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Statistical methods for dissectin
g interactions between
brain areas

João D Semedo1,*, Evren Gokcen1,*[239_TD$DIFF], Christian K Machens2,
Adam Kohn3,4,5 and Byron M Yu1,6
The brain is composed of many functionally distinct areas. This

organization supports distributed processing[242_TD$DIFF], and requires the

coordination of signals across areas. Our understanding of how

populations of neurons in different areas interact with each other

is still in its infancy. As the availability of recordings from large

populations of neurons acrossmultiple brain areas increases, so

does the need for statistical methods that are well suited for

dissecting and interrogating these recordings. Here we review

multivariate statistical methods that have been, or could be,

applied to this class of recordings. By leveraging population

responses, thesemethodscanprovidea richdescriptionof inter-

areal interactions. At the same time, these methods can

introduce interpretational challenges. We thus conclude by

discussing how to interpret the outputs of these methods to

further our understanding of inter-areal interactions.
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For more than a century, we have known that different

parts of the brain carry out different functions. Functional

networks process information in stages, exchanging sig-

nals and influencing one another, depending on the
www.sciencedirect.com
desired behavior. The flexibility with which different

areas can be recruited is likely intimately related to our

ability to respond flexibly to the world around us. How-

ever, most of our progress in understanding brain function

has focused on how each area behaves in isolation, with

little regard for how the outputs of each area are related to

the computations performed by neighboring areas.
Understanding how different brain areas work together

requires simultaneously observing activity across multi-

ple interacting populations of neurons. Developments in

neural recording technologies are making it increasingly

common to monitor the activity of many neurons in two or

more brain areas simultaneously, and the number of

research groups performing multi-area recordings is likely

to grow rapidly in the coming years [1,2]. This is an

exciting time for the field, but a key challenge lies in

how best to leverage these recordings to understand how

the interaction between brain areas enables sensory,

cognitive, and motor function [3].
Early efforts to understand how brain areas interact with

one another focused on the anatomy of inter-areal projec-

tions [4–6]. While anatomy provides the scaffolding by

which different areas coordinate their activity, the flexi-

bility with which the brain can respond to identical

stimuli depending on context suggests it is only part of

the story. Anatomy is the wiring, but it does not tell us

what information is conveyed on those wires or when that

information is being conveyed.
To date, most functional studies of inter-areal interac-

tions have considered a single variable (e.g., activity of

one neuron, or LFP power in a particular frequency band)

in each area at a time. These variables can be related

across areas using pairwise metrics such as coherence

[7–11], pairwise correlation [12–20], and directed infor-

mation [21–23], or multi-area approaches, such as

dynamic causal modeling for fMRI [24,25� [241_TD$DIFF]]. These

approaches (typically one variable per area) have pro-

vided important insights into which areas are interacting

at any given time, and how these interactions depend on

task demands. Pairwise metrics have also been used to

propose mechanisms by which inter-areal communication

can be gated [26]. However, since they usually consider a

single global statistic in each area, they cannot, by defini-

tion, reveal which aspects of the population activity in one

area are relayed to another. Since sensory encoding and
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60 Whole-brain interactions between neural circuits
neuronal computation are believed to be mediated by

neuronal populations, it is then difficult for univariate

methods to elucidate what aspects of a stimulus, or out-

puts of a computation, are relayed across interacting

populations.

More recently, as a result of the increasing availability of

multi-area neuronal population recordings, studies have

begun to investigate the relationship between multiple

variables (e.g., spiketrains recordedfrommultipleneurons)

in each area [18,27–29,30��,31��,32��,33��]. This endeavour

involves multivariate statistical methods — such as multi-

variate linear regression, canonical correlation analysis

(CCA), and their variants. These multivariate methods

not only provide insight into which areas are communicat-

ing at anygivenmoment (whenused in the sameway as the

univariate methods above), they can also elucidate what

aspects of activity are related across areas.Wewill begin by

introducing multivariate statistical methods that can be

used to analyze multi-area population recordings. We then

describe how they can be leveraged to provide a rich

description of inter-areal interactions. Finally, we discuss

several considerations one should take into account when

interpreting the outputs of these methods.

