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Attention often requires maintaining a stable mental state over time while simultaneously improving perceptual sensitivity.
These requirements place conflicting demands on neural populations, as sensitivity implies a robust response to perturbation
by incoming stimuli, which is antithetical to stability. Functional specialization of cortical areas provides one potential mech-
anism to resolve this conflict. We reasoned that attention signals in executive control areas might be highly stable over time,
reflecting maintenance of the cognitive state, thereby freeing up sensory areas to be more sensitive to sensory input (i.e.,
unstable), which would be reflected by more dynamic attention signals in those areas. To test these predictions, we simulta-
neously recorded neural populations in prefrontal cortex (PFC) and visual cortical area V4 in rhesus macaque monkeys per-
forming an endogenous spatial selective attention task. Using a decoding approach, we found that the neural code for
attention states in PFC was substantially more stable over time compared with the attention code in V4 on a moment-by-
moment basis, in line with our guiding thesis. Moreover, attention signals in PFC predicted the future attention state of V4
better than vice versa, consistent with a top-down role for PFC in attention. These results suggest a functional specialization
of attention mechanisms across cortical areas with a division of labor. PFC signals the cognitive state and maintains this state
stably over time, whereas V4 responds to sensory input in a manner dynamically modulated by that cognitive state.
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Significance Statement

Attention requires maintaining a stable mental state while simultaneously improving perceptual sensitivity. We hypothesized
that these two demands (stability and sensitivity) are distributed between prefrontal and visual cortical areas, respectively.
Specifically, we predicted attention signals in visual cortex would be less stable than in prefrontal cortex, and furthermore pre-
frontal cortical signals would predict attention signals in visual cortex in line with the hypothesized role of prefrontal cortex
in top-down executive control. Our results are consistent with suggestions deriving from previous work using separate record-
ings in the two brain areas in different animals performing different tasks and represent the first direct evidence in support of
this hypothesis with simultaneous multiarea recordings within individual animals.

Introduction
Nervous systems provide the following critical functions: (1) the
ability to respond to input and (2) the ability to store information
in the absence of input. These two functions conflict with each
other because information storage requires a stable representa-
tion that is robust to outside perturbation, whereas sensitivity to
perturbation is the essence of responsiveness. The functional spe-
cialization of cortical areas reflects one means to resolve this appa-
rent conflict. Areas that are synaptically distant from the sensory
periphery (such as frontal executive control areas) might function
through highly stable activity patterns in line with the need to
maintain cognitive states across long time scales, whereas activity
patterns in sensory areas closer to the periphery might be more vol-
atile, reflecting sensitivity of these patterns to sudden environmental
changes (Murray et al., 2014; Runyan et al., 2017).
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Indeed, there is substantial evidence for the dynamic nature
of sensory responses within sensory cortical areas. For example,
although the earliest spikes in response to a visual input generally
carry the most information about the stimulus (Osborne et al.,
2004), feature selectivity in visual cortex continues to develop
over time. Such dynamic sensory coding has been observed in
several contexts, including orientation selectivity (Ringach et al.,
1997; Müller et al., 2003; Shapley et al., 2003) and contour inte-
gration (Chen et al., 2014) in area V1, texture selectivity (Kim et
al., 2019) and object occlusion (Fyall et al., 2017) in area V4, and
pattern motion sensitivity in area MT (Pack and Born, 2001;
Smith et al., 2005).

In contrast, stable representations have been hypothesized to
be essential for executive functions involving maintenance of in-
formation on long time scales (several seconds and longer). One
brain area implicated in such executive functions is the lateral
prefrontal cortex (PFC), and indeed evidence for stable neural
representations in PFC has been reported for long time-scale
behaviors including categorical reasoning (Freedman et al., 2003;
Cromer et al., 2011; McKee et al., 2014), flexible rule-based deci-
sion-making (Bunge et al., 2003; Siegel et al., 2015), and working
memory (Constantinidis et al., 2018; Wasmuht et al., 2018;
Parthasarathy et al., 2019). It is important to emphasize that such
stable representations can exist at the population level despite
considerable temporal instability at the level of individual neu-
rons (Druckmann and Chklovskii, 2012). The case of working
memory provides an excellent illustration of this point. Work
using population-level analyses has found that although the ac-
tivity of PFC neurons can be highly dynamic during memory
maintenance periods, a stable representation can persist in a sub-
space of the population activity that encodes the mnemonic in-
formation (Murray et al., 2017; Parthasarathy et al., 2019).

One cognitive function that exemplifies the tension between
stability and sensitivity is selective attention, which is the ability
to marshal limited processing resources preferentially for goal-
relevant information while suppressing the processing of less rel-
evant or distracting information. For example, consider search-
ing for a friend wearing a red shirt in a crowd. This requires
maintaining a stable representation that red is the relevant visual
feature while also endeavoring to improve visual sensitivity to
that feature. Correlates of attention have been found in the neu-
ral activity of multiple sensory areas (for review, see Hromádka
and Zador, 2007; Maunsell, 2015; Gomez-Ramirez et al., 2016),
as well as parietal (Desimone and Duncan, 1995) and frontal
association cortex, including PFC (Paneri and Gregoriou, 2017).
Previous work has suggested that PFC and V4 directly interact in
the service of attention (Squire et al., 2013); but the functional
specialization of those areas has not been tested with respect to
the relative stability of population activity. Moreover, although
previous researchers have speculated that diversity of intrinsic
time scales across cortical areas reflects a computational division
of labor (Murray et al., 2014), this type of interplay of stable and
unstable processes has not been directly demonstrated moment
to moment with simultaneous recordings in multiple brain areas.
Previous studies have focused on trial-averaged activity rather
than moment-to-moment signals from populations of neurons.

We asked if the conflicting demands of selective attention to
maintain stable task-set representations and to enhance sensitiv-
ity to input might be distributed across nodes of this network,
and if so, what is the nature of that areal specialization? Thus, for
the present study, we sought to compare the temporal stability
of, and interaction among, attention signals in two key nodes of
the attention network: V4 and PFC. We predicted that PFC

population activity would more stably represent the attention
state compared with population activity in V4. This prediction is
in line with the relative stability of task-set representations previ-
ously found in PFC compared with the relative dynamism of sen-
sory processes in V4 but has not yet been explicitly tested with
simultaneous measurement of population activity in the two
brain areas. Thus, we provide the first direct evidence for this di-
vision of labor for temporal stability across frontal and visual
cortical areas on a moment-by-moment basis on individual
trials.

To test our prediction that PFC signals attention states stably
whereas V4 attention states are more dynamic, we simultane-
ously recorded neural populations in V4 and dorsolateral PFC of
monkeys while they performed a visuospatial selective attention
task and then used a decoding approach to assay the degree to
which the population codes for attention in each brain area were
stable. We found neural codes for attention states remained
highly stable in a subspace of prefrontal population activity,
whereas corresponding codes in V4 were relatively dynamic. We
also found that the estimated attention state in PFC predicted
the future attention state in V4 on a centisecond time scale, in
line with a top-down role of PFC in endogenous attention proc-
esses. These results suggest attention relies on areal specialization
for subfunctions of selective attention processes; stable task-set
representations are maintained over time in frontal cortex, free-
ing up visual cortex to remain sensitive to external events.

Materials and Methods
Ethical oversight. Experimental procedures were approved by the

Institutional Animal Care and Use Committee of the University of
Pittsburgh and were performed in accordance with the U.S. National
Research Council Guide for the Care and Use of Laboratory Animals.

Subjects.We used two adult male rhesus macaques (Macaca mulatta)
for this study. Two animals is the minimum number needed to demon-
strate reproducibility and is customary for research with this model spe-
cies. Surgeries were performed in aseptic conditions under isoflurane
anesthesia. Opiate analgesics were used to minimize pain and discomfort
perioperatively. A titanium head post was attached to the skull with tita-
nium screws to immobilize the head during experiments. After each sub-
ject was trained to perform the spatial attention task, we implanted one
100 electrode Utah array (Blackrock Microsystems) in each of the brain
areas V4 and PFC (area 8Ar; Fig. 1A). We implanted the electrode arrays
in the right hemisphere for Monkey P and in the left hemisphere for
Monkey W. A separate analysis of a portion of these data was previously
reported, along with a complete description of the experimental methods
(Snyder et al., 2018). The pattern of results was highly similar across the
two animals, so we combined across animals for the results reported in
the main text.

