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SUMMARY

Most brain functions involve interactions amongmul-
tiple, distinct areas or nuclei. For instance, visual pro-
cessing in primates requires the appropriate relaying
of signals acrossmany distinct cortical areas. Yet our
understanding of how populations of neurons in in-
terconnected brain areas communicate is in its
infancy. Here we investigate how trial-to-trial fluctua-
tions of population responses in primary visual cor-
tex (V1) are related to simultaneously recorded
population responses in area V2. Using dimension-
ality reduction methods, we find that V1-V2 interac-
tions occur through a communication subspace: V2
fluctuations are related to a small subset of V1 popu-
lation activity patterns, distinct from the largest
fluctuations shared among neurons within V1.
In contrast, interactions between subpopulations
within V1 are less selective. We propose that the
communication subspace may be a general, popula-
tion-level mechanism by which activity can be selec-
tively routed across brain areas.

INTRODUCTION

Interactions among brain areas are widely assumed to be

essential to most brain functions, yet we are only beginning to

understand how neurons in distinct brain areasmediate these in-

teractions. Previous studies of inter-areal interactions have

related the spiking activity of pairs of neurons in different areas

(Nowak et al., 1999; Roe and Ts’o, 1999; Jia et al., 2013; Poores-

maeili et al., 2014; Oemisch et al., 2015; Ruff and Cohen, 2016),

the spiking activity of a neuronal population in one area and a sin-

gle neuron in another (Truccolo et al., 2010; Zandvakili and Kohn,

2015), the spiking activity of a neuron or group of neurons in one

area and the local field potential (LFP) in another (Gregoriou et al.,

2009; Salazar et al., 2012; Menzer et al., 2014; Arce-McShane
et al., 2016; Wong et al., 2016), the LFPs recorded in different

areas (Gregoriou et al., 2009; Salazar et al., 2012; Bosman

et al., 2012; Jia et al., 2013; Roberts et al., 2013), or the trial-aver-

aged population activity in distinct areas (Kaufman et al., 2014).

These approaches have provided insight into how interaction

strength changes with stimulus drive (Nowak et al., 1999; Jia

et al., 2013; Roberts et al., 2013), attentional state (Gregoriou

et al., 2009; Bosman et al., 2012; Oemisch et al., 2015; Ruff

and Cohen, 2016), or task demands (Salazar et al., 2012; Kauf-

man et al., 2014; Menzer et al., 2014; Pooresmaeili et al., 2014;

Arce-McShane et al., 2016; Wong et al., 2016).

These previous approaches fall short, however, of elucidating

how the spiking activity of neuronal populations—the signals

thought to encode information in the brain—is related across

areas on a trial-by-trial basis (Semedo et al., 2014). Pairwise cor-

relations, by definition, ignore structure not evident in the interac-

tions between two individual neurons. LFPs lump the activity of

spiking populations into a single summary signal and thereby

risk losing much of the richness of area-to-area interactions

(Jia et al., 2011; Ray and Maunsell, 2011). Trial-averaging allows

one to study howmean signals (e.g., receptive field structure) are

related, but not to understand how the moment-by-moment

changes in activity in one area relate to those in another area

(Saalmann et al., 2012; Salazar et al., 2012).

Here we leverage trial-to-trial co-fluctuations of V1 and V2

neuronal population responses, recorded simultaneously in ma-

caque monkeys, to understand the nature of population-level

interaction between cortical areas. Within individual brain areas,

trial-to-trial fluctuations in activity have yielded important insight

into the effects of attention (Cohen and Maunsell, 2009; Mitchell

et al., 2009), learning (Gu et al., 2011; Jeanne et al., 2013), stim-

ulus drive (Smith and Kohn, 2008; Churchland et al., 2010), and

more. These fluctuations involve multiple dimensions of activity

shared among neurons (Yu et al., 2009; Harvey et al., 2012; Ecker

et al., 2014; Sadtler et al., 2014; Kaufman et al., 2015; Lin et al.,

2015; Rabinowitz et al., 2015; Mazzucato et al., 2016;Williamson

et al., 2016), as identified using dimensionality reduction (Cun-

ningham and Yu, 2014). Each of these dimensions represents

a characteristic way in which the activities of the recorded neu-

rons covary (referred to as a population activity pattern). It is
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Figure 1. V1 and V2 Recordings

(A) Schematic showing a sagittal section of oc-

cipital cortex and the arrangement of the recording

apparatus. We simultaneously recorded V1 pop-

ulation activity using a 96-channel Utah array and

V2 population activity using a set of movable

electrodes and tetrodes.

(B) We related activity of the same V1 source

population to a target V1 population and a V2

population. In this illustration, each triangle rep-

resents a neuron and the filled triangles indicate

active neurons. Spike counts were taken in

100 ms bins.
currently unknown whether all or only a subset of these dimen-

sions are related across brain areas, and which dimensions are

involved.

In anesthetized macaque monkeys, we find that interactions

between V1 and V2 are similar in strength to those between sub-

populations within V1, but that the structure of those interactions

is strikingly distinct. V2 activity is related to a small subset of V1

population activity patterns, which are distinct from the largest

shared fluctuations among V1 neurons. The selective routing of

specific population activity patterns between V1 and V2 can be

described by a low-dimensional communication subspace,

which defines which activity patterns are effectively relayed be-

tween areas. We found that the same low-dimensional structure

was present in paired V1-V4 recordings in awake animals,

suggesting a general principle of inter-areal interactions.Wepro-

pose that the communication subspace can be a population-

level mechanism by which activity is selectively and flexibly

routed between distinct neuronal populations.

RESULTS

We simultaneously recorded the activity of neuronal populations

in the output layers (2/3-4B) of V1 (88 to 159 neurons; mean:

112.8) and their primary downstream target, the middle layers

of V2 (24 to 37 neurons; mean: 29.4) (Felleman and Van

Essen, 1991), in three sufentanil-anesthetized monkeys (Fig-

ure 1A). Neurons consisted of both well-isolated single units

and small multi-unit clusters. The recorded V1 and V2 popula-

tions had retinotopically aligned receptive fields, maximizing

the probability of direct feedforward interactions (Zandvakili

and Kohn, 2015).

We measured neuronal activity as spike counts in 100 ms bins

during the presentation of drifting sinusoidal gratings of different

orientations. To study how neuronal activity in the two areas is

related, we analyzed trial-to-trial response fluctuations to

repeated presentations of each grating. These fluctuations

involve spiking activity that could propagate between areas,

and thus provides a useful window for understanding inter-areal

interactions (Fries et al., 2001; Pesaran et al., 2008; Bosman

et al., 2012; Saalmann et al., 2012; Salazar et al., 2012). Specif-

ically, we subtracted the appropriate peri-stimulus time histo-

gram from each single-trial response and then analyzed the
250 Neuron 102, 249–259, April 3, 2019
residuals for each stimulus orientation (henceforth referred to

as a dataset) separately.

To determine how V1-V2 interactions differ from interactions

within V1, we divided the recorded V1 neurons into source and

target populations (Figure 1B). For each dataset, we matched

the target V1 population to the neuron count and firing rate dis-

tribution of the measured V2 population (see STAR Methods).

We then related the activity of the same source V1 population

separately to the activity of the target V1 population (V1-V1 inter-

action) and that of the V2 population (V1-V2 interaction).

Strength of Population Interactions
We first characterized V1-V2 interactions by measuring the de-

gree to which response fluctuations were shared between pairs

of neurons (i.e., noise correlations), as in previous inter-areal

studies (Nowak et al., 1999; Ruff and Cohen, 2016). The vast ma-

jority of V1-V2 pairs had correlations between 0 and 0.2 (Fig-

ure 2A, red histogram; average correlation: 0.07 ± 0.06 SD).

V1-V1 correlations were remarkably similar to those of V1-V2

pairs (Figure 2A, blue histogram; average correlation: 0.07 ±

0.06 SD; two-sided Monte Carlo permutation test, p < 0.01 for

difference between V1-V1 and V1-V2). These weak correlations

indicate that only a small fraction of a neuron’s response vari-

ability can be explained by another individual neuron. Indeed, in-

dividual source V1 neurons could predict only 1.11% ± 0.03%

and 1.35% ± 0.03% of the variability of the target V1 and V2 neu-

rons, respectively (Figure 2B, solid lines).

We next asked how well the variability of the target V1 and V2

neurons could be explained by the source V1 population using

multivariate linear regression (see STAR Methods). On average,

the source V1 population predicted 15.2% ± 0.7% of the V2 vari-

ability (Figure 2B, red histogram), a substantial improvement

over the performance afforded by individual V1 neurons. V1-V1

prediction quality was similar to that of the V1-V2 prediction (Fig-

ure 2B, blue histogram; 12.9% ± 0.8%; two-sided Monte Carlo

paired permutation test, p < 0.01 for difference between V1-V1

and V1-V2).

To assess whether the performance of the regression models

is reasonable in absolute terms, we implemented a basic model

of population interactions using a linear feedforward network.

Regression performance for these simulated data was similar

to performance on the physiological data either when the target



D
at

a 
se

ts
D

at
a 

se
ts

A B

Pairwise correlation Performance

V1-V2

V1-V1

0

15

0

15

0 0.1 0.2 0.3

P
ai

rs
P

ai
rs

Predicting V2

Predicting target V1

0 0.2 0.4

5000

0

0

5000

Single 
neuron

Single 
neuron

Figure 2. V1-V1 and V1-V2 Interactions Are

Similar in Strength

(A) Pairwise correlation histograms for pairs of V1-

V2 (red) and V1-V1 (blue) neurons. Triangles indi-

cate average pairwise correlation. Total number of

pairs in each histogram n = 10,944.

(B) Prediction performance for V1-V2 (red) and V1-

V1 (blue). Prediction was performed using a single

V1 neuron at a time (solid lines) or using the entire

source V1 population (histograms; triangles indi-

cate mean). Prediction performance for each da-

taset is defined as the average cross-validated r2

across all selections of the target and source V1

populations.
population had Poisson variability or when the observed source

population was a subset of the full input population (Figure S1).

In summary, both pairwise analysis and population-based

regression models indicate that interactions between areas are

similar in strength to those within a cortical area: fluctuations in

the source V1 population can be used as effectively for predict-

ing V2 activity as for predicting the fluctuations of other V1 neu-

rons. We next asked whether the structure of these interactions

is similar as well.

Structure of Population Interactions
Consider predicting the activity of a V2 neuron from a population

of three V1 neurons using linear regression, as in the preceding

section:

V2k =w1V1
k
1 +w2V1

k
2 +w3V1

k
3

where V2k is the predicted activity of a V2 neuron on the kth trial,

V1k1, V1
k
2 and V1k3 are the corresponding activities of the three V1

neurons on the same trial, and w1, w2, and w3 are the regression

weights. We can plot the activity of the V1 population on each

trial as a point in a three-dimensional space, where each axis

represents the activity of one of the V1 neurons (Figure 3A).

The weights can be represented as a regression dimension,

which captures which aspects of the V1 population activity are

predictive of the V2 neuron’s activity. Specifically, the location

of the V1 activity along the regression dimension is the predicted

activity of the V2 neuron (Figure 3A, shading).

In a basic multivariate regression model, each V2 neuron has

its own regression dimension. These regression dimensions

could, in principle, fully span the V1 activity space (Figure 3B).

If this were the case, any fluctuation in V1 population activity

would be predictive of the fluctuations of one ormore V2 neurons

(i.e., changing the V1 population activity would change the loca-

tion of the activity along at least one of the regression dimen-

sions). Alternatively, if the regression dimensions span only a

subspace of the V1 activity space (shown as a plane in
Figure 3C), certain V1 fluctuations (i.e.,

those orthogonal to the plane, Figure 3C,

dashed line) would not be predictive of V2

fluctuations. We define predictive dimen-

sions to be those which reside within the

V1 subspace that is predictive of V2 fluc-
tuations, and private dimensions as those which do not. The ex-

istence of private dimensions within the source population would

allow for specific population activity fluctuations to be relayed

downstream; any fluctuations along the private dimensions

would be hidden from the target population.