Studying population interactions between
brain areas
For simplicity, we focus on a scenario with two interacting

populations. Furthermore, although we speak in terms of

spiking activity in multiple areas, these methods can also

be used to study interactions between any distinct popu-

lations (e.g., neurons in different layers or different neu-

ron types) and with other recording modalities (e.g.,

calcium imaging).

Static methods

Suppose that we wish to study the interaction between

two areas, which we term the ‘source area’ and ‘target

area’. The activity in the source population can be repre-

sented in a high-dimensional space, where each axis

corresponds to the activity of one neuron (Figure 1 a).

To gain intuition, we start by considering the activity of a

single target neuron, recorded simultaneously with the

neurons in the source population. In particular, we want to

understand how the activity in the source population

relates to the activity of this target neuron. One of the

simplest approaches to relate the activity in the two areas

is to use a linear combination of the activity of the source

neurons to predict the activity of the target neuron, that is,
to perform linear regression (LR; Figure 2 a):

y ¼ w1x1 þ w2x2 þ w3x3
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where y is the activity of the target neuron, x1, x2 and x3
the activity of each source neuron, and w1, w2 and w3 the

regression weights. The regression weights define a

dimension (termed a regression dimension; black line

in Figure 1a) in the source population activity space.

This dimension represents a population activity pattern:

activity along this dimension (i.e., activity that matches

this pattern of covariation) is most predictive of the target

neuron’s activity (color of dots is ordered along black line

in Figure 1 [244_TD$DIFF]a).

For a population of target neurons, using LR requires

repeating the same process multiple times, indepen-

dently for each target neuron. The output of this

approach is thus a collection of the source activity

patterns that are most predictive of the target population

activity (Figure 1 [245_TD$DIFF]b). Understanding how these activity

patterns are oriented relative to the multi-dimensional

structure of the source population activity can yield

important insights into what components of the source

activity are reflected in the target area. For example,

multiple stimulus features might be encoded in the

source population. Inspecting how the stimulus encod-

ing is related to the regression dimensions can provide

insight into what stimulus features are being relayed to

the target area.

When applied to large source and target populations, LR

requires the estimation of a large number of weights (e.g.,

hundreds of regression dimensions, each comprising

weights corresponding to hundreds of source neurons.)

This affects both our ability to reliably identify these

weights (due to overfitting), as well as our ability to

interpret them.

One way to simultaneously reduce overfitting, and

extract a more parsimonious description of inter-

areal interactions, is to use dimensionality reduction

methods to summarize high-dimensional population

activity with a smaller number of latent variables.

Dimensionality reduction methods have been used

in many single-area studies (see [34] for a review),

and are now being used to study inter-areal interac-

tions [30�� [243_TD$DIFF],31��,32��,33��,35,36,37�,38��].

Latent variables in the source area can be identified via

commonly-used dimensionality reduction methods,

such as principal component analysis (PCA) or factor

analysis (FA). Each latent variable represents a dimen-

sion, or activity pattern, in the source population activ-

ity space (blue plane in Figure 1c). These latent vari-

ables can then be regressed with the activity of each

neuron in the target area, leading to principal compo-

nent regression (PCR) and factor regression (FR),

respectively (Figure 2 [245_TD$DIFF]b). Box 1 highlights three recent
www.sciencedirect.com
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Relating activity between two populations of neurons. (a) Predicting the activity of one target neuron. For illustrative purposes, we show 3 source

neurons. Each dot corresponds to the observed activity in the source population at a given time. The color of each dot represents the activity of

one target neuron, recorded simultaneously with the source neurons. Note that there are regions in the source activity space for which the activity

of the target neuron is low (left side), and regions where it is high (right side). The target neuron’s activity changes smoothly along the regression

dimension (black line). (b) Predicting the activity of a target population. Using linear regression to predict activity in a target population amounts to

using linear regression to separately predict the activity of each target neuron. This yields a regression dimension for each target neuron (black

lines). (c) Characterizing inter-areal interactions using dimensionality reduction on the source population. One way to increase interpretability and