Visual change-detection task. Subjects maintained central fixation as
sequences of drifting Gabor stimuli were presented in one or both of the
visual hemifields and were rewarded with water or juice for detecting a
change in orientation of one of the stimuli in the sequence (the target)
and making a saccade to that stimulus (Fig. 1B). The probable target
location was block randomized so that 90% of the targets would occur in
one hemifield until the subject made 80 correct detections in that block
(including cue trials, described below), at which point the probable tar-
get location was changed to the opposite hemifield.

The fixation point was a 0.6° yellow dot at the center of a flat-screen
cathode ray tube monitor positioned 36 cm from the eyes of the subjects.
The background of the display was 50% gray. We measured monitor
luminance g functions by photometer and linearized the relationship
between input voltage and output luminance using look-up tables. We
tracked the gaze of the subjects using an infrared eye-tracking system
(EyeLink 1000, SR Research). Gaze was monitored online by the experi-
mental control software to ensure fixation within �1° of the central
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fixation point throughout each trial. We excluded from analysis data seg-
ments during which the gaze of a subject left the fixation window.

After fixating for a randomly chosen duration of 300–500ms (uni-
formly distributed), a visual stimulus was presented for 400ms or until
the gaze gaze of the subjects left the fixation window, whichever came
first. For the initial trials within a block, a Gabor stimulus was presented
only in the hemifield that was chosen to have a high probability of target
occurrence for the block. These cue trials were to alert the subjects to a
change in the probable target location and were excluded from the anal-
ysis. The initial cue location was counterbalanced across recording ses-
sions. Once a subject correctly detected five orientation changes during
the cue trials, bilateral Gabor stimuli were presented for the remainder
of the block.

Each trial consisted of a sequence of 400ms stimulus presentations
separated by 300–500ms interstimulus intervals (uniformly distributed).
We varied the interstimulus intervals so that stimulus onset times would
be relatively less predictable, encouraging the animal to deploy attention
consistently over time (as opposed to transiently disengaging attention
during the interstimulus interval). Stimulus sequences continued until
the subject made an eye movement (data during saccades were excluded
from analysis), or a target was presented, but the subject did not respond

to it within 400ms (i.e., a miss). For the first
presentation in a sequence, the orientation of
the stimulus at the cued location was randomly
chosen to be 45 or 135°, and the orientation of
the stimulus in the opposite hemifield, if pres-
ent, was orthogonal to this. Subsequent stimu-
lus presentations in the sequence each had a
fixed probability (uniform hazard function) of
containing a target (30% for Monkey P, 40% for
Monkey W), that is, a change in orientation of
one of the Gabor stimuli compared with the
preceding stimulus presentations in the trial.
Within a block, 90% of targets (randomly cho-
sen) occurred in one hemifield (valid targets),
and 10% of targets occurred in the opposite
hemifield (invalid targets). For valid targets, the
orientation change was randomly chosen to be
1, 3, 6, or 15° in either the clockwise or anti-
clockwise direction (number of valid targets of
each orientation at each location: Monkey P:
11.49 6 3.14, mean 6 SD, across sessions,
Monkey W: 14.56 6 4.75). For invalid targets,
the orientation change was always the near
threshold value of 3°, clockwise or anticlockwise
(because invalid targets occurred infrequently,
we restricted the number of orientation change
magnitudes for this condition to derive a rea-
sonable estimate of the target detection rate).
We analyzed trials including either valid or in-
valid targets but excluded from analysis all neu-
ral data from the time of target onset through
the end of the trial.

Monkey P completed 24 sessions of the
experiment, and Monkey W completed 25 ses-
sions. One session for each subject was subse-
quently excluded from analysis because of
recording equipment failure.

Microelectrode array recordings. Signals
from the arrays were bandpass filtered (0.3–
7500Hz), digitized at 30 kHz, and amplified by
a Grapevine system (Ripple). Signals crossing a
threshold (periodically adjusted using a multiple of
the root-mean-squared noise) were stored for off-
line analysis. We first performed a semisupervised
sorting procedure followed by manual refinement
using custom MATLAB software (https://github.
com/smithlabvision/spikesort), taking into account
waveform shapes and interspike interval distribu-
tions. These initial sorting steps yielded 93.26 8.9

(mean6 SD) candidate units per session in V4 and 119.6 6 17.5 units
per session in PFC for Monkey P and 61.9 6 27.4 candidate units
per session in V4 and 113.8 6 21.9 units per session in PFC for
Monkey W. We likely recorded a mixture of single units and multiu-
nit activity, although for simplicity we refer to all units as “neurons.”
The arrays were chronically implanted and likely recorded some,
but not all, neurons over more than one recording session, but we
calculated our results within each recording session and treated
each session as an independent sample for the analysis. We note
with respect to statistical inference that if we had, in fact, repeatedly
sampled the same pool of neurons across sessions, then our p values
would have a different meaning than if we had sampled a completely
new set each time. In the former case, the interpretation would be
that a particular sample of neurons shows the effects we found and
that that effect was not because of chance (e.g., on the first session),
whereas in the latter case the interpretation would be that neurons
in general show the effect we found. Both are valid inferences, and
both are interesting findings. In fact, our view is that attention
mechanisms can be conceived as latent factors that affect neural
populations and that we observed the same latent factors each
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Figure 1. Dual V4 and PFC recordings during a spatial attention task. A, Approximate location of Utah array implantations in
V4 (green) and PFC (purple). B, Animals fixated a central dot while stimuli were repeatedly flashed bilaterally. Reinforcement
was given if the animal made a saccade to a stimulus that changed orientation from the previous presentation (the target). In a
blocked fashion, the target was more likely to occur in one hemifield (the valid location). Cue trials, in which only one stimulus
appeared at the high-probability location, signaled the start of each block. C, Animals were more accurate at detecting D3° tar-
gets at the valid location than at the invalid location, confirming that they selectively attended to the valid location (Monkey P:
cue-valid, d9 ¼ 1:7660:20; mean 6 SEM; cue-invalid, d9 ¼ 0:4760:20; t23 ¼ 4:64; p ¼ 1:13 � 10�4; Monkey W:
cue-valid d9 ¼ 0:4660:18, cue-invalid d9 ¼ �0:7560:18; t22 ¼ 5:22; p ¼ 3:12 � 10�5). Results for Monkey P are
shown; results for Monkey W were similar (compare Snyder et al., 2018). D, Animals were also faster at detecting targets at the
valid location than at the invalid location (Monkey P: RT benefit for cue-valid compared with cue-invalid targets, DRT = –
29.2 6 1.6ms, t23 ¼ �17:90; p ¼ 5:32 � 10�15; Monkey W: DRT = – 42.3 6 4.8ms, t22 ¼ �8:79; p ¼
1:19 � 10�8). Results for Monkey P are shown; results for Monkey W were similar.
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session with our population-level analysis
whether or not the neurons were the same or
completely different between sessions.

To avoid potential confounds because of our
blocked design, we excluded neurons that were not
recorded stably throughout a session. These were
identified by dividing all the recorded data for a
session into 10 equally sized blocks, measuring the
average firing rate of each neuron within each
block and then calculating the coefficient of varia-
tion (CV) of the average firing rate of each neuron
over the blocks. Neurons with a CV .1 were
deemed to be unstable and were excluded (9.3 6
8.7 neurons excluded for Monkey P per session,
14.3 6 16.5 neurons excluded for Monkey W per
session). We also excluded neurons with an average
firing rate ,0.1 spikes per second measured over
the entire session (2.3 6 2.2 additional neurons
excluded for Monkey P per session, 6.0 6 5.7 neu-
rons excluded for MonkeyW per session).

