
 Abstract—The success of human motor prosthetics will 
largely depend on increasing system performance by 
maximizing the movement-related information that can be 
recorded from cortical neurons. This will in turn depend on 
successfully combining information from different neurons, 
and across times for the same neuron. Here we investigate 
neural activity that occurs prior to reaching movements, and 
attempt to understand how this activity varies with the speed of 
the upcoming movement. We recorded pre-motor cortex 
neural activity from a rhesus monkey trained to perform 
delayed-reaches to targets at two different speeds. We found 
that movement speed information is present in action potential 
emission rates and 20-40 Hz local field potential power during 
a “plan” period preceding movement. We then further 
analyzed the action potential data to determine the accuracy at 
which trial conditions, including the speed of the upcoming 
movement, can be estimated from neural data. System 
performance is expected to increase when plan-period speed 
information is included in prosthetic estimation algorithms. 
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I.  INTRODUCTION 
 
 In recent years there has been a growing prospect of 
helping disabled patients by translating neural activity from 
the brain into control signals for prosthetic devices. It is now 
possible for monkeys to move computer icons solely by 
activating neural populations that participate in natural arm 
movements [1-3]. “Locked-in” patients have also 
demonstrated the ability to move icons with cortical neural 
activity [4]. 

While these proof-of-concept systems can perform 
simple icon tasks when driven by activity from tens to 
hundreds of neurons, there is intense interest in improving 
system performance so that naturalistic arm movements are 
possible. System performance can be increased by recording 
from more neurons or by extracting more information from 
each neuron. 

We recently proposed an estimation algorithm that 
combines plan activity, which is neural activity present 
before or even without natural arm movements, with peri-

movement activity, which is neural activity present during 
natural arm movements [5-7]. Combining neural activity 
from these two temporal epochs increases the total 
movement-related information available per neuron. This 
algorithm can also improve system performance by allowing 
plan activity and peri-movement activity from different 
brain areas to be combined, thereby increasing the total 
number of recordable neurons (Fig. 1). 

Influence of Movement Speed on Plan Activity in Monkey Pre-motor Cortex 
and Implications for High-Performance Neural Prosthetic System Design 

 
K. V. Shenoy1,2, M. M. Churchland1, G. Santhanam1, B. M. Yu1, S. I. Ryu1,3 

1Department of Electrical Engineering, 2Neurosciences Program, 3Department of Neurosurgery 
Stanford University, Stanford, CA, 94305, USA 

If plan activity is to be used to drive neural prosthetics, 
whether acting alone or in conjunction with peri-movement 
activity, then it is critical to understand the relationship 
between plan activity and the impending movement. Plan 
activity in the motor cortices is known to vary with the 
direction and distance of an upcoming reach [8], suggesting 
that the intended endpoint can be estimated from plan 
activity, and used to constrain the estimate of movement 
trajectory based on peri-movement activity. This goal is 
complicated by the likelihood that plan activity may not 
depend on direction and distance alone. Plan activity can be 
influenced by arm orientation [9, but also see 10] and path 
[11]. This raises the idea that plan activity could be used to 
estimate more than just reach endpoint, and also reveals the 
possibility that reach endpoint might be mis-estimated if the 
influence of other factors is not taken into account. With the 
goal of better understanding the relationship between plan 
activity and movement, we asked whether plan activity in 
dorsal pre-motor cortex (PMd) is “tuned” only for direction 
and distance, or whether it also depends upon movement 
speed.  
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Fig. 1.  Neural prosthetic arm/icon system. Target information from the 
eye is transformed into plans (medial intra-patietal area [MIP], parietal 
reach region [PRR], and PMd) and commands (motor cortex [M1] and 
PMd) to move the arm. If these commands cannot reach the musculature 
(e.g., spinal cord injury), electrical neural activity can be recorded with 
electrode arrays (gray squares) and processed with signal-processing 
algorithms to determine the desired arm movement. Control signals then 
guide a prosthetic arm, or computer icon, toward the desired target. 
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II.  METHODOLOGY 
 
 Animal protocols were approved by the Stanford 
University Institutional Animal Care and Use Committee. 
We trained a rhesus monkey (Macaca Mulatta) to perform 
delayed center-out reaches to visual targets presented on a 
fronto-parallel screen [12]. We then trained him to reach to 
the same target locations but at two different speeds, 
depending on the color of the target (see Fig. 2). Green 
targets elicited “slow” reaches and red targets elicited “fast” 
reaches. Reaches exhibited the roughly bell-shaped velocity 
profiles characteristic of natural reaches. Slow reaches had 
peak speeds of ~40-100 cm/s and fast reaches had peak 
speeds of ~70-150 cm/s, depending on the reach distance (3-
12 cm). For a given distance, peak reach speeds for the two 
distances formed largely separate distributions that 
overlapped slightly (see Fig. 3). Reach durations were ~100-
250 ms depending on distance and speed. 
 We recorded 3D arm position (60 samples/s, ~0.1 mm 
resolution), eye position (240 samples/s, ~0.5° resolution), 
and single-neuron action potentials (spikes) with high-
impedance microelectrodes while monkeys performed 
behavioral tasks under computer control. We termed the 
direction eliciting the largest spike-emission rate in a 
preliminary experiment (Fig. 2) the “preferred” direction, 
and the direction opposite the “null” direction. We then ran 
the experiment along this preferred-null axis (6-33 reaches 