To test whether our ability to predict V2 fluctuations involves

only a subspace of V1 population activity, we used reduced-

rank regression (Izenman, 1975; Kobak et al., 2016), a variant

of linear regression in which the regression dimensions are con-

strained to lie in a low-dimensional subspace (see STAR

Methods). If only a few dimensions of V1 activity are predictive

of V2, then using a low-dimensional subspace should achieve

the same prediction performance as the full regression model.

For a representative dataset (Figure 4A), only two dimensions

were needed to achieve a prediction performance that was indis-

tinguishable from the full regression model (triangle). In contrast,

when we applied the same analysis to the target V1 population,

six dimensions of the source V1 population activity were needed

to reach the performance of the full model (Figure 4B). Across all

datasets, consistently fewer dimensions were needed to predict

fluctuations in the V2 population (2.2 ± 0.1) compared to the

target V1 population (3.5 ± 0.1; one-sided Monte Carlo paired

permutation test, p < 10�8; Figure 4C).

These results indicate that the V1 fluctuations that are predic-

tive of V2 are confined to a small number of V1 dimensions.

Notably, the number of dimensions needed to account for inter-

actions between areas was smaller than the number of dimen-

sions involved in interactions within an area.

The Influence of Target Population Dimensionality
A possible explanation for the lower-dimensional interaction be-

tween V1-V2 compared to within V1 is that the V2 population

activity is itself less complex, or lower dimensional, than the

target V1 activity. For example, if the measured V2 population

consisted of neurons with identical responses, then predicting

those responses would involve the same weighting of V1 activity

(i.e., one predictive dimension). More generally, the number of
Neuron 102, 249–259, April 3, 2019 251
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Figure 3. Illustration of a Low-Dimensional Interaction

(A) Graphical depiction of linear regression between a population of V1 neurons and one V2 neuron. Each circle represents the activity recorded simultaneously in

V1 (three neurons) and V2 (one neuron) during one timestep (100ms). The position of the circle represents the V1 population activity and its shading represents the

activity of the V2 neuron. The activity of the V2 neuron increases along the regression dimension (red line).

(B) High-dimensional interaction. The regression dimensions for different V2 neurons (one regression dimension per V2 neuron) span the entire V1 popula-

tion space.

(C) Low-dimensional interaction. The regression dimensions for different V2 neurons span a subspace of the V1 population space. In this illustration, all regression

dimensions lie in a 2-dimensional subspace (the gray plane). The basis vectors for this subspace are called predictive dimensions. Thus, two predictive di-

mensions are sufficient to capture the between-area interaction. All dimensions that are not predictive of V2, and therefore lie outside of this subspace, are called

private dimensions.
predictive dimensions will depend in part on the dimensionality

of the target population activity. All else being equal, the lower

the dimensionality of the target population activity, the smaller

the number of predictive dimensions will be.

We used factor analysis to test whether the V2 population

activity was lower dimensional than the target V1 population ac-

tivity. Factor analysis identifies factors (or dimensions) which

capture shared activity fluctuations among neurons (Santhanam

et al., 2009; Yu et al., 2009; Churchland et al., 2010; Harvey et al.,

2012; Ecker et al., 2014; Sadtler et al., 2014; Semedo et al., 2014;

Williamson et al., 2016). This analysis revealed that the dimen-

sionality of the V2 activity was higher than that of the target V1

activity (Figure 5A; 5.0 ± 0.2 for V2; 3.7 ± 0.1 for target V1;

mean ± SEM; one-sided Monte Carlo paired permutation test,

p < 10�8). Thus, the smaller number of V2 predictive dimensions

cannot be explained by the V2 population responses being less

complex than the target V1 population responses.

To assess how the complexity of the target population influ-

enced the dimensionality of the interactions, we compared the

number of predictive dimensions to the dimensionality of the

target population activity. For V1-V1 interactions, the number

of predictive dimensions closely matched the dimensionality of

the target population activity in each dataset (Figure 5B, blue

points). Although these two estimates of dimensionality are

based on different analyses, their similarity suggests that the

number of V1 predictive dimensions is as large as possible, given

the complexity of the target population responses. In contrast,

for V1-V2 interactions, the number of predictive dimensions

was consistently lower than the dimensionality of the target pop-

ulation (Figure 5B, red points).

The finding that the V1-V2 interaction is lower dimensional

than the V2 population activity could arise because the reduced

rank-regression model predicted the activity of only a few V2

neurons, ignoring the others. To assess this possibility, we refit

the model after removing the three V2 neurons whose activity

was best captured by the regressionmodel, a numberwhich cor-
252 Neuron 102, 249–259, April 3, 2019
responded to the largest number of V2 predictive dimensions we

observed. Refitting the model after removing these neurons had

little effect on the number of estimated predictive dimensions

(2.20 ± 0.11 in the original analysis versus 2.20 ± 0.09 after

removing top three V2 neurons; two-sided Monte Carlo paired

permutation test, p > 0.05), indicating that the small number of

predictive dimensions reflects a population-level effect.

We conclude that the difference in the number of V1 and V2

predictive dimensions cannot be explained by the complexity

of the respective target population responses, but rather reflects

the nature of the interaction between these areas. Whereas the

V1-V1 interaction uses as many predictive dimensions as

possible, the V1-V2 interaction is more selective and is confined

to a small subspace of source V1 population activity, which we

term a communication subspace.

Notably, this low-dimensional interaction structure was also

present in simultaneous population recordings in V1 and V4 of

awake monkeys (Figure S2), suggesting that the communication

subspace is a general property of population-level interactions

between brain areas.

Relationship to Source Population Activity
We next sought to understand the structure of the V1-V2

communication subspace. Specifically, we asked two related

questions. First, we examined how the V1 and V2 predictive di-

mensions are related. Are the predictive dimensions for these

target populations aligned or do they capture distinct activity

fluctuations within the source V1 population? Second, we exam-

ined how the V1-V2 communication subspace relates to the

structure of activity within the source V1 population. Is V2 activity

predicted by the most dominant fluctuations within V1?

To characterize the relationship between V1 and V2 predictive

dimensions, we made use of the fact that these dimensions are

both defined within the source V1 activity space and capture the

parts of the source population activity that are most relevant for

predicting each target population. We therefore removed the
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Figure 4. V1-V2 Interactions Use Only a

Small Number of Dimensions

(A) Predicting V2 activity. The number of predictive

dimensions (red circles; reduced-rank regression)

needed to achieve full predictive performance (red

triangle; ridge regression) is small (in this case, two

dimensions). Across all datasets, reduced-rank

regression achieved nearly the same performance

as the full regression model (0.150 ± 0.007 for

reduced-rank regression versus 0.152 ± 0.007 for

the full regression model). The predictive perfor-

mance slightly decreases with the number of pre-

dictive dimensions due to cross-validation. Error

bars indicate SEM across cross-validation folds.

(B) Predicting target V1 activity. The number of

predictive dimensions (blue circles; reduced-rank

regression) needed to achieve full predictive per-

formance (blue triangle; ridge regression) is large

(in this case, six dimensions). Across all datasets,

predictive performance was again similar for

reduced-rank regression (0.123 ± 0.008) and the

full regression model (0.129 ± 0.008).

(C) The optimal number of predictive dimensions is smaller for predicting V2 than target V1. Each open circle corresponds to one dataset. Filled circles indicate

averages across datasets for each of the five sessions (see STAR Methods). Inset shows the difference between the optimal number of predictive dimensions

needed when predicting the target V1 and V2 populations (target V1 minus V2).
source V1 activity along the different predictive dimensions (see

STARMethods) and assessed whether the remaining source ac-

tivity could still be used to predict activity in the target V1 and V2

populations.

We first confirmed that our method for removing activity along

predictive dimensions was effective. As expected, our ability to

predict V2 fluctuations quickly decreased as we removed the

source V1 activity along the dimensions that were most predic-

tive of V2 (Figure 6A, filled circles). Across datasets, average pre-

dictive performance vanished when all source activity aligned

with the V1-V2 communication subspace had been removed

(Figure 6B, filled bars; average normalized performance:

�0.005 ± 0.001; value is negative due to cross-validation).

In contrast, after removing the source V1 activity that fell along

the top V1 predictive dimensions, we were still able to predict V2

fluctuations (Figure 6A, open circles). Across datasets, we re-

tained a substantial fraction of our ability to predict fluctuations

in V2 after removing the same number of V1 predictive dimen-

sions as the number of predictive dimensions in the V1-V2

communication subspace (Figure 6B, open bars; average

normalized performance: 0.24 ± 0.01; one-sided Monte Carlo

paired permutation test, p < 10�8). This indicates that the V2 pre-

dictive dimensions are not well aligned with the leading V1 pre-

dictive dimensions.

We obtained similar results when predicting fluctuations in the

target V1 population (Figure 6C). Across datasets, predictive

performance was significantly higher after removing source ac-

tivity along V2 predictive dimensions (Figure 6D, open bars;

0.31 ± 0.01) than after removing activity along the same number

of V1 predictive dimensions (Figure 6D, filled bars; 0.06 ± 0.01;

one-sided Monte Carlo paired permutation test, p < 10�8).

Even after removing all source activity that fell within the V1-V2

communication subspace, we could still predict fluctuations in

the target V1 population. Together, these analyses indicate

that the V1-V2 and V1-V1 interactions not only differ in the num-
ber of predictive dimensions, but also involve different patterns

of source population activity.

To understand how the V1-V2 communication subspace is

related to the structure of the source V1 population activity, we

used factor analysis to identify the dimensions of largest shared

fluctuations within the source V1 population (termed dominant

dimensions). We then predicted the activity of V2 neurons using

linear regression based on the dominant dimensions only. This

analysis is conceptually related to reduced-rank regression,

which was used to identify the predictive dimensions. However,

rather than identifying the subspace that is best for predicting

fluctuations in the target population (as in reduced-rank regres-

sion), this analysis identifies a subspace that captures the largest

shared fluctuations within the source population and then per-

forms regression in that space.

If the dominant source V1 dimensions are able to predict V2

activity as well as the V2 predictive dimensions, for the same

number of dimensions, this would indicate that the V1-V2

communication subspace preferentially involves the largest ac-

tivity fluctuations of the V1 population. However, as shown for

a representative dataset, thedominant V1dimensions (Figure 7A,

open circles) were not able to predict V2 as well as the predictive

dimensions (Figure 7A, filled circles). In contrast, within V1, the

predictive and dominant dimensions performed similarly (Fig-

ure 7B). Across datasets, predicting V2 fluctuations almost al-

ways required more dominant V1 dimensions than V2 predictive

dimensions (Figure 7C, red). However, for target V1 fluctuations,

dominant dimensions of the source V1 population were nearly as

informative as the predictive dimensions (Figure 7C, blue; one-

sided Monte Carlo permutation test for difference in the mini-

mum number of dominant dimensions when predicting target

V1 and V2, p < 10�8 for 1 predictive dimension; p < 10�8 for 2 pre-

dictive dimensions; p < 0.01 for 3 predictive dimensions).

These results indicate that the V1 predictive dimensions are

aligned with the largest source V1 fluctuations. The V2 predictive
Neuron 102, 249–259, April 3, 2019 253
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(A) Population activity is more complex in V2 than

in target V1. Each open circle corresponds to one

dataset. Filled circles indicate averages across

datasets for each of the five sessions. Inset shows

the difference between the dimensionality (target

V1 minus V2) of the population activity in target V1

and V2.

(B) V1 and V2 interact through a communication

subspace. The number of predictive dimensions

identified for the V1-V2 interaction was always

smaller than the dimensionality of the V2 popula-

tion activity (red circles). The number of predictive

dimensions required when predicting target V1

population activity was similar to the dimension-

ality of the target V1 population (blue circles). Each

open circle corresponds to one dataset. Filled

circles indicate averages across datasets for each

of the five sessions.
dimensions, however, are distinct: not only are they less

numerous, they are not well aligned with the V1 predictive di-

mensions nor with the largest source V1 fluctuations.