We used a factor analysis (FA) method to
reduce the dimensionality of the population activ-
ity (see below, Dimensionality reduction of popula-
tion activity). Neural activity recorded on different
electrodes can, in rare cases, show highly correlated
activity because of electrical cross-talk among elec-
trodes on the array (Yu et al., 2009). Such corre-
lated activity can confound methods such as FA or
Gaussian process factor analysis (GPFA), which
seek to identify shared variance among neurons.
To be conservative, we measured the Pearson cor-
relation between spike trains (1 ms time bins) for
all pairs of neurons and randomly excluded one
neuron from each pair with a correlation coeffi-
cient greater than r = 0.1. This criterion was quite
liberal (12.9 6 9.3 neurons excluded per session),
and the results were not affected by substantial var-
iation of this correlation threshold.

One of our goals was to test how much variabil-
ity in one neural population was explained by the
population activity of the other brain area (see
below, Granger causal influence). Such an analysis
may be biased if we used a greater number of neu-
rons in one brain area to predict the activity of a
fewer number of neurons in another brain area. To
place the two areas on the same footing, for each
session, we randomly selected neurons from the
population with greater cardinality to equate
the population size used for all analyses between
the two brain areas (final population size in each
area for the analysis was 79.1 6 12.5, mean 6 SD
neurons for Monkey P per session; 50.9 6 22.0
neurons for Monkey W per session).

From the continuous recording, we extracted
data segments from 300ms before stimulus onset
to 300ms following stimulus offset (1 s total seg-
ment duration; Monkey P: 2253.1 6 591.3 data
segments per session; Monkey W: 2894.2 6 946.8
data segments per session) and counted spikes for
each neural unit in 1ms bins. For the calculation of
peristimulus spike time histograms (PSTHs; Fig. 2), we smoothed spike
trains with a causal half-Gaussian function with s = 20ms before aver-
aging across data segments.

Receptive field mapping. Before beginning the visual change-detec-
tion experiment, we mapped the receptive fields (RFs) of the spiking
neurons recorded on the V4 arrays by presenting small (�1°) sinusoidal
gratings (four orientations) at a grid of positions. We subsequently used
Gabor stimuli scaled and positioned to roughly cover the aggregate RF
area determined by the responses to the small gratings at the grid of

positions. For Monkey P this was 7.02° full-width at half-maximum
(FWHM) centered 7.02° below and 7.02° to the left of fixation, and for
Monkey W this was 4.70° FWHM centered 2.35° below and 4.70° to the
right of fixation. We next measured tuning curves by presenting gratings
at the RF area with four orientations and a variety of spatial and tempo-
ral frequencies. For each subject we used full-contrast Gabor stimuli
with a temporal and spatial frequency that evoked a robust response
from the population overall (i.e., our stimulus was not optimized for
any single neuron). For Monkey P this was 0.85 cycles/° and 8 cycles/s.
For Monkey W this was 0.85 cycle/° and 7 cycles/s. For the task, we

DC

BA

Figure 2. Firing rate time courses in V4 and PFC under different attention conditions. A, Population average for V4.
Top, Raw firing rate. Bottom, Normalized firing rate. Neurons in V4 generally responded more vigorously in response to
an attended stimulus than an unattended stimulus, particularly during the late, sustained portion of the response.
Baseline modulations were not observed on average. Black bars over data indicate time points with significant differen-
ces between cue-in-RF and cue-away conditions (independent samples t test, p, 0.05). B, Population average for PFC.
On average, neurons in PFC responded slightly more vigorously near the end of the stimulus interval when attention
was directed ipsilaterally compared with when it was directed contralaterally (bottom). C, PSTHs for example individual
neurons in V4 illustrating diversity of attention modulations. Unlike the population average (A), some individual neurons
showed baseline modulations (top), and/or more vigorous responses to unattended stimuli (middle). Other neurons
more closely resembled the population average (bottom). The time course of attention modulation varied across neurons
in the population, and changed magnitude or sign over time for individual neurons. These observations suggest a
dynamic code for attention in V4. D, PSTHs for example individual neurons in PFC. In PFC, the effect of contralaterally
directed attention on firing rates was much more consistent across time than in V4, suggesting a more stable code for
attention. Responses to nontarget stimuli to which animals correctly withheld responding are shown. Shading represents
61 SEM.
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presented a Gabor stimulus at the estimated RF location, at the mirror-
symmetric location in the opposite hemifield, or at both locations simul-
taneously. We did not measure RFs for the PFC neurons; stimulus prop-
erties were chosen solely on the basis of V4 responses. In a preliminary
step, we electrically microstimulated each of our PFC electrodes at a
range of current amplitudes and found that we were unable to evoke eye
movements even at current amplitudes several times greater than those
that typically evoke eye movements from electrodes implanted in the
frontal eye field (FEF; Goldberg and Bruce, 1986), suggesting that our
electrodes did not impinge on FEF but were rather exclusively in PFC.

Dimensionality reduction of population activity. To focus the decod-
ing analyses (see below, Decoding attention state) on activity that is
shared among neurons, we first applied GPFA to the spike counts
recorded in each brain area separately (Yu et al., 2009; Fig. 3). We then
orthonormalized the dimensions using the procedure described in Yu et
al. (2009). This yielded a single-trial time series of latent factors, which
summarize the shared activity among neurons over time. For this analy-
sis, we restricted the dataset to presentations of standard stimuli to which
the subject correctly withheld a response. We applied GPFA separately
to each of the two stimulus configuration conditions (i.e., when the stim-
ulus in the RF was oriented at 45° and when it was oriented at 135°). For
each neuron we square-root transformed the spike counts (as a variance-
stabilizing step), then subtracted the average PSTH for the included data
segments from each individual trial. That is, our analysis focused on re-
sidual trial-to-trial variation in firing rates beyond the average stimulus-
evoked response. We then binned the residual spike counts for each neu-
ron in each data segment within 50 nonoverlapping 20ms time bins. We
aimed to specify a common model dimensionality across all brain areas
and sessions so that values across brain areas and sessions would be
directly comparable. We tested several potential dimensionalities for our
GPFA models and found that 10 dimensions captured most of the
explainable shared variance in all but one of our datasets, so we used this
dimensionality consistently. We also tested different criteria to select the
number of dimensions, such as using the minimum number of dimen-
sions needed to retain 90% of the total shared variance of each popula-
tion, and found the pattern of results to be highly consistent. Thus, our

results and conclusions are not dependent on
the precise criterion to choose the number of
dimensions. Our goal in performing this initial
dimensionality reduction step was to reduce the
tendency to overfit the logistic regression model
to noisy individual neurons and instead to
emphasize shared variability. After separately
applying GPFA for each stimulus configuration
condition separately, we recombined the results
for subsequent analyses. The patterns of results
and the conclusions were not affected if we re-
stricted our entire analysis to only one stimulus
configuration or the other; therefore, we used
all the data from both conditions.

In GPFA, the amount of temporal smooth-
ing (i.e., t , the time scale of the Gaussian proc-
esses) was determined in an unsupervised
manner from the neural activity (through
maximum likelihood estimation using expec-
tation maximization with cross-validation),
and not prespecified. Thus, differences across
brain areas in how quickly latent variables
change over time reflect inherent differences
in the activity across areas. To confirm this,
we repeated the main analyses using FA,
which does not include temporal smoothing.
We found similar qualitative results as with
GPFA, although the results tended to be nois-
ier without temporal smoothing, which moti-
vated us to use GPFA instead of FA in the
first place. Thus, our results and conclusions
are robust to the use of temporal smoothing.

Decoding attention state. We used binomial
logistic regression models to estimate the prob-

ability of which stimulus location was cued (i.e., attended) using the
GPFA latent variables obtained from the population activity from each
brain area (Fig. 5). Specifically, we used the MATLAB function mnrfit to
find the ~b t that optimizes the following equation:

PðcueRF j~xtÞ ¼ 1

11 e�~b t~xt
;

where~xt is the vector of 10-dimensional GPFA scores at time t. For each
brain area, we fit a separate model at each time point during the stimulus-
aligned data segments. We used 10-fold cross-validation to quantify the
classification performance of the cue condition (Fig. 4C), as well as all sub-
sequent analyses involving the decoded attention state. Where indicated
in the text, we used the single decoder from the time point with the best
performance and applied that decoder to the data from all time points,
which enables a more straightforward comparison between time points.
The pattern of results and conclusions was unchanged if we used a sepa-
rate decoder trained at each time point for such analyses. To measure
cross-temporal generalization of our decoders (Fig. 5C,D), we measured
the Pearson product-moment correlation coefficient across trials between
P(cueRF) values obtained using a decoder trained on data from one time
point (training time), on data from another time point (test time), and
P(cueRF) values obtained using decoders trained and tested at the same
time point (in a cross-validated manner).