to each of 2 directions × 5 distances × 2 speeds = 20 
conditions). We computed spike rates by dividing the 
number of spikes in the plan interval by the time of the plan 
interval and statistical tests were performed on the spike 
rates associated with each behavioral condition. We 
neglected the first 200 ms after stimulus onset to avoid 
visual-target onset transients. 
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Fig. 3. All peak speed data from one preliminary experiment. Peak speed 
was computed on-line and must fall within the indicated speed boundaries 
to successfully complete the trial. Green lines bound the acceptable range 
for slow reaches; the red line delineates the slower bound for fast reaches. 
Each red/green dot indicates the peak speed of a fast/slow trial, 
respectively. All peak speed data (successes and failures) from one main 
experiment are shown. 
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 Prior research has reported that local field potentials 
(LFPs) in M1 and PMd also exhibit plan activity, revealed 
as an increase in 20-45 Hz frequency band power after an 
instructive cue but prior to a go cue [13]. This activity was 
previously found to be largely independent of the specifics 
of the upcoming movement, such as distance and direction 
[13]. We recorded LFPs (2-100 Hz) simultaneously with the 
single-neuron data described above and estimated the 
power-spectral density using the Thomson multi-taper 
spectral analysis method [14-15]. Statistical tests were 
performed on 20-40 Hz power using 200 ms sliding 
windows, in each of which the process was assumed 
stationary. 
 We performed simulations to assess how well 
movement speed and direction can be estimated from plan-
period spike rates, using one trial of data per neuron. 
Modeling the distribution of spike rates for each condition 
as Gaussian, we employed maximum likelihood methods 
(similar to [7]) to determine the highest probability 
movement speed and direction for a given spike rate. We 
obtained performance curves using leave-one-out cross-
validation. Since neurons were recorded one at a time inter-
neuron correlations were not considered. Simulated trials 
were assembled and decoded many hundreds of times to 
assure that performance estimates had converged. Poisson 
modeling of spike counts was also tested but did not 
perform as well as Gaussian modeling of spike rates. 

Fig. 2. All endpoint data from one preliminary experiment with end points 
colored according to reach speed (red-fast, green-slow). A monkey was 
trained to touch a central target (0 cm, 0 cm for 400-500 ms), colored 
according to the speed of the requested reach, and hold this central target 
for 500-900 ms (plan interval) while an identically colored target jittered 
locally around an endpoint location (gray squares). Then, when the target 
stopped jittering, the monkey reached at the requested speed to touch and 
hold the target (within gray circle) to receive a liquid reward. Each dot 
indicates the endpoint location of one reach trial. One of the 35 possible 
target locations was pseudo-randomly selected on each trail. The monkey 
typically fixated the target beginning shortly after its appearance until the 
reach was completed. 
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III.  RESULTS 
 
A. Action Potentials 
 

We recorded 29 neurons from pre-motor cortex 
(putatively caudal PMd) and from near the M1/PMd border. 
Fig. 4 shows the average spike rate of one PMd neuron for 
reaches to one target location. The spike rate is significantly 
higher during the plan period (time between arrows) before 
slow reaches than before fast reaches. This illustrates our 
first main result: the speed of the upcoming movement 
systematically alters the plan-period spike rate. Fig. 5 plots 
the response from another neuron across all conditions. For 
this neuron the plan period spike rate was always greater 
before fast reaches than before slow reaches. The effect of 
movement speed on plan spike rate varied by neuron, and it 
was not uncommon for the “preferred” speed to vary with 
direction or distance. 

-100
Down-left reach 

100
Up-right reach

Fig. 5. Action potential response tuning curves for one PMd neuron. Red 
and green traces indicate spike rate (mean ± SEM) for repeated fast and 
slow reaches to five distances in two directions (22 repetitions). The gray 
line marks the baseline activity level. (Neuron B29) 

A 3-way ANOVA (P < 0.01) revealed that the plan 
activity of 79% of neurons showed either a main effect of 
direction or an interaction involving direction,  66% showed 
either a main effect of distance or an interaction involving 
distance and  83% showed either a main effect of speed or 
an interaction involving speed. Thus, for the majority of 
neurons, the speed of the upcoming movement influenced 
spike-rate plan activity. The impact of speed on spike rate 
was typically as great as that of distance or direction. 
 