combat overfitting when performing linear regression is to first find a small number of latent variables in the source activity (represented by the

blue plane), and then use them to predict target activity. In this example, we cannot accurately predict target neuron 1’s activity using only the

first two principal components of the source activity (color has no structure), though the identified dimensions capture much of the variance in the

source area (85%). (d) Characterizing inter-areal interactions using dimensionality reduction on the source and target populations. Another way to

summarize inter-areal interactions is to find a subspace of source activity that is maximally predictive of target activity. In contrast to panel (c),

here we can accurately predict target neuron 1’s activity using the first two predictive dimensions (color is highly structured). However, the

predictive dimensions explain less variance of the source activity (35%) than the principal components.
studies that leveraged PCR and FR to study inter-areal

interactions.

The benefits of PCR and FR relative to standard LR are

twofold. First, since the number of latent variables is

typically far smaller than the number of source neurons

[34,39], PCR and FR define a more concise relationship

between the two areas and are, therefore, more inter-

pretable. Second, since the regression dimensions must

lie in a subspace of the source activity with high vari-

ance (or covariance), the regression weights can be

identified more reliably. However, since PCR and

FR identify latent variables using only activity within

the source area (Figure 1 [246_TD$DIFF]c), it is possible for some

source activity patterns that are predictive of the target

activity to be left out during the dimensionality reduc-

tion stage. Figure 1 [246_TD$DIFF]c illustrates such a scenario, where

using only the top two principal components does not
www.sciencedirect.com
allow us to accurately predict the activity of target

neuron 1.

Another approach to extracting a parsimonious descrip-

tion of population interactions is to explicitly consider the

regression dimensions when performing dimensionality

reduction. In particular, it is possible that the collection of

regression dimensions is confined to a subspace of the

source population activity. If that is the case, we can

summarize the regression dimensions using a smaller

number of dimensions of population activity, termed

predictive dimensions (Figure 1 [254_TD$DIFF]d). Methods that simul-

taneously perform dimensionality reduction and relate

activity across areas include reduced-rank regression [40]

(RRR; Figure 2 [246_TD$DIFF]c), canonical correlation analysis [41]

(CCA; Figure 2 [254_TD$DIFF]d), and partial least squares [42] (PLS;

Figure 2 [254_TD$DIFF]d). These methods have been used to relate
Current Opinion in Neurobiology 2020, 65:59–69
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Figure 2
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Graphical depiction of multivariate methods for studying inter-areal interactions. (a) The weights in a linear regression model (or a GLM) define the

population activity pattern in area A that is most predictive of the activity of a neuron in area B (black circle). (b) Principal component regression

first identifies latent variables using activity in area A only (gray squares). Each latent variable represents a population activity pattern that explains

the most variance in area A. Latent variables are then treated as independent variables and used to predict activity of a neuron in area B (the

dependent variable; black circle). Factor regression is similar; however, each latent variable represents a population activity pattern that explains

the most shared variance within area A. Note that (a) and (b) show a single area B neuron being predicted, but both classes of methods can be

applied to a population of neurons in area B by repeating the same process for each neuron in area B. (c) Reduced-rank regression uses

population activity in both areas to identify latent variables. Neurons in area A are treated as independent variables (gray circles), while neurons in

area B are treated as dependent variables (black circles). Latent variables represent population activity patterns in area A that are most predictive

of population activity in area B. (d) Like reduced-rank regression, canonical correlation analysis uses population activity in both areas to identify

latent variables. However, it treats populations symmetrically (i.e., all neurons are treated as dependent variables), and identifies a common set of

latent variables for both areas A and B. Each latent variable represents jointly a population activity pattern in area A and a population activity

pattern in area B that are highly correlated. Partial least squares is similar; however, each latent variable represents jointly a population activity

pattern in each area that describes large activity covariance across areas. In (a)–(d), the activity of the neurons (circles) in both areas is observed,

whereas the latent variables (squares) are inferred from the observed neural activity. Boxes (blue and red shading) indicate which neurons are

used to identify latent variables. Symbols are colored gray to indicate independent variables, and black to indicate dependent variables, when

relating activity across areas.
activity across areas [31��,32��,36,37�,38��], to extract

informative projections of source population activity

[43,44], and to align multivariate activity across different

conditions [45,46]. Box 1 highlights two recent studies

that leveraged RRR and CCA to study inter-areal

interactions.

