set with analytical calculations. For instance, 
for networks with a large number of neurons, mean-field theory can be 
used to predict the mean fr directly from the network parameters11. In 
such networks, linear response theory can also be used to predict the ff 
and rsc (ref. 11). These approaches can speed up the SNOPS customiza-
tion by eliminating the need for these network simulations.

Intensification. The second innovation seeks to improve the accuracy 
of estimating the cost with less time. The estimation error arises from 
several sources, described in ‘Problem setup’. A high estimation error 
may result in a final parameter set returned by the algorithm with a 
low cost in a single evaluation, but with a higher cost if evaluated and 
averaged over multiple repetitions64.

One possible solution is to repeatedly run simulations under the 
same parameter set for R repetitions, as in Algorithms 1 and 2. However, 
this can be computationally demanding because each repetition cor-
responds to a lengthy simulation. To avoid performing R repetitions 
for every θ sampled, we propose to use an intensification algorithm64. 
The main idea is to only perform R repetitions of the simulation if we 
encounter a potentially optimal parameter set. We first define the 
incumbent parameter set as the parameter set whose cost, calculated 
by averaging over R repetitions, is the smallest over the list of sampled 
parameters. Similarly, the incumbent cost and standard deviation are 
the associated mean and standard deviation of the cost of the incum-
bent parameter set over the R repetitions. A sampled θ is considered 
potentially optimal if its cost evaluated in the first repetition is within 
one standard deviation of the incumbent cost. Otherwise, we include 
it in the list of sampled parameters and proceed to sample the param-
eter set for the next iteration. The algorithm will perform evaluations 
for R repetitions only for the potential optimal parameter sets. If its 
average cost over the R repetitions is smaller than the incumbent cost, 
θ becomes the incumbent parameter set. Otherwise, we still include 
it in the list of sampled parameters and its associated cost value is the 
average over the R repetitions.

We adopt this method and introduce an additional evaluation 
stopping criterion: the algorithm will stop performing repetitions if 
the standard deviation of the cost across the performed repetitions is 
below a specified threshold. A small standard deviation indicates the 
estimate of the cost of this parameter set is consistent across repeti-
tions and needs no variance reduction. Note that at least two repeti-
tions need to be performed to compute the standard deviation and, 
if this stopping criterion is met, we follow the same procedure above 
in determining if θ becomes the incumbent parameter set. The addi-
tional stopping criterion further reduces the total number of simula-
tions throughout the optimization procedure and provides additional 
acceleration. We set the predefined number of repetitions to R = 5 and 
the standard deviation threshold to 0.15. A larger predefined number 
of repetitions and a smaller standard deviation threshold will yield a 
smaller estimation error, at the expense of greater simulation time.

Local optima. If SNOPS is run for infinite time, it is guaranteed to 
return the global optimal parameter set39. In practice, finite running 
time may result in the algorithm returning a local optimum. Empiri-
cally, we verified that SNOPS reliably returned a set of activity statistics 
that matched the recorded neuronal activity when the optimization 
algorithm was initialized with different initial parameter values (Sup-
plementary Fig. 5). This indicates that, even if the algorithm returns a 
local optimum, this optimum corresponds to activity statistics that 
match those of the recorded activity.

Tradeoff cost
We define a tradeoff cost to measure whether more accurately repro-
ducing one activity statistic leads to less accurately reproducing 
another activity statistic (Fig. 6). Intuitively, customizing two statis-
tics sa and sb simultaneously might incur a larger cost (of sa and sb) than 
customizing each of them individually. The gap between the cost of 
customizing sa and sb together versus individually represents how much 
the two statistics tradeoff with each other. Note that a similar idea has 
also been explored to show the tradeoff in the loss function of a model 
trained to perform two tasks simultaneously65.

For two statistics sa and sb, let c
s

a

(θ) and c
s

b

(θ) represent the cost 
values of the optimal parameter sets when individually customizing sa 
and sb, respectively. Let c

s

a

∪s

b

(θ) represent the cost resulting from cus-
tomizing the two statistics together. The tradeoff cost between sa and 
sb is defined as:

tradeoff(s

a

, s

b

) = c

s

a

∪s

b

(θ) −

c

s

a

(θ) + c

s

b

(θ)

2

, (13)

where the second term represents the average of c
s

a

(θ) and c
s

b

(θ). This 
average makes the second term comparable to the first term.

The tradeoff cost is guaranteed to be nonnegative because cus-
tomizing both statistics simultaneously is as challenging or more chal-
lenging than customizing each of them separately. This leads to a higher 
cost for each statistic when the model is customized to both statistics 
together (first term) as compared with when the model is customized to 
each of them separately (second term). A tradeoff cost of zero indicates 
that the ability of the model to reproduce one statistic is unaffected by 
the incorporation of another statistic into the cost function.