Attention state prediction stability.We sought to quantify how much
the estimated attention state in each brain area fluctuated from moment
to moment. Because the output of the logistic regression decoder was
in units of probability (i.e., that the RF was attended), these values were
bounded between zero and one. This boundedness would have created a
compression of the moment-to-moment variation near those extreme
values. To mitigate this ceiling/floor effect, we transformed the probabil-
ities into z-scores using a normal inverse cumulative distribution func-
tion. We then computed the attention prediction stability, st, as one
minus the absolute change in the z-transformed probability estimate
from one time point to the next (Fig. 6) as follows:
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of activity among neurons within each brain area (left), resulting in a lower dimensional set of latent factor scores (right). B,
Average factor scores for one factor for each brain area from a representative session. At each time point (e.g., the dashed
line at �10ms relative to stimulus onset; insets show distributions across trials of factor scores at the indicated time), we
trained a logistic regression decoder to classify trials as cue-in-RF or cue-away using the factor scores. One factor is shown
for illustrative purposes; in actuality 10 factors were used for decoding. The gray rectangle indicates the time when the stim-
ulus was present (400 ms duration). Shading represents61 SEM.
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st ¼ 1� jzðP cueRF j~xtð ÞÞ
� zðP cueRF j~xt�1ð ÞÞj

Thus, the maximum value for prediction
stability is one, which indicates no change in
the attention prediction value over time. To
compare the measured stability values to what
might be expected if there was no temporal
structure in the data, we randomly shuffled
the time points of our data within each ses-
sion, measured the stability of the shuffled
data, and then averaged within each session.
We repeated this shuffling procedure several
times and found that because each session
contained hundreds of thousands of time
points, the same average stability resulted for
each iteration to a precision of ,0.0001, so
we simply used that value. We then rescaled
our observed stability measurements so that
a value of 0 equaled the least average stabil-
ity that was found in our shuffled dataset.
Therefore, a value of 1 indicates perfect sta-
bility, and a value of 0 indicates the least
expected stability if there was no temporal
structure. Note that stability can be nega-
tive. To ease comparison of P(cueRF) across
time, for this analysis of instantaneous sta-
bility and the analysis of Granger causal
influence (GCI) we used the decoder for
each brain area from the time point with the
best decoding performance for each session
and applied it to the data across all the time
points. The qualitative pattern of results and
conclusions were the same if we used a sepa-
rate decoder trained at each time point but
would be more difficult to interpret as it
would be ambiguous as to whether instabil-
ity was accounted for by a change in de-
coder, a change in activity patterns, or both.

Granger causal influence. To estimate how
much future information about the attention
state in one brain area was predicted from
the past history of the other brain area, we
performed a GCI analysis using the Multivariate
Granger Causality (MVGC) toolbox for
MATLAB (Barnett and Seth, 2014; Fig. 7).
Although this analysis is traditionally known
as Granger causality, we caution that mecha-
nistic causality may not be validly inferred as
the procedure is strictly observational and the
potential role of unobserved variables cannot
be ruled out. Traditionally, GCI analysis
involves estimating parameters for both a full and a reduced (nested)
autoregressive model. The reduced model aims to predict the future state
of one signal (the target, y; in our case the P(cueRF) estimated from activ-
ity in one brain area) using the past history of that signal as follows:

yt ¼ b 1yt�1 1 b 2yt�2 � � � b nyt�n 1 h ;

where n is a specified model order and h is residual error. In our model
for V4, for example, the reduced model aimed to predict the value of
P(cueRF) in V4, and it did so by using the preceding values of P(cueRF)
from V4 in each trial (up to the model order and excluding any points in
time that would span across trials).

The full model aims to predict the future state of the target signal
using the past history of the target signal and also an additional signal
(the source, x; in our case the P(cueRF) given the activity of the other
brain area) as follows:

yt ¼ b 1yt�1 1 b 2yt�2 � � � b nyt�n 1a1xt�1 1a2xt�2 � � �anxt�n 1 h :

In this full model for V4, the current value of P(cueRF) in V4 was pre-
dicted by the preceding values of P(cueRF) from both V4 and PFC in
each trial (up to the model order and, again, excluding any points that
span across trials). Note that the model order n is the same for both the
reduced and full models.

If the full model predicts the target signal better than the reduced
model, then this implies that the source signal carries additional infor-
mation about the future state of the target. We quantified the GCI as the
percentage of residual error from the reduced model, which was
accounted for by the full model.

Because GCI analysis assumes stationarity, we restricted our GCI
analysis to the following time windows relative to each stimulus onset
where this assumption was most reasonable: (1) a 200ms time window
before stimulus onset (�290 to �90ms) and (2) a 200ms time window
during the sustained stimulus response (i.e., after the initial onset

C

B

A

Figure 4. Decoding attention state. A, At each time point (t), we found the optimal coefficients (~b t) for the logistic regres-
sion equation shown, where~x t is a vector of GPFA scores. We then estimated the attention state, P(cueRF), in a cross-validated
manner. The filled marker indicates the example PFC factor illustrated in Figure 3B. B, Using the same representative session
and time point indicated in Figure 3B, we estimated the probability that each trial came from the cue-in-RF condition,
P(cueRF). Inset, Distributions of P(cueRF) values for that time point. Triangles indicate the distribution means. By varying the
classification threshold, we constructed receiver operating characteristic curves to assess how separated the cue-in-RF and cue-
away distributions were. Both brain areas carried predictive information about the cue condition. C, Decoder performance
(cross-validated area under the receiver operating characteristic curve). Logistic regression models trained on population activity
from each brain area performed significantly better than chance (0.5) at predicting which location was cued during the task at
all time points (t test, p, 0.05, Bonferroni corrected). This indicates that population activity in both brain areas encoded infor-
mation about the attention state at all times. Shading represents61 SEM, N = 47 sessions across two subjects.
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transient; 150–350ms). Our two signals of interest for this analysis were
the time series of P(cueRF) for each of the two brain areas. We first esti-
mated an appropriate autoregressive model order (i.e., the number of
20ms time bins of history used to predict the target) for each session by
estimating optimal parameters for each model order from 1 to 6 (by or-
dinary least-squares regression) and then calculating the Bayes informa-
tion criterion (BIC) for each model. The model order with the best BIC
was taken as the best model order (almost always order 4, sometimes 3
or 5, rarely 2). Our general pattern of results was robust to deviations in
this estimated optimal model order value. For example, if we performed
our analysis setting the model order of all sessions to be 3, 4, 5, or 6, the

qualitative pattern of results was highly similar
to that of our main result. In cases where our
estimated autoregressive model parameters
resulted in an unstable process (i.e., a spectral
radius�1, which is not realistic for brain activ-
ity), we rescaled the parameters to stabilize the
process (using the var_specrad function of the
MVGC toolbox).

Experimental design and statistical analyses.
For details on subjects, including justification of
number used, see above, Subjects. For details on
the task design, including independent variables
and the numbers of trials per condition, see
above, Visual change-detection task. For details
on the number of neurons recorded, including
exclusion criteria, see above, Microelectrode
array recordings.

To test differences between cue conditions
for behavioral accuracy (Fig. 1C) and reaction
time (Fig. 1D), we used two-tailed dependent
samples Student’s t tests (24 sessions for
Monkey P and 23 sessions for Monkey W) with
a = 0.05.

To test for differences between the character-
istic time scales of the latent factors estimated by
GPFA for the two brain areas of interest, we used
a two-tailed independent samples Student’s t test
(two brain areas, each with 470 observations of
latent factors, 47 sessions with 10 factors each)
with a = 0.05.