Whether inter-areal interactions can be well described

using a small number of predictive dimensions can have
Current Opinion in Neurobiology 2020, 65:59–69
important functional consequences: if all regression

dimensions lie in a subspace of the source population

activity, a ‘communication subspace’, only activity within

this subspace is relevant for predicting target activity

[31��]. In particular, activity outside of this subspace

remains private to the source population. This structure

could thus be used to gate which patterns of source

population activity are relayed to the target area, and

which ones are not [31��,35]. This ‘null space’ concept has
www.sciencedirect.com
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Box 1 Recent studies using PCR, RRR and CCA to study inter-areal interactions

Several recent studies have applied the methods reviewed here to deepen our understanding of inter-areal interactions. For instance, Kaufman et al.
[35], leveraged principal component regression (PCR) to propose a novel mechanism by which neurons in motor cortex (PMd/M1) can remain active

without driving arm movements during movement preparation (Box Figure [247_TD$DIFF], panel a). They defined a potent subspace (orange dimension), along which

changes in neural activity drive arm movements. In order to avoid driving arm movements, changes in preparatory activity (represented by the blue

ellipse) are confined to the null subspace (gray dimension, orthogonal to the potent subspace) and avoid the potent subspace. Semedo et al. [31�� [246_TD$DIFF]]
studied inter-areal interactions between early visual areas (V1 and V2) using factor regression (FR) and reduced-rank regression (RRR), and found that

only a small subspace of V1 activity was predictive of activity in V2, termed a communication subspace (Box Figure [248_TD$DIFF], panel b, orange dimension).

Furthermore, they found that the most dominant dimensions of V1 activity (defined using FR; blue dashed dimension) were not well aligned with the

communication subspace. Ruff and Cohen [33��] found that attention changed stimulus representations in MT (Box Figure, panel c, blue ellipses)

making them more aligned with the dimensions of MT activity that are predictive of activity in superior colliculus (SC) (defined using PCR; orange

dimension). Veuthey et al. [38�� [249_TD$DIFF]], used canonical correlation analysis (CCA) to find the dimensions of activity most correlated across motor cortical

areas M1 and M2 during a reach-to-grasp task (the across-area subspace; Box Figure[250_TD$DIFF], panel d, orange dimension). They found that inactivation of M2

influenced M1 activity more within the across-area subspace than outside of this subspace (the local subspace; gray dimension). Namely, M1 activity

(the blue trajectory) followed a similar time course within the local subspace before and during M2 inactivation, but its time course was distinct (and

largely attenuated) along the across-area subspace.
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Schematics of scientific results.
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(a) M1 preparatory activity (blue ellipse) preferentially avoids [251_TD$DIFF]the subspace that drives arm movements (orange dimension), and instead resides in the

’null’ subspace (gray dimension). Adapted from [35]. (b) A [252_TD$DIFF]subspace (orange dimension) of V1 activity (blue ellipse) is communicated with V2, whereas

activity outside this subspace (gray dimension) remains private to V1. Adapted from [31��]. (c) Stimulus representations in MT (blue ellipses) are better

aligned to the SC readout (orange dimension) when the stimuli are attended (right panel) compared to when they are not attended (left panel). Adapted

from [33��]. (d) When M2 is inactivated (compare right panel to left panel), M1 activity (blue trajectory) is preferentially modified within the M1-M2

across-area subspace (orange dimension) relative to the area-specific local subspaces (gray dimension). Adapted from [38�� [253_TD$DIFF]].
been proposed to allow neural activity to unfold without

driving downstream activity [30��,31��,47] or movement

[35,48–50].

Like PCR and FR, RRR reduces the source activity into a

smaller number of latent variables (Figure 2c). In contrast to

PCR and FR, RRR identifies latent variables that are most

predictive of the target population activity. Because of this

difference, RRRmight find dimensions in the source popu-

lation that capture a small amount of variance in the source

activity (compare source variance explained in Figure 1[255_TD$DIFF]c

versus Figure 1d). If this were the case, it would imply that

the largest activity fluctuations in the source area are not

those most related to activity in the target area.