DISCUSSION

Nearly all previous studies of interactions between brain areas

have used pairwise spike-spike, spike-LFP, or LFP-LFP ana-

lyses. Here we investigated the structure of interactions between

areas at the level of neuronal population spiking responses. We

found a striking difference in the nature of V1-V1 and V1-V2 inter-

actions, summarized in Figure 7D. V2 activity was related to a

small subset of population activity patterns in the source V1 pop-

ulation, and these patterns were distinct from the most dominant

shared V1 fluctuations. In contrast, more activity patterns in the

source V1 population were relevant for predicting the activity of

other V1 neurons, and the dominant fluctuations in the source

population were the most predictive. Interactions between areas

are thus defined by a communication subspace: V1 activity that

lies within the communication subspace is communicated with

V2, whereas V1 activity that lies outside this subspace is not.

Our analyses were designed to ensure a fair comparison of

V1-V1 and V1-V2 interactions. First, we used the same V1 pop-

ulation to predict target V1 and V2 responses, ruling out any

potential differences in the source population. Second, we

matched the sizes of the target V1 and V2 populations as well

as their firing rate distributions, ruling out differences in these

basic target population properties. Third, wewere able to predict

fluctuations in the target V1 and V2 populations equally well (Fig-

ure 2), so our results cannot be attributed to differences in the

strength of V1-V1 and V1-V2 interactions. Finally, the spatial

receptive fields of both the target V1 and V2 population overlap-

ped those of the source population, and subtle variations in

alignment could not explain the differences between V1-V1

and V1-V2 interactions (Figure S3).

It is important to note that the estimated number of predictive

and dominant dimensions likely depends on the number of re-

corded neurons and trials (Williamson et al., 2016). Accordingly,
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our results do not define the dimensionality of V1-V2 interactions

in absolute terms; rather, they indicate that those interactions are

low dimensional relative to V1-V1 interactions. We found that if

we analyzed only a portion of the recorded populations or trials,

the difference between V1-V1 and V1-V2 interactions was less

prominent (Figures S2D–S2F). Thus, with larger datasets, the dif-

ference between these interactions is likely even larger than that

we identified.

Dimensionality reduction analyses have provided important

insights into neuronal population activity structure and its func-

tion (see Cunningham and Yu, 2014, for a review). However,

such analyses have been applied almost uniquely to population

responses recorded in a single brain area, rather than to the

study of interactions between areas, as we have done. Two

important recent studies have investigated the relationship be-

tween activity in motor cortex and muscles (Kaufman et al.,

2014; Elsayed et al., 2016). They found that preparatory motor

activity avoids the potent (i.e., predictive) dimensions which

relate cortical activity to muscles during movement, akin to our

finding of private dimensions for V1-V2 interactions. Our work

builds upon the strength of those studies by relating trial-to-trial

fluctuations in directly connected neuronal populations (i.e.,

those with functional alignment and in specific cortical laminae;

Zandvakili and Kohn, 2015). In addition, we studied the differ-

ence in interactions within and between areas, as well as the

relationship between predictive and dominant dimensions in

the source population.

V2 likely performs non-linear operations on inputs received

from V1 (Freeman et al., 2013; Yu et al., 2015). Our approach

to understanding V1-V2 interactions was to study local fluctua-

tions around different set points (i.e., the trial-to-trial variability

around the mean responses to a particular grating)—which func-

tion effectively as local linear perturbations in the non-linear

transformation between V1 and V2. Our use of trial-to-trial fluc-

tuations is consistent with most previous studies of inter-areal

interactions (Fries et al., 2001; Pesaran et al., 2008; Bosman

et al., 2012; Saalmann et al., 2012; Salazar et al., 2012), although

these have used entirely distinct analyses such as spike-field
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Figure 6. V2 Predictive Dimensions Are

Not Aligned with Target V1 Predictive
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(A) Source V1 activity outside of the V1 predictive

dimensions is still predictive of V2 activity. V2

predictive performance quickly decreased as we

removed the source V1 activity along the V2 pre-

dictive dimensions (filled circles). Removing the

source V1 activity along the target V1 predictive

dimensions had a smaller impact on V2 predictive

performance (open circles). Predictive perfor-

mance was normalized by the performance of the

reduced-rank regression model when no activity

was removed. SEM is smaller than plotted circles.

(B) Across all datasets, removing all V2 predictive

dimensions drove the V2 predictive performance

to 0, as expected (red histogram). Removing the

same number of V1 predictive dimensions, had a

smaller impact on performance (white histogram),

as we could still account for roughly one fifth of the

predictable activity in V2.

(C) Source V1 activity outside of the V1-V2

communication subspace still accounts for a

substantial part of the explained activity in target

V1. Target V1 predictive performance decreased

faster when removing source V1 activity along the

target V1 predictive dimensions (filled circles), when compared to removing source activity along the V2 predictive dimensions (open circles). SEM is smaller than

plotted circles.

(D) Across all datasets, even after removing all source activity that was predictive of V2, we could still account for approximately a third of the predictable activity in

target V1 (white histogram). Removing the same number of target V1 predictive dimensions had a much larger effect on target V1 predictive performance (blue

histogram).
coherence. To ensure that our estimates of V1-V2 interactions

were not distorted by simple downstream non-linearities, we im-

plemented several feedforward network models with standard

non-linearities (e.g., squaring). In all cases, we found that our an-

alyses recovered interaction dimensionality that closelymatched

the dimensionality of the linear weights (Figure S4).

Given this reasoning, how can we be sure that the communi-

cation subspaces are not an oddity, perhaps defining private

and communicated V1 fluctuations differently for each grating

stimulus? First, we confirmed that a communication subspace

was evident when we analyzed our grating datasets together

(Figure S5). Thus, it is not the case that all V1 population fluctu-

ations that are private during the presentation of one grating

stimulus are relayed to V2 during the presentation of another.

Consistent with the existence of a shared communication sub-

space, we also found that the communication subspace defined

for responses to one grating could effectively predict responses

to other gratings (Figure S6). Second, we analyzed V1-V2 inter-

actions during repeated presentations of brief naturalistic

movies. These responses also revealed a communication sub-

space (Figure S7), indicating that the low-dimensional V1-V2 in-

teractions do not arise from the use of grating stimuli. Finally, we

analyzed the relationship between the communication sub-

space and the mapping of stimulus-driven activity from V1 to

V2 (i.e., the PSTHs) and found that the communication sub-

space was able to capture responses that included stimulus

information (Figure S8). Thus, the communication subspace

identified using trial-to-trial fluctuations captures important as-

pects of the inter-areal circuity that is used to relay stimulus in-

formation. These lines of evidence together indicate that the
communication subspace is a fundamental aspect of V1-V2

interactions.

What is the basis of the communication subspace? One pos-

sibility might be that our results reflect global population fluctu-

ations, which involve all neurons increasing and decreasing their

activity together (Ecker et al., 2014; Schölvinck et al., 2015;

Williamson et al., 2016) and may be more prevalent under anes-

thesia (Ecker et al., 2014; but see Rabinowitz et al., 2015). How-

ever, since global fluctuations are one dimensional, they cannot

by themselves explain the V1-V2 interactions reported here,

which typically involved more than a single dimension. In addi-

tion, the most predictive dimensions for the V1-V2 interaction

were not well aligned with the largest shared fluctuations in V1,

nor with the dimensions that were most predictive of the target

V1 activity. Notably, we observed a similar communication sub-

space in simultaneous population recordings in V1 and V4 of

awake monkeys (Figure S2), ruling out any confounding influ-

ence of anesthesia.

Another possibility might be that the communication sub-

space between V1 and V2 reflects feedback from higher cortical

areas (e.g., feedback from V4 orMT to V2 and V1). In highly inter-

connected networks, such as the visual cortex, it is difficult to

infer with certainty the source of inputs, especially with correla-

tional methods such as those employed here. However, two

pieces of evidence suggest that feedback cannot explain our

findings. (1) Feedback connections have coarse retinotopic

specificity, with individual axons spanning a relatively large

portion of the visual field (Angelucci et al., 2002; Stettler et al.,

2002). Our effects, however, are retinotopically specific. That

is, when we analyzed additional recording sessions where the
Neuron 102, 249–259, April 3, 2019 255
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Figure 7. The Dominant Dimensions of V1

Are Not the Most Predictive of V2

(A) Predicting V2 activity using dominant and

predictive dimensions. Dominant dimensions

(open circles, factor-analysis regression) carried

less predictive power than the same number of

predictive dimensions (filled circles, reduced-rank

regression). Error bars indicate SEM across cross-

validation folds.

(B) Predicting target V1 activity using dominant

and predictive dimensions. Predictive perfor-

mance using dominant dimensions (open circles,

factor-analysis regression) was similar to the

predictive performance obtained for the same

number of predictive dimensions (filled circles,

reduced-rank regression). Error bars indicate SEM

across cross-validation folds.

(C) For a given number of predictive dimensions, a

larger number of dominant dimensions was

required to reach (within a SEM, across folds) the

same V2 predictive performance (red circles).

When predicting target V1 activity, the number of

dominant dimensions needed was only slightly

greater than the number of predictive dimensions

(blue circles). Error bars indicate SEM across da-

tasets. Faded circles show results for each data-

set and were horizontally jittered for visual clarity.

(D) Left: Schematic of V1-V2 results. Only a small

number of activity patterns in the source V1 popu-

lation was predictive of the V2 population. These

predictive activity patterns did not correspond to

the dominant patterns in the source V1 population.

Large blue ellipse represents the set of all activity

patterns observed in the source V1 population.

Darker shading indicates more dominant activity

patterns. Right: Schematic of V1-V1 results. A large

number of activity patterns in the source V1 popu-

lation was predictive of the target V1 population.

These predictive activity patterns corresponded to

the dominant patterns in the source V1 population.
V1 and V2 populations had receptive fields that were misaligned

by several degrees, we found a much weaker V1-V2 interaction

that was often well captured by a single predictive dimension

(Figure S3). Furthermore, this dimension was well aligned with

the largest shared fluctuations of the source V1 population.

The mismatch between the retinotopic specificity of our results

and that of feedback connections suggests that the communica-

tion subspace does not arise primarily from feedback. (2) Our V2

recordings were performed in the middle layers, which do not

receive feedback and are driven almost exclusively by the super-

ficial layers of V1 (Felleman and Van Essen, 1991). Consistent

with this, we found in these data an elevated probability of V2

spiking several milliseconds after the occurrence of a spike in

V1 (Zandvakili and Kohn, 2015). This functional signature also

suggests a strong feedforward component to the V1-V2 interac-

tion, though it does not exclude the possibility that feedback sig-

nals contribute as well.

An alternative possibility might be that the low-dimensional

communication subspace arises because only a small subset

of V1 neurons project to V2. There is good evidence for selective

connections between V1 and V2 (Sincich et al., 2010) and be-

tween V1 and other areas (Glickfeld et al., 2013, but see Han
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et al., 2018 for a contrary view). However, additional simulations

confirmed that our observations do not arise trivially from sparse

anatomical projection between source and target areas (Fig-

ure S9). Further, we emphasize that while anatomy constrains

how activity can be routed in cortex, the flexibility of cognition

and perception requires additional mechanisms that allow

inter-areal signaling to be adjusted from moment to moment,

based on task demands (e.g., Saalmann et al., 2012; Salazar

et al., 2012).

We propose instead that the communication subspace is an

advantageous design principle of inter-area communication.