To test the performance of our logistic
regression decoders, we used the receiver oper-
ating characteristic (ROC; Fig. 4C). For each
session, we estimated P(cueRF) at every time
point for every trial (with cross-validation; see
above, Decoding attention state) for both brain
areas. Then, we calculated the area under the
curve (AUC) of ROC values at each time point,
yielding a time series of AUC values for each
session. We then tested the results of the 47 ses-
sions against the null hypothesis chance value
of AUC = 0.5 with a two-tailed, one sample
Student’s t test at each time point with a = 0.05,
corrected for multiple comparisons with
Bonferroni’s method.

To test for differences in cross-temporal
generalization of our decoders between brain areas
(Fig. 5E), we applied Fisher’s r to z transformation
to correlation values then tested against a null hy-
pothesis of no difference between brain areas with
a two-tailed dependent samples Student’s t test
(N = 47 sessions, a = 0.05, Bonferroni corrected
for the number of time point pairs).

To test the difference in prediction sta-
bility between brain areas (Fig. 6C), we used
a two-tailed dependent samples Student’s t
test (47 sessions) with a = 0.05, corrected
for multiple comparisons with Bonferroni’s
method.

For testing GCI values (Fig. 7), we used a nonparametric permuta-
tion test. For each session, we pseudorandomly permuted the trial order
for PFC data, holding the trial order for the V4 data constant and taking
care to ensure that no permuted trial ever ended up in its original
sequence position by chance. Because in this permutation the within-
trial order of the time points remained the same, it did not affect the pre-
diction from the reduced model. Instead, it simply destroyed the ability
of the added brain area to increase the prediction in the full model. This
permutation procedure reflects the null hypothesis that there is no
directed information flow between brain areas (i.e., the two brain areas
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Figure 5. The population code for cue condition is more dynamic in V4 than in PFC. A, Average probability that the RF
was cued [P(cueRF)], estimated from cue-in-RF trials. The average prediction was more dynamic over time in V4 (green) than
in PFC (purple). The gray rectangle indicates the time the stimulus was present. Shading represents 61 SEM, N = 47 ses-
sions across two subjects. B, Same conventions as in A but for the average probability that the cue was away from the RF
[P(cueaway)] using population activity on the cue-away trials. C, Decoding stability. In V4, decoded P(cueRF) values were highly
correlated only when using decoders trained at nearby time points, which indicates a dynamic code for attention. D, In PFC,
decoded P(cueRF) values were highly correlated when using decoders trained across a much wider range of time points, indi-
cating a stable code. E, Statistical comparison of C and D. For each observed P(cueRF) correlation value, we tested whether
the correlation was significantly different between the two brain areas (dependent-samples t test, N = 47 sessions, a =
0.05, Bonferroni corrected for the number of time point pairs). P(cueRF) values are significantly more correlated across a wider
range of time points in PFC than in V4. The black contour indicates the significant p value threshold of p = 0.05.
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are independent, in which case permuting the
trial order should make no difference). We then
recalculated GCI for the trial-order-permuted
dataset (see above, Granger causal influence for
all steps, including model selection and parame-
ter estimation). This procedure was iterated
10,000 times for each session to yield a distribu-
tion of GCI values reflecting the null hypothesis.
We also generated a null hypothesis distribution
for GCI asymmetry by taking the ratio of the
PFC-to-V4 null hypothesis distribution to the
V4-to-PFC null hypothesis distribution.
Observed GCI values were considered signifi-
cant if they were more extreme than 5% of the
permutation test distribution, Bonferroni cor-
rected for the number of sessions tested. For
testing the distribution of GCI asymmetry
across sessions against a null hypothesis of zero
asymmetry, we used a two-tailed one-sample t
test with a = 0.05.

Results
We recorded neural population activity
from PFC and V4 simultaneously in the
same hemisphere of two adult male mon-
keys (Macaca mulatta; Fig. 1A) while they
performed a spatial selective attention
task (Fig. 1B). The animals were more
accurate (Fig. 1C) and faster (Fig. 1D) at
discriminating orientation changes at a
high-target-probability location (cue-valid
targets) than at a low-target-probability lo-
cation (cue-invalid), confirming that they
selectively attended to the high-target-prob-
ability location during the task.

Single-neuron attention signals
The firing rate of individual neurons differed
depending on whether the RF location had a
high target probability (i.e., was likely attended).
As we previously reported (Snyder et al., 2018),
most V4 neurons fired more vigorously in
response to an attended stimulus than an unat-
tended stimulus (Figure 2A). We did not
observe a difference in the average spontaneous
firing rate in V4 between attention conditions.
In PFC, the average firing rate was slightly
more vigorous toward the end of the stimulus
interval when attention was directed ipsilaterally
compared with when it was directed contralat-
erally (Fig. 2B). As in V4, average spontaneous
firing rates in PFC did not differ between attention conditions.

The patterns of attention modulations observed for individual
neurons diverged greatly from the population averages, however.
For example, in V4 some neurons that had greater stimulus-
related firing rates with attention were in contrast suppressed by
attention in the absence of a stimulus (Fig. 2C, top). Other V4
neurons fired comparatively less in response to an attended stim-
ulus than an unattended stimulus (Fig. 2C, middle). Specifically,
we found that for 19% of neurons in our sample that had a sig-
nificant attention effect both before and during the stimulus, the
direction of that effect changed between the two time periods of
interest (Snyder et al., 2018). This pattern of results suggests that
the population code for attention in V4 is dynamic and depends

on the stimulus context. For PFC, although the average firing
rate was similar between attention conditions, individual neu-
rons showed strong and stable attention effects in different direc-
tions (Fig. 2D). Some PFC neurons showed fairly constant firing
rates over time (i.e., not stimulus dependent) that differed
between attention conditions (Fig. 2D, top). Firing of other PFC
neurons was suppressed (Fig. 2D, middle) or facilitated (Fig. 2D,
bottom) by stimuli but nonetheless showed consistent differen-
ces between attention conditions over time. For example, the
proportion of PFC neurons with significant attention effects
both before and during the stimulus that changed the direction
of their effect between the two time periods was significantly
smaller than that for V4 (PFC, 59/1027, 5.4%; V4, 96/404, 19.2%;
x 2 ¼ 73:59; p ¼ 9:61 � 10�18).

C
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A

Figure 6. Decoded attention state is more stable for PFC than for V4. A, Single-trial attention prediction examples
from a representative session. Within a single trial, the P(cueRF) varied. To quantify this variation, we calculated the sta-
bility (s); a value of s = 1 indicates perfect stability, and a value of s = 0 indicates the expected stability if time points
were independent (see above, Materials and Methods). The trials shown are the trial with the greatest average stability
over time [hsi, gold], the trial nearest the median [hsi, cyan] and the trial with the hsi nearest zero (magenta) for
each brain area. B, Distributions of average stability during each peristimulus epoch (�300 ms to 700 ms relative to
stimulus onset) for V4 (green) and PFC (purple). Same session as in A. C, The prediction stability was greater in PFC (pur-
ple) than in V4 (green) at all time points (t test, p, 0.05, Bonferroni corrected). This included prestimulus time points,
indicating that differences in P(cueRF) stability were not trivially because of, for example, different dynamics of stimulus
responsiveness, (Note also that although stability dropped transiently in V4 around stimulus onset, in general, stability
in V4 was at similar levels during spontaneous and stimulus-evoked activity, indicating stability was not trivially related
to overall activity levels.) The gray rectangle indicates the time the stimulus was present. Shading represents 61 SEM,
N = 47 sessions.
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Population-level attention coding
Population-level analyses can reveal dynamics or stability of neu-
ral codes hidden at the single-neuron level (Murray et al., 2017;
Snyder et al., 2018), so we tested for this possibility. We first
reduced the dimensionality of the activity from each population
using GPFA (Yu et al., 2009; Fig. 3A). This allowed us to focus
subsequent decoding analyses on variance that was shared
among neurons within each population, as well as to avoid over-
fitting when decoding (the qualitative pattern of results was

similar if performed on the full population
data, although with worse performance
because of overfitting). It is important to
note that we performed dimensionality
reduction after subtracting the trial-aver-
aged response of each neuron from each
trial. That is, we were not interested
in dynamics simply because of the av-
erage stimulus response but rather
sought to emphasize nonstimulus-
related activity. In our case, the fitted
Gaussian processes for the latent fac-
tors that best explained the V4 population
activity typically had faster characteris-
tic time scales than the latent factors
that best explained the PFC population
activity (Fig. 3B), indicating that V4 ac-
tivity changed more quickly than did
PFC activity [V4 time scale: t =
94.63 6 46.14ms, mean 6 SD; PFC
time scale: t = 201.826 125.80ms; inde-
pendent samples t test: t(938) = – 17.24,
p = 1.18 · 10– 58, N = 940, 470 factors
(i.e., 10 factors for each session) � 2
brain areas]. This suggests that V4 and
PFC have different intrinsic time scales,
in line with our guiding thesis as well as
previous findings (Murray et al., 2014;
Runyan et al., 2017).