Verifying SNOPS in simulation
To validate the performance of SNOPS in simulation (Fig. 4 and Supple-
mentary Figs. 3 and 4), we customized network models to the activity 
generated from the same type of model. We first randomly sampled 100 
parameter sets from the search region (see ‘Spiking network models’ 
section) for the CBN and SBN. We estimated the activity statistics for 
each sampled parameter set over five network instantiations (see ‘Cost 
function’ section). We excluded parameter sets resulting in fr smaller 
than 1, dsh smaller than 1, and ff larger than 5 because they do not fall 
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within the range of the V4 and PFC activity statistics (Supplementary 
Fig. 11). We then randomly sampled 40 of the remaining parameter sets 
for both the CBN and SBN. We chose to use 40 parameter sets because 
they represent a diverse combination of activity statistics while hav-
ing reasonable running time. We applied SNOPS, random search and 
accelerated random search to customize the CBN and SBN separately. 
We ran each optimization-based method (SNOPS, random search and 
its accelerated variant) for 168 h (7 days). We found the cost usually 
plateaus within 168 h, indicating that the running time is sufficient for 
SNOPS to converge (Supplementary Fig. 3).

Customizing CBN and SBN to neuronal recordings
To compare the CBN and SBN as well as to validate the performance of 
SNOPS on neuronal recordings (Fig. 5 and Supplementary Figs. 3 and 4),  
we ran SNOPS, accelerated random search, random search and SNPE 
on the 16 datasets comprising two monkeys (monkeys P and W), four 
conditions (two cues by two saccade locations) and two brain areas  
(V4 and PFC). As in the previous section, we set the stopping criterion 
for the optimization-based methods to 168 h (7 days) because we found 
the cost usually plateaued within 168 h (Supplementary Fig. 3).

To compare the tradeoffs of different subsets of statistics between 
the CBN and SBN (Fig. 6), we customized each network model to the 
example macaque V4 dataset in Fig. 2 with different subsets of activity 
statistics included in the cost function. For each customization run, we 
set the weight of each statistic (wj in equation (7)) to be either 0 or 1,  
leading to a total of 26 − 1 = 63 customization runs for each network, 
which accounts for all possible subsets of activity statistics. For each 
customization run, we ran SNOPS for 168 h.

SNOPS running time
The running times indicated in this paragraph were obtained using clus-
ter machines with 40 Intel Xeon Gold 6230 2.10 GHz central processing 
unit (CPU) cores and 250 GB of random access memory. For clarity, here 
we refer to one customization run as the process of customizing a SNN 
to one dataset using SNOPS (Algorithm 2). We used one CPU core for 
each customization run. The overall running time for one customiza-
tion run is 168 h, corresponding to 1,200 optimization iterations on 
average. Each optimization iteration involves the following compo-
nents. First, for a selected parameter set that maximizes the acquisi-
tion function, we randomly instantiated a network connectivity graph 
and initial membrane potentials and generated spike trains from the 
spiking network with 5,625 neurons. This is the most time-consuming 
part of each iteration. It takes 23 s to generate 10 s of spike trains to 
determine feasibility (see ‘Feasibility constraints’ section) and 373 s to 
generate 140 s of spike trains. The values are the same for the CBN and 
SBN since they have the same number of neurons (5,625). Second, for 
the generated spike trains of 140 s, it takes 69 s to compute its activity 
statistics. Finally, it takes 32 s to select the parameter set for the next 
iteration, including fitting the GP for both the feasibility constraints 
and cost function, as well as maximizing the acquisition function. 
Note that for some iterations, the spike train generation and activity 
statistics computation may be repeated up to five times due to the 
intensification procedure (see ‘Intensification’ section).

We can utilize multiple CPU cores to implement SNOPS with par-
allelization. In Figs. 4–6 and Supplementary Figs. 3–10 and 13–14, we 
implemented a parallelization scheme to accelerate the customization 
process using SNOPS. The key idea is that parameter sets evaluated 
by one thread (that is, one CPU core) could potentially benefit other 
threads, allowing for the assessment of costs without necessitating 
additional simulations. This is enabled by the fact that, regardless of the 
target activity statistics in each thread, there is a common relationship 
between model parameters and activity statistics (that is, that specified 
by the network model). For example, when customizing network mod-
els to the 40 simulated datasets in Fig. 4, we ran 40 customization runs 
on 40 CPU cores simultaneously. We saved the model parameters and 

activity statistics in a log file for each iteration of each customization 
run. Within each thread, we routinely checked the already-evaluated 
model parameters and their activity statistics in the log files of the 
other threads running concurrently, and computed their costs based 
on the target activity statistics of the current thread. If there exists a 
parameter set from other threads that leads to a cost that is lower than 
any parameter set for the current thread, we would consider this param-
eter set potentially optimal and proceed to evaluate it. We performed 
this routine check every ten iterations, although it can be done more 
frequently. Even though each thread involved different target activity 
statistics, this strategy allowed the utilization of the concurrent infor-
mation across threads. To ensure a fair comparison, we applied this 
strategy to all optimization algorithms (random search, accelerated 
search, BO) in this work. Moreover, in our comparison of SNOPS with 
SNPE (Supplementary Fig. 4), we considered the total customization 
time for SNOPS as the running time of each thread (168 h) times the 
number of threads. This ensured a fair comparison by accounting for 
the collective computational effort across all threads.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The V4 and PFC recordings we analyzed for SNN customization are 
available at https://doi.org/10.1184/R1/19248827 (ref. 66). Source data 
for Figs. 2, 4, 5 and 6 are available with this manuscript.

Code availability
MATLAB code for the SNOPS algorithm is available at https://github.
com/ShenghaoWu/SpikingNetworkOptimization and on Zenodo 
at https://zenodo.org/records/13218535 (ref. 67). Data analysis was 
performed using Python 3.8.5.
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