The ability of a source area to communicate only certain activity

patterns while keeping others ‘‘private’’ could be ameans for the

selective routing of signals between areas. To understand the

computational benefit of structuring inter-areal communication

in this way, we implemented a simulation that captures the com-

mon scenario of a source area projecting to two downstream

areas, areas A and B (Figure 8). If each downstream area reads

from the source area using a different communication subspace,

there will be dimensions of the source population activity that are

relayed to area A but not to area B (Figure 8A) and vice versa (Fig-

ure 8B). Crucially, if the interaction between these areas does not
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neuron in area A (blue) or area B (red). Blue plane
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tions indicated by the black arrow in the left panel)
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(B) Communication subspace: activity in source
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(C) Full interaction: activity in source area in-

fluences both downstream areas. Same conven-
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involve communication subspaces, then all fluctuations in the

source population will be relayed to both downstream areas

(Figure 8C). The communication subspace is consequently a

population-level mechanism whereby activity can be selectively

routed between brain areas.

The selective routing allowed by the communication subspace

could be adjusted dynamically, allowing moment-to-moment

modulation of interactions between cortical areas. Dynamic

routing could be accomplished by altering the structure of pop-

ulation activity in a source area; it need not involve changing the

communication subspace itself. Much recent work has shown

that the structure of population activity is highly and rapidly

malleable, by stimulus drive (Kohn and Smith, 2005; Churchland

et al., 2010; Mazzucato et al., 2016), task demands (Cohen and

Newsome, 2008; Elsayed et al., 2016; Bondy et al., 2018), atten-

tion (Cohen and Maunsell, 2009; Mitchell et al., 2009), learning

(Gu et al., 2011; Jeanne et al., 2013), and other factors (Kohn

et al., 2016).

Allowing interactions between areas to be modulated by the

alignment of population activity with a relevant communication

subspace has several advantages over a well-known alternative:

defining interaction strength by the phase-alignment of spikes to

ongoing oscillations (Fries, 2015) (termed ‘‘communication
through coherence,’’ CTC). First, the

communication subspace hypothesis

does not require coordinated oscillations

between the source and target areas,

which can be difficult to achieve in prac-

tice (Ray and Maunsell, 2015). Instead,

the implementation of a communication

subspace requires only that the target
area takes a particular type of weighted combination of its

inputs, namely a linear readout that is low dimensional. This

can be implemented in a linear feedforward network (Salinas

and Abbott, 1994; Jazayeri and Movshon, 2006), if the weights

for each downstream neuron are defined as linear combinations

of the same set of basis ‘‘weights’’ (or predictive dimensions).

Second, different target areas (or subpopulations within the

same target area) can have different communication subspaces

in the same source area (Figure 8). CTC can also route distinct

signals to downstream targets by using different oscillations

within the source area, each of which is coherent with a different

downstream target. However, the number of oscillations that can

be distinguished by phase is limited by the temporal precision of

neurons, and it is not clear whether the same source neurons can

entrain to different oscillations at the same time (Remme

et al., 2010).

Our framework for understanding inter-areal population inter-

actions makes clear predictions of how the communication sub-

space could contribute to behavior, which can be tested in future

work. For instance, if attention involves altered inter-areal

communication, this could be achieved by better alignment

between population responses in a source area and the

communication subspace relaying those responses to a relevant
Neuron 102, 249–259, April 3, 2019 257



downstream area. Similarly, learning could involve achieving

population activity patterns that are better aligned with an exist-

ing communication subspace (Sadtler et al., 2014), or perhaps

altering the communication subspace itself. Finally, the degree

to which the effects of perturbation experiments (e.g., patterned

optogenetic stimulation) would propagate across areas could

depend on their alignment with the relevant communication sub-

spaces. A critical implication of our work is thus that studying

how experimental manipulations alter population responses in

a given cortical area can be misleading. One must also under-

stand how these altered population responses align with the

mapping to downstream areas.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal procedures and recording details have been described in previous work (Smith and Kohn, 2008; Zandvakili and Kohn, 2015).

Briefly, animals (macaca fascicularis, male, 2-3 years old) were anesthetized with ketamine (10 mg/kg) and maintained on isoflurane

(1%–2%) during surgery. Recordings were performed under sufentanil (typically 6-18 mg/kg/hr) anesthesia. Vecuronium bromide

(150 mg/kg/hr) was used to prevent eye movements. All procedures were approved by the IACUC of the Albert Einstein College of

Medicine.

METHOD DETAILS

Visual stimulation and recordings
The data analyzed here represent a subset of those reported in Zandvakili and Kohn (2015), namely those that involved the largest

and best retinotopically-aligned populations. V1 activity was recorded using a 96 channel Utah array (400 micron inter-electrode

spacing, 1 mm length, inserted to a nominal depth of 600 microns; Blackrock, UT). We recorded V2 activity using a set of elec-

trodes/tetrodes (interelectrode spacing 300 microns) whose depth could be controlled independently (Thomas Recording, Ger-

many). These electrodes were lowered through V1, the underlying white matter, and then into V2. Within V2, we targeted neurons

in the input layers. We verified the recordings were performed in the input layers using measurements of the depth in V2 cortex, his-

tological confirmation (in a subset of recordings), and correlation measurements. For complete details see Smith et al. (2013)

and Zandvakili and Kohn (2015). Voltage snippets that exceeded a user-defined threshold were digitized and sorted offline. The

sampled neurons had spatial receptive fields within 2� 4� of the fovea, in the lower visual field. Average receptive field size (defined

as ± 2 S.D.s of a Gaussian function fit to the data) was 1:22±0:01� for V1 and 2:33±0:09� for V2.
We measured responses evoked by drifting sinusoidal gratings (1 cyc/�; drift rate of 3� 6:25 Hz; 2:6� 4:9� in diameter; full

contrast, defined as Michelson contrast (Lmax-Lmin/Lmax+Lmin) where Lmin is 0 cd=m2 and Lmax is 80 cd=m2) at 8 different ori-

entations (22.5� steps), on a calibrated CRT monitor placed 110 cm from the animal (1024 3 768 pixel resolution at 100 Hz refresh).

Each stimulus was presented 300-400 times for 1.28 s. Each presentation was preceded by an interstimulus interval of 1.5 s. The

duration of each experiment varied from 5 to 7 days.

We recorded neuronal activity in three animals. In two of the animals, we recorded in two different but nearby locations in V2,

providing distinct middle-layer populations. We refer to each of these five recordings as a session. We treated responses to each

of the 8 stimuli in each session separately, yielding a total of 40 datasets.
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Data preprocessing
We counted spikes in 100 ms bins, beginning 160 ms after stimulus onset and spanning a total of 1 s (10 bins per trial). To study how

neuronal activity in the two areas is related, we reasoned that any fluctuations in the V1 responses, whether due to changes in the

visual stimulus or not, could relate to fluctuations in V2. We therefore subtracted the appropriate peri-stimulus time histogram (PSTH)

from each single-trial response, and then analyzed the residuals for each orientation (termed datasets) separately. We confirmed that

the temporal structure had little effect on our results by shuffling the data across trials while maintaining the temporal identity; doing

so reduced the predictive performance for the V2 population to 0. We found qualitatively similar results for a wide range of bin widths

(20 ms - 1 s). Furthermore, we obtained similar results after z-scoring both the source and target population responses, ruling out the

possibility that our results were driven by a few high-firing neurons. For all analyses, we excluded neurons that fired less than

0.5 spikes/s on average, across all trials.

We compared our analyses of V1-V2 interactions to the results of applying the same analyses to a held-out V1 population (V1-V1).

The target population in the V1-V1 analyses was a held-out subset of the originally recorded population, which was matched in

neuron count to the corresponding V2 population. We also matched the firing rate distribution (mean-matched) to the V2 population

separately for each stimulus condition (as in Churchland et al. (2010)). To do so, we binned the firing rate distribution of the V1 and V2

populations (for each neuron, the average firing rate was taken across time and trials for each dataset), and determined the common

firing rate distribution (i.e., for each firing rate interval, we took the minimum neuron count between the two populations). For each

firing rate interval, we then randomly picked this minimum number of neurons from the corresponding bin in each population, without

replacement. Because we had many more V1 than V2 neurons, the common distribution usually matched the V2 distribution and we

selected an equal number of V1 neurons. The size of the matched populations ranged from 15 to 31 units across datasets (mean:

22.3). The V1 neurons that were not selected for the held-out population defined the source V1 population. V2 neurons that were

not selected for the V2 mean-matched population were not used in the analysis. We repeated the mean-matching procedure

25 times, using different random, mean-matched subsets of neurons (and consequently producing a different source population).

Results for each dataset are based on averages across these repeats. The pairwise correlation (rsc) analysis in Figure 2A was based

on a single mean-matching procedure which was done jointly for all stimulus conditions. Statistical evaluation for this analysis was

performed after converting rsc to z-scores using the Fisher transformation (Kohn and Smith, 2005):

z=
1

2
ln

�
1+ rsc
1� rsc

�

Regression models
We first related trial-to-trial fluctuations in the source V1 population to those in the target populations using a linear model of the form:

Y =XB

where X is a n3p matrix containing the residual activity of the source V1 population and Y is a n3q matrix containing the residual

activity of the target (V1 or V2) population (n represents the number of data points, p and q are the number of neurons in the source

and target populations, respectively). The coefficient matrix B is of size p3 q. Each of the q columns of B linearly combines the ac-

tivity of the p neurons in X to predict the activity of one neuron in Y. B can be found using the ordinary least-squares (OLS) solution

which minimizes the squared prediction error:

BOLS =
�
XTX

��1
XTY

To reduce overfitting, we used ridge regression (referred to as full regression model in the main text), a variant of classical linear

regression, which gives the solution BRidge = ðXTX + lIÞ�1XTY, where I is a p3p identity matrix and l is a constant that determines

the strength of regularization. We chose the value of l using 10-fold cross-validation. Specifically, we selected the largest l for which

mean performance (across folds) was within one SEM of the best performance, separately for each dataset (i.e., for each stimulus

condition in each recording session). To quantify model performance, we employed 10-fold nested cross-validation (Friedman

et al., 2001)

We sought to test whether the target population activity (V1 or V2) could be predicted using a subspace of the source V1 population

activity. In other words, we asked if the linear model Y =XB was still accurate when we impose B to be of a given rank, rankðBÞ = m.

This constrained linear regression problem is known as reduced-rank regression (RRR) (Izenman, 1975; Kobak et al., 2016), and can

be solved using the singular value decomposition:

BRRR =BOLSVV
T

whereBOLS is the ordinary least-squares solution and the columns of the q3mmatrix V contain the topm principal components of the

optimal linear predictor bYOLS = XBOLS. To predict target population activity using RRR, we computed:

bYRRR =XBRRR =XBOLSVV
T =XBVT
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whereB=BOLSV is a matrix of size p3m. The columns of B define which dimensions of the source population activity are used when

generating predictions: they are the predictive dimensions. The sets of weights used to predict each target neuron (the columns of

BRRR) are themselves linear combinations of the columns of B. Note also that the columns of B do not form an orthonormal basis.

Rather, they are uncorrelated with respect to the source activity, i.e., B
T P

B = D, where S is the covariance matrix of the source

population activity and D is a diagonal matrix. Thus, the columns of B are linearly independent and rankðBÞ = m.

To find the optimal dimensionality for the RRR model (the value of m), we used 10-fold cross-validation and found the smallest

number of dimensions for which predictive performance was within one SEM of the peak performance.

Factor analysis
To quantify the dimensionality of the activity in the target populations we used Factor Analysis (FA) (Yu et al., 2009; Williamson et al.,

2016). FA is defined by:

z � Nð0; IÞ
y j z � NðLz+m;JÞ

where y is a q-dimensional vector containing the observed residuals at a given time point, L is the q3m loadingmatrix that defines the

relationship between them-dimensional (m<q) latent variable z and y, m is a q-dimensional vector and J is a q3q diagonal matrix.

We estimated the dimensionality of the latent variable z in two steps: (1) we found the number of dimensionsmpeak that maximized the

cross-validated log-likelihood of the observed residuals; (2) we fitted a FA model with mpeak dimensions and chose m, using the

eigenvalue decomposition, as the smallest dimensionality that captured 95% of the variance in the shared covariance matrix LLT .

This procedure provides more robust estimates of the FA model dimensionality (Williamson et al., 2016).