Although the latent factors for V4 var-
ied more quickly than those for PFC, this
does not necessarily mean that the popula-
tion code for attention in V4 is less stable
than in PFC, as previous research has
shown encoded information can remain
stable despite highly dynamic population
activity (Murray et al., 2017; Parthasarathy
et al., 2019). Thus, we next applied a
decoding approach to the latent factors to
assay and compare the time courses of
encoded attention information in the two
brain areas. We used logistic regression to
decode whether the RF (or the opposite
hemifield) had been cued from the neural
population activity in each brain area (Fig.
4). Because the question of code stability is
only interesting if the code carries predic-
tive value, we confirmed our decoders per-
formed significantly better than chance in
both brain areas at all time points during a
trial (Fig. 4C; t test, p , 0.05 at all time
points, Bonferroni corrected). Importantly,
we were able to decode attention states
even during prestimulus periods during
which population average firing rates were

quiescent and similar between attention conditions (Fig. 2A).
Having established that both V4 and PFC encoded the attention
state throughout the experiments, we next asked if we could estab-
lish the comparative dynamics of those codes.

Dynamics of population attention codes
In subsequent analyses, rather than decoding a binary value (i.e.,
cue-in-RF or cue-away), we focused on a more sensitive metric
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Schematic of GCI analysis. To test for GCI in the PFC-to-V4 direction, we measured the reduction in error predicting the future P
(cueRF) in V4 from the past history of both brain areas compared with when predicting from the past history of V4 alone. We
also measured the reduction in error when predicting the future P(cueRF) in PFC from the past history of both brain areas com-
pared with when predicting from the past history of PFC alone. B, GCI in each direction during the prestimulus period. The
value along each axis is the reduction in error in predicting P(cueRF) with both brain areas, compared with one brain area alone.
Each marker represents a session (green, PFC-to-V4 significantly greater than zero for individual session, p, 0.05, permutation
test, Bonferroni corrected; purple, V4-to-PFC significant; dark gray, both significant; light gray, neither significant). Points lie
below the unity slope line on average, indicating that adding PFC to V4 when predicting the upcoming P(cueRF) in V4 is more
helpful than adding V4 to PFC when predicting the upcoming P(cueRF) in PFC. That is, the P(cueRF) in PFC explained more resid-
ual error about the future P(cueRF) in V4 than vice versa. Symbols with a thick black border indicate sessions with a significant
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dian, 2.39�, t(46) = 5.80, p = 5.79 · 10– 7). D, GCI in each direction during the stimulus response. The P(cueRF) in PFC
explained more residual error about the future P(cueRF) in V4 than vice versa (points below the diagonal). E, Asymmetry in GCI
during the stimulus response. Values.1 indicate greater GCI in the PFC-to-V4 direction than in the V4-to-PFC direction (me-
dian, 2.31�, two tailed t(46) = 4.27, p = 9.68 · 10– 5). Triangles indicate distribution means.
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—the probability that the RF had been cued (P(cueRF)) as an esti-
mate of the attention state. This value was obtained from the
logistic regression described above and varies between 0 and 1,
where 0 corresponds to cue-away and 1 corresponds to cue-in-
RF. Because we were especially interested in the temporal stabil-
ity of attention signals, we next examined the average time
course of P(cueRF) in each brain area for trials from each atten-
tion condition. On trials for which the RF had been cued, the av-
erage P(cueRF) was greater than the equivocal level of 0.5 (Fig.
5A). On average, the P(cueRF) using V4 activity started near low
values and then increased to a peak during the later half of the
stimulus presentation before falling again to low levels. In con-
trast, the average P(cueRF) in PFC was more consistent over time
through the trial. On trials for which the RF was not cued, a simi-
lar time course was seen when estimating the probability that the
cue had been away from the RF (P(cueaway)), but with weaker
overall prediction strengths (Fig. 5B). This qualitative pattern of
results suggests that the average readouts of the attention code
are more dynamic in V4 than in PFC.

In the analysis described above, we trained an independent
decoder at each time point during the peristimulus interval. This
enabled us to assess how consistent the decoder weights were
over time for each brain area. In other words, we asked, regard-
less of any change in P(cueRF), does the pattern of population ac-
tivity that best encodes the attention state change over time? One
way to test this would be to measure correlations between pairs
of b weight vectors measured at different time points. Strong
correlations persisting over time would be consistent with a sta-
ble code, whereas correlations that weakened more rapidly over
time would suggest a more dynamic code. We found that b
weight vectors in PFC were indeed more strongly correlated over
a longer time range than b weight vectors in V4 (data not
shown). However, it could be the case that small changes in b
weights lead to large changes in decoding performance or that
large changes in b weights lead to small changes in decoding
performance. That is, it is difficult to interpret the importance of
b weight changes by directly comparing these values. Rather, we
reasoned it would be more informative to test the ability of
decoders to generalize over time. Thus, we measured the correla-
tion across trials among P(cueRF) values obtained using the data
from one time point and the b weights from another time point
and P(cueRF) values obtained using data and b weights from the
same time point (in a cross-validated manner; Fig. 5C,D). For
V4, the decoded P(cueRF) values were highly correlated only
between nearby time points, which indicates that the attention
code in V4 changed over time (Fig. 5C). In contrast, the decoded
P(cueRF) values for PFC were correlated over a significantly
greater time range than in V4 (Fig. 5D,E), indicative of a more
stable attention code.

Our previous analyses considered the trial-averaged readout
of the attention code over time and found that it was more stable
in PFC than in V4. However, it may have yet been the case that
the P(cueRF) in PFC was highly dynamic on individual trials but
appeared stable when averaged across trials. To test for this pos-
sibility, we examined the stability of P(cueRF) on individual trials
for each brain area. At each time point, we calculated the predic-
tion stability as the negative absolute change in P(cueRF) from
the preceding time point (Fig. 6A). We scaled the resultant stabil-
ity values so that a value of 1 indicated perfect stability (i.e., no
change in P(cueRF) over time), and a value of 0 indicated the
expected value if time points were independent. For both ani-
mals, the prediction stability was substantially greater in PFC
than in V4 (Fig. 6B,C; t test, p , 0.05 at all time points,

Bonferroni corrected). This included prestimulus time points,
indicating that differences in P(cueRF) stability were not trivially
because of different dynamics of stimulus responsiveness. We
note also that although stability dropped transiently in V4 around
stimulus onset, in general, stability in V4 was at similar levels during
spontaneous and stimulus-evoked activity, indicating stability was
not trivially related to overall activity levels. We also found that
when comparing the average stability between the two brain areas
on the same trial, PFC was consistently more stable than V4
(121,283 total trials, Dhsi ¼ 0:04160:036, mean 6 SD, t(121282) =
395.46, p � 0, paired t test). These results show that even on single
trials, the decoded attention state in PFC was more stable than in
V4.