B.  Local Field Potentials 
 
 We examined the influence of movement speed on LFP 
plan activity recorded from 22 cortical sites. Fig. 6 shows 
the average LFP response from one PMd site before reaches 
executed at two different speeds. For this plot, data are 
collapsed across all distances and both directions. For much 
of the plan period, the 20-40 Hz power is significantly 
higher before slow reaches than before fast reaches. This 
illustrates our second main result: the speed of the upcoming 
movement systematically alters the 20-40 Hz LFP power 

during the plan period. Interestingly, other sites show the 
opposite pattern, with greater responses before fast reaches. 

 An ANOVA (P < 0.05) based on the 20-40 Hz LFP 
power during the plan period (200-400 ms after target onset) 
revealed that 4/22 sites showed a main effect of direction, 
3/22 sites showed a main effect of distance, and 10/22 sites 
showed a main effect of speed. A non-parametric Friedman 
test of the data resulted in a nearly identical set of sites 
showing significant effects for speed. We also tested a later 
part of the plan period (300-500 ms) to better insure the 
avoidance of visual-target onset transients (e.g., the large 
hump of activity following the target presentation in Fig. 6) 
and found an even larger number of sites (16/22) with a 
significant main effect for speed. The ANOVA also revealed 
that a small number of sites exhibit an interaction effect 
between either two or all of the factors. Interestingly, while 
there was no consistent preference across sites for one speed 
over the other, all sites did show a distinct time evolution in 
power, with the preference sometimes switching later in the 
plan period. In summary, the speed of the upcoming 
movement influences the LFP plan activity at a large 
proportion of sites.  
 
C. Estimating Movement Speed and Direction 
 
 Given the influence of movement speed and direction 
on plan activity discussed above, it is not surprising that 
these parameters can be estimated from neural activity. The 
primary question is how many neurons must contribute plan 
activity to attain a certain level of performance. To address 
this question we asked how well we could predict the 
direction (12.0 cm reaches in the preferred or null direction) 
and speed (fast or slow) of reaches given just the spike rate 
during the plan period. Computational simulations showed 
that it is possible to correctly classify 93% of the simulated 
reaches with activity from 18 neurons. Chance performance 
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ig. 4. Action potential response time-course for one PMd neuron to 
repeated reaches to the same location at two movement speeds. Red and 
green traces indicate spike rate response (mean ± SEM) for 20 fast and 
slow reaches, 3.0 cm in the up and left direction. Arrows mark the onset 
time of the visual reach target (left) and the onset time of the reaching arm 
movement (right). The gap in the traces is due to the variable-length plan 
period. To align all trials to target onset as well as to movement onset some 
data is included in traces on both sides of the gap. Data were smoothed 
with a 15 ms standard deviation Gaussian. (Neuron B16) 

1899



V.  CONCLUSION 
 
 High-performance neural prosthetic systems must 
efficiently use all available movement information. We 
report here that speed information is present in PMd plan-
period neural activity. We propose that combining this 
action potential and LFP plan-period speed information with 
peri-movement information can improve performance. 
 

is 25%. Of the 29 neurons recorded, the first five used a 
different range of plan periods. Our performance analysis 
was thus based on the latter 24, of which six did not improve 
overall performance due to the effects of low trial counts 
and outliers on leave-one-out cross-validation. 

It is also possible to estimate movement distance from 
plan activity. However, errors in estimating target distance 
were common due to the close spacing of our targets, which 
sometimes led behavioral performance to overlap. As 
direction, distance and speed are all continuous variables, 
future work will attempt to provide estimates of movement 
parameters on a continuous scale. 
 
 

IV.  DISCUSSION 
 
 We recorded neural activity from pre-motor cortex of a 
rhesus monkey trained to perform delayed-reaches to targets 
at two different speeds. We found that the delay-period 
spike rate and 20-40 Hz LFP power co-vary with upcoming 
movement speed. Simulations demonstrate that spike-rate 
plan-period activity from a small neural ensemble is 
sufficient to predict movement speed and direction with 
good confidence. It should also be possible to estimate 
speed from plan-period LFP activity and then combine 
spike-based and LFP-based speed estimates to achieve even 
higher levels of performance. 
 When used with an algorithm that combines plan and 
peri-movement information, plan activity could provide a 
powerful “probabilistic prior” stating that the upcoming 
movement is quite likely to be at a particular speed (e.g., 
fast or slow) and directed toward a particular endpoint. Peri-
movement activity could then be interpreted accordingly 
resulting in prosthetic system performance superior to that 
possible with peri-movement activity alone. 
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