Removing activity along the predictive dimensions
In order to remove the source population activity along the predictive dimensions, we projected the source activity onto the subspace

that is uncorrelated with the predictive dimensions. Formally, we state that two dimensions defined by the vectors u and v are un-

correlated with respect to the source activity matrix X if:

uTSv= 0

where S is the covariance matrix of the source activity. Let matrix B contain the predictive dimensions. The set of vectors in the un-

correlated subspace is:

v : B
T
Sv= 0

n o
In particular, it will be useful to find an orthonormal basis for this subspace:

Q : B
T
SQ= 0; QTQ= I

n o
This canbeaccomplishedusing the singular valuedecomposition (SVD). Start bydefiningM=B

T
S andconsider its SVDM = UDVT .

ChoosingQ as the last p�m columns of V (corresponding to the 0 singular values) yieldsMQ = 0,QTQ = I, whichmakesQ an ortho-

normal basis for the uncorrelated subspace. We then projected the source population onto the uncorrelated subspace, bX = XQ, and

predicted target activity using ridge regression between bX and Y.

We also tested the effect of removing all population activity that was predictive of the target population activity under any stimulus

condition by analyzing responses to all stimulus conditions together (Figure S5).

Comparing dominant and predictive dimensions
To identify the dominant dimensions in the source population, we fit a FA model, and determined the optimal dimensionality (as

described above). Using this FAmodel, we estimated the latent variables bz = E½z j y� for each z, then performed an orthonormalization

procedure to order the elements of bz by the amount of shared variance explained (Williamson et al., 2016). This allowed us to predict

the target population activity using only themost dominant V1 dimension (first element of orthonormalized bz), the top twomost domi-

nant V1 dimensions (first two elements of orthonormalized bz), etc. We then compared the performance of the dominant and predic-

tive dimensions for predicting activity of the target populations.

Selective communication simulation
In order to show how a communication subspace can subserve selective communication (Figure 8), we simulated responses in a

source population (3 neurons), as well as in two downstream populations (3 neurons each). The responses of each downstream

neuron were generated as a linear combination of the activity of the neurons in the source population. In Figure 8A-B, where both

downstream areas interact with the source area via communication subspaces, the predictive dimensions for all neurons in each

area were chosen to lie within a 2-dimensional subspace. Specifically, we generated these dimensions by creating randomly oriented

unit vectors in the xy plane and then rotating these vectors 20� around the x axis for the downstream area A neurons and 40� for the
downstream area B neurons. Predictive dimensions for both downstream areas were then rotated 20� around the z axis. In Figure 8C,
e3 Neuron 102, 249–259.e1–e4, April 3, 2019



all predictive dimensions were generated by creating randomly oriented unit vectors in the 3-dimensional source activity space. To

generate source activity we drew a sample from a Gaussian process with a squared exponential kernel (length scale [2 = 0:05). This

sample was then embedded into the 3-dimensional source activity space by projecting the activity along a chosen dimension, i.e., if

the Gaussian process sample is represented as a T31 vector x (where T represents the number of time points), and the chosen

dimension is represented by the 331 vector v, then the 3-dimensional source activity is given by xvT . When a communication sub-

spacewas present, the source activity was chosen to lie along the private dimension of the relevant area. In Figure 8C, any choice of v

leads to qualitatively similar results, so we chose it to align with the dimension used in Figure 8B. The response for each downstream

neuron is given by the projection of the source activity onto the corresponding predictive dimension.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details can be found in the Results and figure legends. All statistical tests reported in the main text treat the datasets as

independent (with the exception of Figure 2A, in which data are pooled across all stimuli, resulting in a single pairwise correlation

value per pair per session). Repeating the same statistical tests across the five sessions (i.e., averaging the results across the 8 stimuli

for each session) also returned significant results (p< 0:05) for all tests, with the exception of Figure 2B, where we can no longer reject

the null hypothesis that the average predictive performance is the same when predicting target V1 and V2.

DATA AND SOFTWARE AVAILABILITY

TheMATLAB analysis codewith sample data is available at https://github.com/joao-semedo/communication-subspace. V1-V2 data

are available at the CRCNS data sharing web site, at https://doi.org/10.6080/K0B27SHN.
Neuron 102, 249–259.e1–e4, April 3, 2019 e4
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Figure S1, related to Figure 2. Predictive performance can be explained by Poisson

variability in the target population or subsampling from a large source population.

Although we focus on relative comparisons of predictive performance and dimensionality,
we wondered whether the absolute performance of our regression models was reasonable.
In particular, the predictive performance might be limited because of variability in the
target population that is not related to the recorded source population. This could occur
because of stochasticity in spike generation in the target population (Faisal et al., 2008;
Goris et al., 2014), or because the recorded source neurons are only a fraction of the
relevant input neurons. In these cases, only part of the variability in the target population
is predictable from the source population, regardless of the model used. Here we perform
simulations to quantify the effect of stochasticity in spike generation in the target
population, as well as of subsampling from a large source population. Our simulations
indicate that the absolute predictive performance reported in Figure 2B is consistent with
either spike generation stochasticity in the target population or subsampling of the input
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population. The predictive performance for the recorded activity was higher than
expected if both of these effects contribute.

(A) To assess the contribution of stochasticity, or noise, in the target population’s spike
generation process, we constructed surrogate target population responses (target V1 and
V2) using linear combinations of the recorded source V1 activity and Poisson noise. We
first applied reduced-rank regression (RRR) to the recorded activity to identify a (number
of source neurons by number of target neurons) matrix B, which relates the activity
between the source and target populations. In these simulations, B represents the ground
truth for generating the surrogate target population responses. While other choices of B
are possible, we used RRR to ensure the surrogate “residuals” both qualitatively match the
recorded residuals and exhibit low-dimensional structure. The surrogate target residuals
were obtained using Y = XB, where X is the recorded source residuals (a number of data
points by number of source neurons matrix). We added the PSTH of the appropriate
neuron and stimulus orientation to obtain a firing rate for each target neuron for each time
bin and trial. We then drew spike counts from a Poisson distribution with the specified
underlying rate. Note that we assumed Poisson spiking statistics and did not determine
the level of noise from the data (Tolhurst et al., 1983). Using this approach, we generated
surrogate target activity for both the V2 and target V1 populations for each of the recorded
data sets, and then applied ridge regression to the residuals obtained from these surrogate
data (to mimic the way in which we measured overall predictive performance in the main
text). In these simulations, the predictive performance can only be limited by the Poisson
variability, as the interaction between populations is linear by design.

We found that the predictive performance of the linear regression model on the surrogate
data was similar to the performance on the recorded activity (ratio of recorded activity
performance to surrogate data performance: 0.7± 0.01 for V2 and 0.95± 0.01 for target V1;
open circles show average predictive performance for each data set; filled circles show
average for each recording session). This outcome suggests that Poisson-like variability in
the target population can largely account for the performance levels observed. That is,
under the assumption that Poisson variability is “noise” and therefore not predictable, the
linear model accounts for most of the predictable trial-to-trial variability in the target
population.

(B) To mimic our recording from a fraction of the full neuronal source population, we
conducted an additional simulation in which we subsampled from a large source
population. Following the procedure of Smith and Kohn (2008), we generated the source
activity (500 to 10,000 neurons) by drawing 4000 samples (matching the experimental data
set size: 400 trials with 10 time bins each) from a multi-dimensional Gaussian distribution.
The mean of the distribution was drawn from a uniform distribution between 0 and 100
for each neuron independently. To determine the covariance of the distribution, we first
constructed a noise correlation matrix by assigning each neuron a “preferred orientation”,
which was drawn from a uniform distribution between 0� and 180�. We then determined
the correlation between each pair of neurons using the difference between preferred
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orientations. Correlations varied from 0 to 0.3; these values were chosen so that the
eigenspectrum of the resulting covariance matrix qualitatively matched that of the real
data when matching the number of neurons. We then obtained the covariance matrix from
the correlation matrix using the mean rates and assuming a Fano factor of 1. To generate
activity in the target population (30 neurons), we defined the response of each target
neuron using a weighted sum of the activity of the source population, with the weights
chosen randomly from a standard Gaussian distribution. There is no added noise in this
simulation. We then subsampled different proportions of the source population and used
ridge regression to predict activity in the target population, as in the main text. We
repeated the process of subsampling from the large source population and drawing a set
of weights 25 times. All presented results are the average across the 25 repeats, with the
shading indicating the standard deviation.

As expected, predictive performance depended strongly on the size of the observed source
population. When the source population is completely observed, predictive performance
is perfect, since there is no noise added to the target population in this simulation. As the
size of the observed population decreases, so does predictive performance, reaching a
value close to 0 when a single source neuron is observed. Notably, when the size of the
observed population roughly matched the size of the source V1 populations (64 to 135
neurons, indicated by the shaded area), the predictive performance was similar to that
observed in the recorded data (average predictive performance across all recordings: 0.14;
predictive performance on the surrogate data: 0.28 for 100 observed neurons out of a
source population of 500, 0.19 for 100 out of 1000, 0.11 for 100 out of 5000, 0.10 for 100 out
of 10000). These results show that recording from a subset of the V1 neurons projecting to
V2 limits predictive performance, leaving a large proportion of V2 variability
unexplainable by the recorded activity.
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Figure S2, related to Figures 4 and 5. Interactions between V1 and V4 in awake

animals are also low-dimensional.

Our V1-V2 recordings were performed in sufentanil-anesthetized animals. To test whether
interactions between cortical areas are also low dimensional in awake animals, we
analyzed simultaneous recordings from neuronal populations in V1 and V4, in two
monkeys performing a grating orientation discrimination task, and a third monkey
performing a fixation task.

(A-C) The two first animals were required to fixate on a small target (0.1�; fixation window
diameter 1.4�). After a delay of 200 ms, a drifting grating was presented for 200 ms (2-4
cpd, 6 Hz, 100% contrast). Animals were required to maintain fixation for an additional
200 ms, before reporting their decisions by making saccades to two choice targets.
Saccades to the vertical choice target (i.e., above the fixation point) were rewarded if the
orientation was less than 45�; saccades to the horizontal choice target (i.e., on the
horizontal meridian) were rewarded when stimulus orientation was larger than 45�. Trials
in which a 45� grating was presented were rewarded randomly.

After a training period of roughly 6 months, we implanted 48 channel Utah arrays in V1
and V4. The spatial receptive fields of the two populations were overlapping, such that the
V1 receptive fields lay entirely within the aggregate receptive fields of the V4 population.
We then recorded from V1 and V4 simultaneously while animals performed the
discrimination task on gratings which covered the aggregate receptive fields of the
recorded populations (stimulus diameters were 1� 4�, centered at eccentricities of
0.5� 2.5�). During recording sessions, we presented 7 orientations centered at 45� and
chosen to straddle the slope of the psychometric function (37.5� to 52.5�), plus the two
extremes (0� and 90�). The probability of presenting a 45� orientation in most sessions was
twice that of the other orientations, whose presentation was equally likely. Additional
details of the recording approach are provided in Jia et al. (2013) and Arandia-Romero
et al. (2016).