Directionality of attention codes
Our guiding thesis for this study was that a stable attention code
in PFC may serve as a consistent beacon of the attention state
that may guide the dynamic behavior of sensory populations
such as V4. Thus, we asked if there was evidence for a greater
directed flow of the encoded attention state information from
PFC to V4. To test this, we calculated the GCI between the esti-
mated attention states in PFC and V4 (Fig. 7A). Intuitively, GCI
estimates how much the future of one signal can be (linearly)
predicted from the past history of another signal, beyond what
was predictable from the first signal alone (Barnett and Seth,
2014), and can be quantified as the degree of improvement in
that prediction (i.e., as percent residual error explained). Note
that GCI does not directly imply mechanistic causality because
the role of unobserved variables cannot be ruled out, but it does
suggest that the potential for a causal relationship exists. In our
case, we wanted to ask how well we could predict the P(cueRF) of
V4 neurons based on the history of those neurons alone com-
pared with the history of both V4 and PFC neurons combined.
By also making the analogous comparison in the complementary
direction (PFC alone or PFC with V4), we could assess whether
changes in PFC were more predictive of what happened next
with the attention state in V4, or whether changes in V4 were
more predictive of what happened next with the attention state
in PFC.

We performed our analysis of GCI between PFC and V4 dur-
ing two time windows we have focused on before: one before
stimulus onset (�290 to �90ms) and one during the sustained
response to the stimulus (150 to 350ms). In each 200ms time
window of interest, the goal was to test how well we could predict
the P(cueRF) in each 20ms time bin based on past history within
that larger time window. We chose these time windows for two
reasons. First, GCI analysis assumes that the signals are station-
ary, an assumption that would be violated during the transition
from the unstimulated to the stimulated state but was more rea-
sonable during these two time windows before and after that
transition. Second, they represent two distinct contexts of atten-
tion function—the anticipatory period when an attentional state
of readiness is prepared and the period of stimulus processing
when the benefits of that readiness are conferred. We found evi-
dence for GCI in the PFC-to-V4 direction and/or the V4-to-PFC
direction in many sessions (Fig. 7B,D), indicating that incorpo-
rating moment-to-moment knowledge of one brain area aided in
prediction of upcoming activity in the other. The absolute quan-
tity of residual variance accounted for by GCI was small (,1%),
but this is attributable in large part to the difficulty in explaining
the variance in the brief time periods of our analysis (20ms
bins). Most importantly, our measurements of GCI were sub-
stantially greater (by a factor of .2) in the PFC-to-V4 direction
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than in the V4-to-PFC direction, both during the prestimulus
anticipatory period (Fig. 7B,C), as well as during the sustained
stimulus response (Fig. 7D,E). These results are consistent with a
framework in which the attention state in PFC influences the
future attention state in V4 more than vice versa, in line with the
hypothesized role of PFC in the executive control of endogenous
selective attention.

Discussion
We found that the population code for attention in PFC was sub-
stantially stabler than the population code for attention in V4.
Although evidence has been mounting for this type of areal spe-
cialization for temporal stability (Murray et al., 2014), previous
studies have typically compared neural recordings from different
brain areas measured in separate animals performing separate
tasks, often in separate laboratories, limiting direct comparison.
Furthermore, previous work has often analyzed trial-averaged
activity from populations of neurons that were sometimes not
simultaneously recorded. Without direct observation, the hypothe-
sized division of labor of stable and unstable computational proc-
esses across cortical areas based on the intrinsic time scales of
dynamics had been speculative. Our simultaneous recordings
show that even moment to moment within an animal, neural
codes for attention in PFC are more stable than those in V4.

We also found that the attention code in PFC carried more
information from moment to moment about the future attention
state of the V4 populations than vice versa. This type of causal
role for attention has previously been suggested for FEF (Bressler
et al., 2008; Squire et al., 2013), for which strong electrical stimu-
lation causes eye movements to a particular location (movement
field), whereas weaker electrical stimulation leads to attention-
like gain modulations in extrastriate neurons sensitive to the
movement field (Moore and Fallah, 2001), a pattern of results
lending support to the so-called premotor theory of covert atten-
tion. The current results suggest an extension of this causal role
to more rostral populations, which, in our hands, did not lead to
eye movements under strong electrical stimulation (see above,
Materials and Methods). We caution, however, that our observa-
tional GCI analyses should be taken merely as a suggestion that
the potential for a causal relationship exists, and we cannot rule
out alternatives such as both PFC and V4 receiving influence
from a third, unobserved brain area. Together, however, our
results provide the first evidence that PFC provides a stable
attention code that leads a dynamic attention code in V4 at a
time scale of tens of milliseconds, consistent with the hypothe-
sized role of PFC as a source of top-down endogenous attention
control signals in primate cerebral cortex.

For a system to be stable entails dynamics that are robust
to outside perturbation. Such stability would be adaptive for
maintaining cognitive states in mind while actively exploring a
dynamic environment. From this perspective, the finding of a
stable representation of a long-term attention state (as in PFC) is
intuitive. A more challenging question concerns the corollary,
that is, Why is the code for attention states in V4 dynamic? A
prominent view of the neural correlates of attention is an
enhancement of the activity of neurons tuned for relevant infor-
mation that comes at the expense of suppressed activity for neu-
rons processing less-relevant information through a normalized
gain mechanism (Reynolds and Heeger, 2009). That is, each neu-
ron shows a gain in responses that is roughly proportional to the
alignment of the tuning curve of that neuron to the attended in-
formation. Under the simplest version of this framework,

attention would be viewed as a stable modulation of activity lev-
els; that is, the gain modulation in V4 would remain constant
while attention is held constant. The current results are incom-
patible with this view because even during brief periods of spon-
taneous activity on single trials, we found attention signals to be
dynamic on time scales much briefer than those that have been
found to characterize attention shifts (on the order of 200–
300ms; Posner, 1980; VanRullen et al., 2007). Instead, our find-
ings suggest a key role for dynamic coding of attention in sensory
cortex; that is, if response gain is a key mechanism of attention, it
is not applied equally to all sensory neurons at all times.

One potential explanation of dynamic attention codes in V4
is simply that they are a side effect of the function of sensory cor-
tex to respond to sensory input. This is not to say that dynamic
responses to sensory events trivially manifest dynamic attention
signals. Indeed, in our experiment we took two steps to rule out
a potentially trivial relationship between sensory response dy-
namics and attention signals in V4. First, we performed our anal-
yses on residual firing rates after the average stimulus response
had been subtracted, removing the greatest contribution of sen-
sory response dynamics from the data. Second, we calculated
P(cueRF) stability moment to moment to hold stimulus context
relatively constant (Fig. 6C). The strongest example of this is that
we found P(cueRF) stability differed among brain areas during
spontaneous activity when there was no stimulus response, rul-
ing out a difference in stimulus processing dynamics as a trivial
explanation for the difference in attention signal dynamics.
Instead, our results are consistent with a more interesting rela-
tionship in which the properties of sensory networks that enable
them to be responsive predispose them to dynamic attention sig-
naling independent of sensory input. For example, if a stable ac-
tivity pattern were imposed on sensory populations, even weakly,
this stabilizing influence would maladaptively reduce the sensi-
tivity of those populations to sensory input. Indeed, evidence
indicates that stable dynamics because of synchronizing input
are associated with suppressed sensory processing, in particular
in the form of 8–10Hz oscillations measured as field potentials
or electroencephalogram (Kelly et al., 2006; Bollimunta et al.,
2011; Snyder et al., 2015). Although this provides a simple expla-
nation for the presence of dynamic attention codes in V4, we can
further consider whether such dynamic codes provide additional
function.

One context where such a dynamic coding scheme might
make sense is to distinguish between the stimulated and unsti-
mulated state. Neural populations in visual cortex face different
computational demands in the presence versus the absence of a
stimulus. A pattern of neural activity that functions to enhance
representation during visual processing may be inappropriate if
instead there was no stimulus to process. In support of this
notion, we and others reported that the pattern of modulations
across the V4 population differed fundamentally between spon-
taneous and visual-evoked activity (Sani et al., 2017; Snyder et
al., 2018). These observations are also consistent with human
neuroimaging work, where attentional modulations of visual
cortical areas are greatest during sensory processing, whereas
attention modulations in frontal and parietal association cortices
are in contrast greatest during nonsensory periods (Kastner et
al., 1999; Hopfinger et al., 2000; Corbetta and Shulman, 2002).
Human neuroimaging work further aligns with our Granger cau-
sality findings suggesting a top-down role of frontal anticipatory
signals influencing sensory areas (Bressler et al., 2008). The stim-
ulus-context-dependent population codes that we observed may
provide a means to multiplex multiple signals within a neural
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population, enabling separable representations of sensory and cog-
nitive information, such as expectation (Rungratsameetaweemana
et al., 2018; Rungratsameetaweemana and Serences, 2019) or motor
intention (Kaufman et al., 2014; Elsayed et al., 2016).