We analyzed 145 recording sessions in the same way we analyzed the anesthetized
recordings in the main text (see STAR Methods). Due to the limited number of trials for
each grating orientation, we jointly analyzed all stimulus conditions (after removing the
corresponding stimulus PSTHs) and used a 200 ms bin size. We treated each V1-V4
recording session as an independent data set. To form source and target V1 populations,
we randomly split the V1 populations in half, and then randomly selected neurons from
the V4 population to match the size of the target V1 population. For data sets for which
the number of V4 neurons was smaller than the target V1 population, all V4 neurons were
used and the extra target V1 neurons were re-assigned to the source V1 population. The
process of randomly selecting the source and target V1 and V4 populations was repeated
50 times for each data set.
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Unlike for the V1-V1 and V1-V2 comparison in the main text, we found that the predictive
performance and population dimensionality for V4 were lower than for the corresponding
target V1 populations. To ensure that our results would not be explained by these
differences, we matched the joint distributions for these quantities for both target
populations. This was done by selecting a subset of recording sessions such that the joint
distributions of predictive performance and target population dimensionality were
matched for both target populations. Since the target populations were paired (i.e., for
each recording session, we used a common source V1 population to predict a target V1
and a V4 population), we could not separately sub-select from the target V1 and V4
populations to construct matched sets of recordings, resulting in an overconstrained
matching problem. We thus used an approximate matching approach: we first computed
the common joint predictive performance and population dimensionality distribution
between the two target populations (i.e., the minimum between the joint predictive
performance and population dimensionality histograms for each target population). We
then randomly chose a target population and histogram bin, and randomly selected a
session within that bin. In parallel, we selected the corresponding paired target
population. We repeated this procedure until, for each bin, and for each target population,
we had at least as many sessions as in the common histogram. The approximate matching
procedure was repeated 100 times. We then used the matching for which the sum of the
total absolute errors between the resulting target population histograms and the common
histogram was smallest. This procedure yielded 32 matched sessions, containing 5 to 38
V1 neurons (average: 16± 7 s.d.) and 4 to 42 V4 neurons (26± 10 s.d.), with 414 to 4500
data points per session (1899± 1166 s.d.).

Having ensured a fair comparison between V1-V1 and V1-V4 interactions, we proceeded
with our main analyses.

(A) We found that fewer predictive dimensions were required to predict V4 activity than
target V1 activity (0.66± 0.06 for V1-V4; 1.04± 0.09 for V1-V1; one-sided Monte Carlo
permutation test, p < 10�3), consistent with analyses of within and between area
interactions in the main text. Each open circle corresponds to one of the 32 matched
recording sessions.

(B) As expected, due to the matching procedure, population dimensionality was similar
for target V1 and V4 (1.66± 0.13 for target V1; 1.48± 0.12 for V4; two-sided Monte Carlo
permutation test, p > 0.05).

(C) For a given target population dimensionality, fewer predictive dimensions were
necessary to predict activity in the V4 population, compared with the target V1
population. The higher the target population dimensionality, the clearer the difference we
observed between V1-V1 and V1-V4 interactions. For example, considering only recording
sessions for which the target population dimensionality was above 2 for both target
populations, the average number of predictive dimensions was 1.04± 0.06 for V1-V4 and
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1.56± 0.18 for V1-V1 interactions (one-sided Monte Carlo permutation test, p < 10�2).
Thus, recordings from larger populations would likely yield still larger differences
between V1-V1 and V1-V4 interactions.

(D-F) Although our analysis revealed a communication subspace between V1 and V4
populations recorded in awake animals, the results were less striking than for the V1 and
V2 populations recorded in anesthetized animals (see Figure 5B). One possible explanation
for this is that the awake recordings involved much smaller neuronal populations, which
reduces the dimensionality of the population activity (Williamson et al., 2016) and thus
any observable differences between within and across area interactions.

For comparison, we thus re-analyzed the V1-V2 data sets used in the main text to match
the data available from the awake recordings (in panels A-C). To do so, we used a bin size
of 200 ms, and randomly sub-selected the source and target V1 and V2 populations to
match the population sizes of the V1-V4 recording sessions. Specifically, for each of the 32
awake recording sessions shown above, we randomly selected one of the 40 V1-V2 data
sets, and re-analyzed it after randomly sub-selecting source and target neurons to match
the size of the populations in the corresponding awake recording session (this was
repeated 50 times, for different sub-selections of the source and target neurons; each
symbol shows the average across all 50 repetitions). Additionally, since we could not rate
mean-match the target V1 and V4 populations, we also did not employ the rate
mean-matching procedure to the sub-selected target V1 and V2 populations.

(D) In these ‘awake-matched’ V1-V2 data, the number of V2 predictive dimensions was
smaller than for target V1 (1.16± 0.04 for V1-V2; 1.44± 0.06 for V1-V1; one-sided Monte
Carlo permutation test, p < 10�3), but the difference between the two cases was smaller
than in the main text (Figure 4) and similar to the awake data (panel A, above).

(E) Target population dimensionality was higher for V2 than for target V1 (2.64± 0.12 for
V2; 2.45± 0.10 for target V1; two-sided Monte Carlo paired permutation test, p = 0.02),
but the difference was smaller than in the main text (Figure 5) and again similar to the
awake data (panel B, above).

(F) Comparing the number of predictive dimensions with the dimensionality of the
corresponding target populations revealed that, for a given target population
dimensionality, fewer predictive dimensions were necessary to predict activity in the V2
population, compared with the target V1 population. The difference between V1-V2 and
V1-V1 interactions were similar to those found for the awake recordings (panel C, above).
Thus, the reason why the results were less striking for the awake V1-V4 recordings than
the anesthetized V1-V2 recordings is likely that there were fewer neurons recorded in the
V1-V4 recordings.
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(G-I) To verify that the small effect size found for the awake V1-V4 recordings was indeed
due to the small number of neurons available, we analyzed three recording sessions from a
third awake animal. In this animal, we had access to larger populations in V1 and V4 (192
electrodes distributed across the two areas; number of recorded V1 units: 34 to 57, mean
46.0± 11.5 S.D.; number of recorded V4 units: 58 to 69, mean 65.0± 6.1 S.D.). The animal
passively fixated during the presentation of four different grating orientations (each
stimulus was presented 558 to 1029 times, mean 749± 199 S.D., for 200 ms). We observed
evidence of cross-talk between a small proportion of electrode pairs (⇠ 2%). We addressed
this by removing one of the two affected electrodes. The mean pairwise correlations in the
remaining pairs were small and similar within V1 and between V1 and V4 (average
pairwise correlation: 0.051± 0.074 S.D. for V1-V1; 0.044± 0.040 S.D. for V1-V4).

Given the sizable number of V4 neurons in these recordings, the rate mean-matching
procedure used for the V1-V2 recordings in the main text may assign more than half of the
V1 neurons to the target population, which means the interaction becomes potentially
limited by the number of source neurons. When this happened, we set the minimum
source population size to be half the number of recorded V1 neurons, leading the source
and mean-matched target populations to be of the same size (number of source
population neurons: 17 to 29, mean 23.3± 5.1 S.D.; number of target population neurons
(target V1 and V4): 17 to 28, mean 22.7± 4.7 S.D.).

(G) As with the V1-V2 results in the main text (see Figure 4C), fewer dimensions were
required to predict activity in V4, compared to the target V1 population (average number
of predictive dimensions: 1.3± 0.1 for V4; 3.5± 0.4 for target V1).

(H) In contrast to the V1-V2 results in the main text (see Figure 5A), the V4 population
dimensionality was lower than the target V1 population dimensionality (target population
dimensionality: 3.1± 0.44 for V4; 4.7± 0.4 for target V1). Importantly, the V4 population
dimensionality was still much larger than the average number of predictive dimensions
identified for the V1-V4 interaction (see next panel), indicating the V4 population
dimensionality did not limit the dimensionality of the interaction.

(I) The results from analyzing these V1-V4 recordings agree with the V1-V2 results in the
main text (see Figure 5B) and the other awake V1-V4 recordings presented in panels A-C.
Namely, for a given target population dimensionality, fewer predictive dimensions were
necessary to predict activity in the V4 population, compared with the target V1
population.

Finally, as for the anesthetized data (see Figure 7), we found that the dominant dimensions
of the source V1 activity were better aligned with the predictive dimensions of the target
V1 activity than with the predictive dimensions of the V4 activity (relative difference in
prediction performance between the top source dominant dimension and the top
predictive dimension was 10± 2% for target V1; 60± 10% for V4).
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These results indicate that a communication subspace also exists for interactions between
V1 and V4 in awake primate cortex, and thus the results in the main text cannot be
ascribed to peculiarities of V1-V2 interactions or to anesthesia.
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Figure S3, related to Figures 2, 5 and 7. Influence of V1-V2 retinotopic alignment on

the communication subspace.

The V2 populations analyzed had spatial receptive fields that were closely aligned with
the recorded source V1 populations. Because the target V1 population were selected from
the same recording array as the source V1 population, these two populations also had
well-aligned receptive fields. Nevertheless, one possible concern is that the difference in
the number of V1 and V2 predictive dimensions was due to a subtle mismatch in receptive
field alignment for V1-V1 compared to V1-V2.

(A) On average, the V1-V1 receptive field distance (center-to-center population spatial
receptive field distance) was smaller than for V1-V2 (top; average V1-V1 receptive field
difference: 0.17± 0.02�; average V1-V2 receptive field difference: 0.58± 0.06�; one-sided
Monte Carlo permutation test, p < 10�3).
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To test whether the differences between V1-V1 and V1-V2 interactions (lower panel,
replicating Figure 5B in the main text) could be explained by this difference in receptive
field alignment, we repeated the analyses in the main text after matching the V1-V1 and
V1-V2 alignment. We did this matching in two ways: (1) analyzing only the sessions for
which V1-V2 alignment was as high as V1-V1 alignment; (2) selecting the target V1
populations so as to minimize their alignment with the source V1 populations.

(B) When we restricted our analysis to sessions for which V1-V2 alignment was as high as
V1-V1 alignment (top; average V1-V1 receptive field difference: 0.21± 0.04�; average
V1-V2 receptive field difference: 0.31± 0.04�; two-sided Monte Carlo permutation test,
p > 0.05), we found V1-V1 and V1-V2 interactions were still strikingly distinct (bottom;
compare with (a) bottom). Specifically, fewer predictive dimensions were necessary to
predict the V2 activity than target V1 population activity (bottom; 2.6± 0.1 for V1-V2 vs
4.0± 0.2 for V1-V1; one-sided Monte Carlo paired permutation test, p < 10�3), even
though the V2 activity was higher dimensional than that of the target V1 population
(bottom; 5.5± 0.3 for V2 vs 4.0± 0.2 for target V1; one-sided Monte Carlo paired
permutation test, p < 10�3). Likewise, V2 predictive dimensions were also not aligned
with the source V1 dominant dimensions in these sessions (not shown).

(C) When we instead selected the target V1 population to minimize alignment with the
source V1 populations (top; average V1-V1 receptive field difference: 0.57± 0.05�; average
V1-V2 receptive field difference: 0.44± 0.07�; two-sided Monte Carlo permutation test,
p > 0.05), we still found that fewer predictive dimensions were necessary to predict V2
than target V1 activity (bottom; 2.1± 0.1 for V1-V2 vs 3.7± 0.1 for V1-V1; one-sided
Monte Carlo paired permutation test, p < 10�3). In these data, both target populations had
similar dimensionality (bottom; 4.6± 0.2 for V2 vs 4.9± 0.1 for target V1; two-sided
Monte Carlo paired permutation test, p > 0.05). This similarity arises because the firing
rate distributions for the target V1 and V2 populations were not mean-matched, as in the
main text and above; the requirement to select a specific subset of V1 neurons with offset
receptive fields (i.e., those in one corner of the array) precluded rate mean-matching. It is
still case, however, that the smaller number of V2 than V1 predictive dimensions cannot
be attributed to differences in target population dimensionality. In addition, it was still the
case that V2 predictive dimensions were not well aligned with the source V1 dominant
dimensions (not shown).

Together these results show that the differences between V1-V1 and V1-V2 interactions
cannot be explained by subtle differences in retinotopic alignment with the two target
populations. To test whether the V1-V2 communication subspace was at all sensitive to
retinotopic alignment, we analyzed five additional sessions (each containing responses to
gratings of 8 different orientations, for a total of 40 data sets), where there V1 and V2
receptive fields were clearly offset from one another average receptive field distance: 3.73�
vs 0.58� for the datasets analyzed above).
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(D) Our ability to predict responses in V2 was substantially lower when the source V1
population had retinotopically-offset receptive fields than when they are aligned
(0.06± 0.01 for offset, red histogram vs. 0.15± 0.01 for aligned, shown in Figure 2B). The
performance for the target V1 prediction, as expected, remained roughly the same
(0.15± 0.01 for offset, blue histogram vs. 0.13± 0.01 for aligned, shown in Figure 2B).