Even within the context of processing visual stimuli, there is a
growing appreciation that attention is an inherently dynamic
process. Evidence suggests that attention is automatically reor-
iented several times per second to sample multiple sources of
sensory information (James, 1890; Posner, 1980; VanRullen et
al., 2007; Fiebelkorn et al., 2011; Landau and Fries, 2012). These
automatic attention cycles are associated with interactions occur-
ring around the 3–5Hz theta frequency range across a network
including lateral prefrontal and parietal areas (Fiebelkorn et al.,
2018), anterior cingulate cortex (Voloh et al., 2015), multiple vis-
ual cortical areas (Spyropoulos et al., 2018), and pulvinar nucleus
of the thalamus (Fiebelkorn et al., 2019). The frequency of these
reorientation cycles is similar to that of the periodic planning
and execution of saccadic eye movements in primates, which
researchers have also linked to attention-like perceptual effects
(Hafed and Clark, 2002; Hafed et al., 2011; Hafed, 2013; Lowet et
al., 2018). Although the time scale of these effects are too slow to
fully explain our results, it underscores that attention and per-
ception rely fundamentally on dynamic processes. Such periodic
movements and covert shifts in perception may have evolved to
help us explore our environment, even in the face of particularly
salient or engrossing stimuli. This ethological tendency to regu-
larly shift attention is sensible in natural contexts, which are
highly dynamic. In contrast, our task was relatively static in that
it required subjects to attend for long periods to a consistent
location while target probabilities and reward expectations were
held constant. Thus, one important remaining question for fur-
ther study concerns how the division of labor of stable and
dynamic attention codes between prefrontal and sensory cortex
that we found operates in more naturalistic contexts.

Even within a period of relatively constant attention, the
underlying mechanisms may be dynamic on fast time scales
reflecting differential modulation of specific stages of sensory
processing (Sripati and Johnson, 2006; Sani et al., 2017; Snyder et
al., 2018). For example, Sani et al. (2017) found that different
types of attention gain manifested in V4 activity across time dur-
ing sensory responses; an early contrast gain followed by a stimu-
lus-tuned multiplicative gain peaking ;150ms after stimulus
onset, and then another later round of contrast gain. Those
authors interpreted the gradual emergence of stimulus-depend-
ent multiplicative effects that they observed as consistent with a
mechanism in which relatively weak top-down input becomes
amplified locally through a time-consuming dynamic process.
Our current results are also consistent with this notion.

This faster time scale for dynamic attention in V4 is reminis-
cent of the emergence of feature-selectivity in visual cortex. For
example, Ringach et al. (1997) used a reverse correlation approach
to measure the temporal development of orientation selectivity in
primary visual cortex of monkeys. They found that although neu-
rons in input layers showed relatively static orientation tuning
preferences, the orientation preferences of neurons in output
layers continued to change over time, in many cases preferring
one orientation at short delays but the orthogonal orientation at
longer delays, or in some cases developing multimodal orientation
preferences. The authors compared the predictions of feedforward
and feedback models to conclude that the dynamics of orientation
preferences in output layers were likely because of feedback influ-
ences, and they surmised the slower complex tuning preferences
might encode subtler features of images. One implication of this

pair of observations—dynamic attention and dynamic feature-se-
lectivity—is that one potential mechanism for feature-based atten-
tion would be to preferentially allocate resources to the time
period in the sequence of processing steps when selectivity for that
feature emerges. One testable prediction of this hypothesis is that
attention directed selectively toward the subtler features of images
to which Ringach et al. (1997) alluded should manifest later during
the sensory response when tuning for those features emerges,
which may account for why attention modulation of sensory
responses typically develops well after the initial stimulus-onset
transient response (Mehta et al., 2000).

The current results are consistent with a framework in which
maintaining stable task-set representations relies on brain areas
with intrinsically stabler dynamics (Murray et al., 2014; Runyan
et al., 2017); as we showed here for PFC populations. This partic-
ular brain area has been linked to many processes unfolding on
slow time scales, including categorical reasoning (Freedman et
al., 2003; Cromer et al., 2011; McKee et al., 2014), flexible rule-
based decision-making (Bunge et al., 2003; Siegel et al., 2015),
working memory (Constantinidis et al., 2018; Wasmuht et al.,
2018; Parthasarathy et al., 2019), and attention (Ikkai and Curtis,
2011; Paneri and Gregoriou, 2017). It is important to note that
the stability in this case resides not at the level of individual neu-
ron firing rates, which in fact vary substantially over time, but
rather at a population-level readout. This type of population-
level stability has previously been reported for PFC populations
in the context of working memory. For example, individual PFC
neurons encode mnemonic information predominantly transi-
ently during maintenance periods, with peak latencies distrib-
uted to tile the entire interval (e.g., Hussar and Pasternak, 2012,
2013; Spaak et al., 2017). In a compelling example, Tremblay et
al. (2015) recorded populations of PFC neurons in monkeys per-
forming a spatial attention task and found that patterns of en-
semble activity encoding attention states generalized across time
periods within a trial and even across multiple days over a month
of recording sessions. This type of population-level stability de-
spite single-cell variability may enable individual PFC neurons to
temporally multiplex several concurrent processes while main-
taining stable signals at the population level (Mante et al., 2013).
Indeed, the activity of prefrontal and sensory populations have
been linked to a number of cognitive processes other than selective
attention relevant for our task, such as monitoring choice history
(Mochol et al., 2021), arousal (Cowley et al., 2020), and reward ex-
pectation (Roesch and Olson, 2003), which are likely contributing
to the mixtures of population activity that we observed. Although
it is often difficult to disentangle these cognitive processes in the
context of a given task (Maunsell, 2004), some studies have sug-
gested distinct neural and behavioral signatures for attention com-
pared with sensory expectation (Summerfield and de Lange, 2014;
Rungratsameetaweemana et al., 2018; Rungratsameetaweemana
and Serences, 2019), reward valuation (Baruni et al., 2015), arousal
(Luo and Maunsell, 2019; Cowley et al., 2020), and other related
processes. The current experiment cannot tease apart the precise
contributions of these various cognitive processes because we did
not vary the expected value of rewards separately from the atten-
tion cue (Thus, reward and expectation were confounded with
attention.), and the animals almost always chose the cued target
when making actions (Thus choice history and cue were also con-
founded.). A future study that separately manipulates rewards
within the context of a given attention condition could further dis-
sect the nuances of frontosensory interactions during cognition.

Perhaps our most novel finding is that population attention
codes in V4 vary rapidly, and the moment-to-moment
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interactions between PFC and V4 have apparent control over the
attention state. One lingering question remains whether the
details of these population-level dynamics are specifically ger-
mane for behavior. For example, one reasonable but unintuitive
prediction would be that stable attention signals in prefrontal
cortex would be beneficial for behavior, whereas stable attention
signals in sensory cortical areas such as V4 may actually be detri-
mental to behavior, as they may undermine responsiveness to
external events. Another reasonable prediction is that shifts of
attention (e.g., to detect invalidly cued targets) might be accom-
panied by rapid dynamics of attention signals in both V4 and
PFC. The current study was not designed to address these pre-
dictions because targets were infrequent, and reactive saccades to
targets prohibited disentanglement of sensory and motor signals;
a future study with delayed responses and a greater proportion
of targets could test these predictions and other issues related to
target processing. Together, our results suggest that different
cortical areas implicated in attention control are specialized to
function in different regimes of stability to resolve the competing
demands of attention; stable representations of task variables are
maintained on long time scales in prefrontal cortical populations,
freeing up sensory cortical populations to maintain the sensitiv-
ity to outside perturbation essential for efficient perception.
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