(E) We then asked how many dimensions were necessary to predict the target populations
in the data sets with retinotopically-offset receptive fields. When predicting target V1
activity, the number of predictive dimensions matched the dimensionality of the target V1
population (blue circles). When predicting the V2 population, on the other hand, the
number of predictive dimensions was smaller than the dimensionality of the V2
population (red circles). Indeed, for most offset data sets only a single predictive
dimension was needed to predict V2 (optimal dimensionality was one for 29 out of 40 data
sets with retinotopically-offset receptive fields).

(F) To understand which source V1 population fluctuations were captured by the V2
predictive dimension(s), we assessed how similar the predictive dimensions were to the
dominant dimensions in the source V1 population. Contrary to our findings for
retinotopically-aligned recordings (cf. Figure 7C), we found that for the
retinotopically-offset data sets predictive and dominant dimensions achieved similar
performance when predicting the V2 population.

In summary, we found that V1-V2 interactions depend on retinotopical alignment:
predictive performance is lower for recordings from populations with
retinotopically-offset receptive fields, and these predictions frequently required only a
single predictive dimension. The predictive dimensions for the offset data were similar to
the dominant dimensions of activity in the source population.
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Figure S4, related to Figure 4. Reduced-rank regression recovers the correct number of

predictive dimensions even when the mapping between populations is nonlinear.

Reduced-rank regression is a linear dimensionality reduction method which assumes
additive Gaussian noise. We were concerned that our estimates of the dimensionality of
V1-V1 and V1-V2 interactions might be inaccurate, either because interactions between
populations are likely nonlinear or because neuronal variability is Poisson-like (not
additive Gaussian). To test these possibilities, we applied reduced-rank regression to
surrogate data sets in which target population variability was determined either by (1) a
linear mapping from the source to target population followed by Poisson noise
(linear-Poisson, or LP, model); or (2) by a linear-nonlinear mapping followed by Poisson
noise (linear-nonlinear-Poisson, or LNP, model) (Schwartz et al., 2006).

(A) For the LP model, surrogate data were obtained using a similar procedure as in Figure
S1A. Briefly, we defined the (number of source neurons by number of target neurons)
mapping matrix B by applying reduced-rank regression, with the optimal number of
dimensions, to the recorded source and target populations (without subtracting the
PSTHs). We then generated the surrogate target rates Y = XB, where X is the recorded
source activity (a number of datapoints by number of source neurons matrix). We
obtained the target activity by generating Poisson spike counts based on the rates Y . To
estimate the underlying number of predictive dimensions in the surrogate data, we
applied reduced-rank regression to the residual activity in the source and target
populations. We found that the estimated number of predictive dimensions matched the
underlying model closely, especially for interactions involving a small number of
predictive dimensions (open circles show average predictive performance for each data
set; filled circles show average for each recording session).
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(B) The LNP model was identical to the LP models, but the linear combination of the spike
counts was passed through a quadratic nonlinearity before generating Poisson spike
counts. As with the LP model, we found the number of predictive dimensions estimated
with reduced-rank regression closely matched the dimensionality of the mapping matrix.

14



0

30

0

35

0

0.5

1

0

0.5

1
N

or
m

al
iz

ed
 p

er
fo

rm
an

ce
D

at
a 

se
ts

Number of predictive dimensions removed Number of predictive dimensions removed

Normalized performance

Predicting V2 Predicting target V1

V1 dims

V2 dims

V1 dims

V2 dims

V2 dims
V1 dims

V1 dims
V2 dims

A C

B D

0 2 4 6 8 10 0 2 4 6 8 10

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Normalized performance

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Source activity 
removed along:

Source activity 
removed along

Figure S5, related to Figure 6. There exist dimensions of the source population activity

that remain private regardless of the stimulus.

We showed that only a few dimensions of V1 activity are required to predict V2 responses.
Consequently, a significant component of V1 population fluctuations remain private to V1
(from the perspective of V2). However, our analysis involved identifying predictive
dimensions separately for each stimulus condition (i.e., data set). As a result, dimensions
that are private for one stimulus condition may become predictive for another.
Alternatively, some dimensions of the source V1 activity might remain private across all
stimulus conditions. If so, these globally-private dimensions would constitute a subspace
of V1 activity that is not related to V2 activity, perhaps representing processes internal to
V1 which should not be relayed downstream.

(A) To determine whether there are globally-private dimensions of V1 activity, we first
identified a joint predictive subspace – the subspace of the source V1 activity that is
predictive of V2 activity across all stimulus conditions. We did so by simultaneously
fitting the reduced-rank regression model to residual responses to all eight stimulus
conditions in each recording session. This revealed that V1-V1 interactions involved as
many predictive dimensions (9.7± 0.5) as the dimensionality of the target population
(9.1± 0.5). V1-V2 interactions, on the other hand, involved fewer predictive dimensions
(5.2± 0.3) than the target population dimensionality (9.6± 0.4). Thus, V1-V2 interactions
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occurred through a communication subspace. We then applied the analysis of Figure 6 in
the main text. Namely, we assessed how well we could predict V2 activity as we removed
V1 activity that fell along the identified joint communication subspace.

As shown here for an example session, our ability to predict V2 activity quickly decreased
as we removed the source V1 activity that fell along the V2 joint predictive subspace (filled
circles). When we removed all activity in the joint communication subspace - in this case 6
dimensions - we were entirely unable to predict V2 responses. Removing the source V1
activity in the V1 joint predictive subspace had a smaller impact on V2 predictive
performance (open circles). Predictive performance was normalized by the performance
when no activity was removed. S.E.M. (across folds) is smaller than plotted circles.

(B) Since the joint predictive subspace is defined across all stimulus conditions, the activity
outside the joint predictive subspace should not be predictive of V2 under any condition.
Indeed, across data sets, average predictive performance vanished when all source activity
aligned with the V1-V2 communication subspace had been removed (filled bars; mean
fraction of original predictive performance across data sets: �0.002± 0.001 ; t-test
p > 0.05). Removing the same number of V1 predictive dimensions had a smaller impact
on performance (open bars; mean fraction of original predictive performance: 0.12± 0.01;
one-sided Monte Carlo paired permutation test for difference between removing V1 and
V2 predictive dimensions, p < 10�3).

(C) We then performed a similar analysis, attempting to predict activity in the target V1
population. Specifically, we sought to determine whether the activity outside the V2 joint
predictive subspace could be used to predict fluctuations in the target V1 population. The
global private subspace would only be meaningful if there were substantial source activity
that falls within it. As shown for an example session, target V1 predictive performance
decreased more quickly when we removed source V1 activity along the target V1
predictive dimensions (filled circles), compared to removing source activity along the V2
predictive dimensions (open circles). Importantly, we retained some ability to predict
activity in the target V1 populations, after removing all source V1 activity along the V2
joint predictive subspace. S.E.M. (across folds) is smaller than plotted circles.

(D) Across data sets, a substantial part of the target V1 activity could be predicted after
removing the V2 joint predictive subspace (open bars; mean fraction of original predictive
performance across conditions: 0.18± 0.01). Recall that when we identified the
communication subspaces separately for each stimulus condition (Figure 6D), we retained
0.31± 0.01 of the original predictive performance. Thus, the predictive performance for
the target V1 activity is largely preserved when going from a condition-specific V1-V2
private subspace to an across-condition V1-V2 private subspace. Removing the same
number of target V1 predictive dimensions had a much larger effect on target V1
predictive performance (filled bars; mean fraction of original predictive performance
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across conditions: 0.026± 0.003; one-sided Monte Carlo paired permutation test for
difference between removing V1 and V2 predictive dimensions, p < 10�3).

The difference between the effect of removing source activity along target V1 and V2
predictive dimensions stems from identifying distinct predictive dimensions for the target
V1 and V2 populations. To check whether the differences we found between V1 and V2
predictive dimensions truly reflected differences in the way activity is related within
versus across areas, we considered two separate target V1 populations, both
mean-matched to the V2 population. We found that the predictive dimensions for both
target V1 populations were significantly more similar to each other than they were to the
V2 predictive dimensions, suggesting the results above reflect a difference between within
and across area interactions.

Together, these results indicate that a substantial component of V1 activity is
globally-private (across the stimuli tested), and not predictive of the V2 population. This is
consistent with the results reported in Figure S6: while the predictive dimensions
identified for the different stimuli are not identical, they differed only moderately,
showing a high degree of overlap.
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Figure S6, related to Figure 5. Predictive dimensions as local linear approximations of

a globally nonlinear mapping.

In the main text, we identified predictive dimensions for each stimulus separately. An
important motivation for this approach is that if the interactions between areas are
nonlinear (Cowley et al., 2017), we can best apply linear methods to small perturbations in
the population signals around a fixed operating point, which is precisely what the analysis
of trial-to-trial fluctuations to a fixed stimulus accomplishes. However, a concern for this
approach is that the predictive dimensions identified may change across stimulus
conditions. Here, we investigate how the predictive dimensions identified from responses
to different oriented gratings are related.

(A) To assess the similarity of the communication subspaces identified for different
gratings, we determined the predictive dimensions for each stimulus (as in the main text)
and then used these to predict responses evoked by the other stimuli. This was done by
first projecting the source activity onto the identified communication subspace and then
fitting a linear regression model between these projections and the target activity.
Predictive performance was then normalized by the performance achieved by a model fit
directly to the responses to that stimulus (i.e., without first projecting the responses onto
the subspace defined for responses to another stimulus). Performance was measured
using 10-fold cross-validation (i.e., for each fold, the model was fit to a training set
pertaining to one stimulus and then used for prediction in test sets of all stimuli). If the
communication subspaces were entirely distinct for different stimuli, performance should
plummet when the regression model is fit using the subspace derived from responses to
other gratings. Alternatively, if the communication subspaces are similar for different
gratings, performance should be similar regardless of which responses are used to define
the subspace.

We found that the communication subspaces are similar for different gratings. Each row
corresponds to a different communication subspace and each column to the application of
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those subspaces to a different stimulus condition. The diagonal elements thus indicate the
normalized performance of identifying and applying the communication subspace to
responses evoked by the same stimuli. The off-diagonal elements have normalized
predictive performance values less than 1, indicating that the communication subspaces
are not identical across the 8 stimulus conditions. However, the performance declined
smoothly as the responses were evoked by stimuli of progressively different orientations.
In addition, the drop in performance was modest. When the predictive subspace
identified for one orientation was used to predict responses to an orthogonal grating - the
most challenging scenario – performance was roughly 75% of that achieved for the
subspace identified for the orthogonal grating responses. Performance is averaged across
all sessions.

(B) For comparison, we applied the same analyses to data synthesized as in Figure S1.
Briefly, we first defined a fixed linear mapping, using the residual responses to activity
pooled across all conditions. We then generated target population activity for each
stimulus by passing the corresponding source population activity through this fixed
mapping, and added Poisson noise to each sample with mean given by the corresponding
PSTH time bin. For these synthesized responses, we found that performance was
uniformally high, when we identified the predictive dimensions using responses to one
stimulus orientation and applied them to responses evoked by another. This analysis
indicates that (1) the modest performance decrement in the physiological data (panel A)
cannot be attributed to differences in the source population responses across orientations;
(2) if the mapping between areas were strictly linear and fully identified by our analysis,
we should not observe any decrease in performance. These results thus support the
suggestion that the mapping between V1 and V2 is not strictly linear.

In summary, the communication subspaces identified for distinct stimuli were not
identical. Furthermore, these differences could not be explain by changes in the statistics
of the source and target populations. However, these subspaces changed smoothly and
only moderately across all stimuli.
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Figure S7, related to Figure 5. V1-V2 interactions driven by naturalistic stimuli also

occur through a communication subspace.

The results in the main text are based on analyzing responses to oriented gratings. To
understand the interaction between V1 and V2 for richer stimuli, we also analyzed V1 and
V2 responses to repeated presentations of a natural movie.

We recorded from V1 (130 neurons) and V2 (18 units) in one anesthetized monkey, while
presenting 300 repetitions of a 30s natural movie. Movies consisted of 750 unique frames,
with each frame presented on 4 sequential monitor refreshes; given the refresh rate of 100
Hz, this yielded a video rate of 25 Hz. For our analysis, we divided the 30 s movie into
shorter segments of either 1, 1.5, 3, 6, 10 or 30 s (the full movie), yielding 30, 20, 10, 5, 3 and
1 data sets, respectively. We then analyzed each data set independently. Note that different
data sets (i.e., movie segments) correspond to activity evoked by distinct stimuli. As in the
main text, we binned activity using a 100ms window, and subtracted the corresponding
PSTH from each cell’s response.

We found that the number of V1 predictive dimensions closely matched the
dimensionality of the target V1 population (blue symbols, along the diagonal for all movie
lengths, indicating by symbol size). V2 predictions, on the other hand, consistently
required fewer predictive dimensions than the dimensionality of the V2 population (red
symbols). Filled circles show the average across all movies of a given length. Open circles
show the estimates for each movie segment (averaged across 25 rate mean-matched
samples of the V1 and V2 populations).
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Figure S8, related to Figure 5. Predictive dimensions identified using residual activity

can predict responses that include stimulus information.

In the main text, we identified predictive dimensions using residual activity, i.e., after
subtracting from each trial the corresponding PSTH. While there are advantages to this
approach, it is important to understand how the predictive dimensions identified in this
way relate to stimulus processing. Have we lost critical components of the V1-V2
interaction by removing the stimulus component (or PSTH) from the activity? Or do the
predictive dimensions identified for the residual activity largely capture these stimulus
components as well?

To answer these questions, we directly compared the communication subspaces identified
using residual activity with those identified when we did not subtract the PSTHs (termed
here the “full activity”). We did so by estimating the predictive dimensions either from the
residual activity (pooled across conditions, as in Figure S5) or from the full activity, and
then used these subspaces to predict held-out sets of residual and full activity. For
example, to predict full activity using the residual communication subspace, we first
identified the residual predictive dimensions on a residual activity training set, then
projected the full source V1 activity onto the subspace spanned by these dimensions and
used these projections to predict the full V2 activity. The predictive performance was then
normalized by the performance obtained from predicting the full activity using the
subspace fit to the full activity training set. This process was repeated 10 times, using
10-fold cross-validation. There was no overlap between the data used to fit the models and
the data used to quantify predictive performance.
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When predicting the full activity, we found that the subspace identified using the residual
activity retained 0.85± 0.04 of the predictive performance achieved by the predictive
dimensions identified for the full activity itself (red open circles). For comparison, we also
quantified the performance retained when using a random subspace with the same
dimensionality as the residual subspace. We selected these random predictive subspaces
by fitting a reduced rank regression (RRR) model to the same training residual activity, but
after shuffling the sample order of the two areas independently, thereby destroying V1-V2
covariability. These random communication subspaces retained a much smaller fraction of
the performance (black open circles; 0.16± 0.03).

Using the subspace identified for the full recordings to predict the residual activity
resulted in an even higher fraction of performance retained (red open triangles; 0.97± 0.01
vs. 0.06± 0.01 for random dimensions). This was expected, given that the full activity is
composed of the stimulus component and trial-to-trial variability. Thus predicting the full
activity involves also predicting the residual activity. Consistent with this statement, more
predictive dimensions were needed to predict the full activity than to predict residual
activity (6.75± 0.3 for full activity vs 5.1± 0.3 for residual activity).

One might worry that the ability of a subspace identified using residual activity to predict
the full activity is not because this subspace captures the stimulus component, but rather
because the stimulus component is small compared to the trial-to-trial variability (i.e., the
full activity is dominated by trial-to-trial fluctuations). If so, the residual subspace would
retain most of the full activity predictability even if it failed to capture the stimulus
component. To test whether this was the case, we used the residual subspace to predict the
stimulus component. We did so by creating surrogate data with realistic levels of
trial-to-trial variability for which all covariability, within and across areas, was solely due
to the PSTHs. In other words, the only interactions between the two areas were those
induced by the PSTHs. Specifically, for each stimulus, we generated 400 trials (the same
number as with the real data) of responses by drawing from a Poisson distribution where
the mean, for each time bin, was given by each neuron’s PSTH. We used this synthesized
data because directly fitting a RRR model to the PSTHs leads to overfitting, due to the
small number of samples. This approach (fitting RRR to synthesized data created in this
way) can be thought of as a form of regularization, similar to that employed by ridge
regression but using Poisson noise. For these synthesized data, the residual subspace
retained most of the predictability achieved by identifying predictive dimensions using
the synthesized data itself (red filled circles; 0.73± 0.07 vs. 0.25± 0.02 for random
dimensions, in black filled circles). The subspace identified using the synthesized data was
also able to predict residual activity (red filled triangles; 0.76± 0.02 vs. 0.06± 0.01 for
random dimensions in black filled triangles).

These results show that there is high overlap between the dimensions that are most
predictive of residual activity and the dimensions that are most predictive of the stimulus
components of the activity. Thus, one can use covariations of trial-to-trial fluctuations to
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identify the relationship between mean activity of neurons in one area and those in
another, at least for the limited stimulus ensemble used here.
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Figure S9, related to Figures 5 and 7. The small number of predictive dimensions

cannot be explained by a physical bottleneck.

Only a fraction of the neurons in the output layers of V1 directly project to V2 (Sincich and
Horton, 2005; Sincich et al., 2010). Thus, it is likely that not all of the recorded V1 neurons
project to the recorded V2 population. We wondered whether the small number of V2
predictive dimensions could be a consequence of the linear regression model relying on
those few projecting V1 neurons. If this were case, the V1-V2 communication subspace
would be a straightforward consequence of a “physical bottleneck” between these areas.
To test this possible explanation for our results, we performed two additional analyses.
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(A) First, we studied the structure of the predictive dimensions, after fitting the
reduced-rank regression model to the (z-scored) recorded data. If the predictive
dimensions rely on only a few V1 neurons, we would expect the magnitude of a few
regression weights to be large and those for the remaining source neurons to be low. We
found no evidence of this: the weights for the V1 neurons varied broadly and showed no
signs of bimodality. Plotted is the histogram of weights associated with the first predictive
dimension across all data sets. Note that since the sign of the predictive dimension is
arbitrary, we defined it for each data set as the sign for which most weights are positive.

(B) Second, we conducted a simulation in which a large source population influenced a
target population via a physical bottleneck. In this simulation, not all source neurons
project to the target population, and only a fraction of source and target neurons are
observed, mimicking the situation in our recordings. We generated the source activity
(10,000 neurons) in the same way as in Figure S1B. This was done to ensure that the
correlations in the synthesized population were similar to those in the data, both in
magnitude and structure. The results presented here were largely insensitive to the precise
structure of correlations within V1. To generate the activity in the target population (30
neurons), we defined the response of each target neuron using a weighted sum of the
activity of the source population, with the weights chosen from a standard Gaussian
distribution. Importantly, the weights were chosen such that 95% of the source neurons
did not project to the target population (i.e., 95% of the source neurons had their weights
set to 0 for all target neurons) – a physical bottleneck in which only 5% of source neurons
provide input to the target population. For comparison, we also conducted an additional
simulation in which all neurons in the source population project downstream (i.e., all
weights were chosen from a standard Gaussian distribution and none were set to zero so
there is no physical bottleneck). The weights for this model were adjusted so that the
covariance structure of the activity of the two target populations was matched. We did this
using the singular value decomposition of the target population data matrix of the model
without the physical bottleneck Yu = USV

T , and then correcting it using:

Ȳu = YuV DV

T

where Ȳu is the corrected target population data matrix of the model without the physical
bottleneck. D is a diagonal matrix with entries �b

i/�
u
i where �

b
i and �

u
i (i = 1, ...30) are the

ordered singular values of the target populations with and without a physical bottleneck,
respectively. This ensures both target populations have the same eigenvalues, and
therefore any difference in the number of estimated predictive dimensions are not due to
differences in the second order statistics of the target populations (recall that we controlled
for this in the recorded data by estimating the dimensionality of the target populations,
Figure 5). To estimate the mapping dimensionality, we applied reduced-rank regression to
a random subset of 100 source neurons and all of the target neurons. Note that under this
linear model generating 30 target responses is equivalent to randomly selecting 30
neurons from a larger target population. This entire process was repeated 25 times, using
different random instantiations of the weighting matrices described above and different
random selections of the observed source neurons.
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We found that the physical bottleneck in the surrogate data had little influence on the
number of estimated predictive dimensions. As shown here, the optimal number of
predictive dimensions was roughly the same whether or not a physical bottleneck was
present (15.6± 0.3 with physical bottleneck and 15.2± 0.2 without physical bottleneck;
two-sided Monte Carlo paired permutation test, p > 0.05; error bars indicate standard
deviation across random source subsets and choices of the mapping matrices). It might
seem counterintuitive that the estimated mapping dimensionality was the same whether
or not all observed neurons projected to the target population. Furthermore, although only
5 observed neurons directly influence the target population on average in the simulation
with a physical bottleneck, the estimated dimensionality of the interaction is three times
that number. Both of these findings arise due to the covariance structure of the source
population activity, which contains dimensions of covariability that are shared across
many neurons. As a result, even if a neuron does not project to the target population, it
can still be predictive of the target population activity if it covaries with neurons that do
project.

In these simulations, the activity of the target populations was completely determined by
the activity of the source population (i.e., no noise was added). Since we had 500 (or 10,000
when no physical bottleneck was present) source neurons projecting to 30 target neurons,
the true dimensionality of the interaction was 30. However, due to the limited sampling of
the source population and finite data, the estimated dimensionality is smaller than the
true value.

(C, D) We also tested whether the presence of a physical bottleneck could explain our
finding that the dimensions that are most predictive of the V2 population are not well
aligned with the dominant dimensions of the source V1 population (Figure 7). We found
that the difference in predictive performance between predictive and dominant
dimensions was small in these simulations, whether or not a physical bottleneck was
present (panel C: with physical bottleneck, panel D: without physical bottleneck; error
bars indicate standard deviation across random source subsets and choices of the
mapping matrices).

(E) In order to qualitatively reproduce the results in the main text we had to restrict the
linear mapping between the source and target populations to be low-dimensional. That is,
the sets of weights relating each V2 neuron to the source V1 population were chosen as a
linear combination of a small set of basis weights (in this example, a 5 dimensional basis
set). Imposing this structure reduced the estimated optimal number of predictive
dimensions to 4.6± 0.1.

(F) Furthermore, due to the way in which the low-dimensional mapping was chosen, the
predictive dimensions now lay in a subspace of the source population activity that was
randomly oriented with respect to the dominant dimensions of this population. As a
result, using the source dominant dimensions to predict activity in the target population
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led to worse performance, when compared with the performance afforded by the
identified predictive dimensions.

We conclude that that existence of a physical bottleneck cannot explain: (1) the
communication subspace; or (2) the misalignment of the predictive and dominant
dimensions observed in the recorded activity. Only by enforcing a low-dimensional
mapping were we able to reproduce these findings.

Finally, we note that there may be other scenarios, none of which apply to our data, in
which a physical bottleneck can result in the identification of a communication subspace.
For instance, if all of the neurons in the source and target areas are recorded, the true
weights of the connections between areas can be recovered. If most of these weights are
zero (i.e., most source neurons do not project), then the mapping between areas will be
low-dimensional (i.e., there will be a communication subspace). Alternatively, a
low-dimensional mapping can arise when the activity of the projection neurons is
independent of the rest of the source population, even if only a subset of the source
population is recorded. This is unlikely to be the case in our data given the
well-established correlations among V1 neurons. Because neither of these scenarios likely
applies to the current analyses, we believe that the most likely explanation for our results
is that the mapping between V1 and V2 is low-dimensional.
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