Whereas RRR treats the source and target populations

asymmetrically (i.e., it seeks to explain the target

activity using the source activity; Figure 2 [246_TD$DIFF]c), CCA

and PLS treat the two populations symmetrically

(Figure 2 [254_TD$DIFF]d). CCA identifies pairs of dimensions, one

in each area, that explain the greatest correlation

between the two populations. These dimensions rep-

resent an activity pattern across source neurons and an

activity pattern across target neurons. PLS is similar to

CCA, but identifies components that explain the

greatest covariance between the two populations.

No rule dictates which method returns a more mean-

ingful description of inter-areal interactions. For

example, CCA might find dimensions that are highly

correlated across areas, but capture little variance in

each area. In other words, only a small fraction of the

activity in each area is related across areas. On the

other hand, PLS might find dimensions that account

for high variance within each area, but are weakly

correlated across areas.

The methods discussed so far are linear, and hence cannot

identify nonlinear interactions. Several extensions have been

proposed to detect nonlinear interactions. Kernel CCA

(kCCA) [51] and deep network-based methods (e.g., deep

CCA[52]) canbeused tocapturenonlinear transformationsof

activity across areas. These nonlinear methods can provide

more accurate predictions than linearmethods but tend to be

less interpretable, as the nonlinear transformation combines

activity across neurons in complexways. Distance covariance

analysis (DCA) [53] offers a [256_TD$DIFF]compromise: it is able to detect

nonlinear interactionsbetweenareas,yet returnsasetof linear

dimensions in each area alongwhich these interactions occur,

similar to CCA.
Current Opinion in Neurobiology 2020, 65:59–69
Time-series methods

The approaches described above are static in nature: they

treat each time point in the recorded activity as indepen-

dent, and do not explicitly consider the flow of time.

However, the activity in a target area likely does not

depend solely on the activity of the source area at one

point in time, but on the history of activity in the source

area as well as its own history. Furthermore, two areas

might also be reciprocally connected, so that the activity

relayed from the source to the target area might be

transformed and relayed back, in turn influencing the

source area.

A simple approach to studying time dependencies in

inter-areal interactions is to apply the static methods

described above while considering a time shift between

the activity in the source and target areas. For example,

applying the multivariate methods described above to

activity that has been shifted in time between areas (with

positive and negative time shifts) might provide insight

into the aspects of activity most involved in feedforward

and feedback interactions.
Linear auto-regressive models extend this idea by using

linear regression to predict activity in a target area using

source area activity with multiple time delays. This

approach forms the basis of Granger causal modeling

[21,54,55], which tests whether the past activity of a

source area linearly predicts the present activity in a

target area, above the predictability afforded by the past

activity in the target area itself. These auto-regressive

methods have also been extended to capture nonlinear

interaction effects. For example, introducing a fixed

non-linearity to the output of the linear model results

in a generalized linear model (GLM), which has been

used extensively to study neuronal activity (Figure 2 [244_TD$DIFF]a)

[27,30�� [246_TD$DIFF],56].
While potentially more powerful than static methods

like LR, these approaches often involve models with a

large number of parameters. This property can make

them more prone to overfitting and hamper interpret-

ability. For example, the linear auto-regressive model

involves one set of regression parameters per time point

into the past, resulting in one regression dimension per

target neuron per time point. The large number of

parameters is not usually an issue for inferring the

presence or absence of statistical dependencies between
www.sciencedirect.com
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the activity in different brain areas, such as in Granger

causal modeling or directed information based

approaches. However, it hinders our ability to decon-

struct the fitted models with the objective of under-

standing what aspects of the source activity accounted

for any observed dependency.

To address these challenges, dimensionality reduction

methods have been proposed that capture the temporal

dependencies between areas using latent variables.

Examples include group Latent Auto-Regressive Analy-

sis (gLARA) [57], Delayed Latents Across Groups

(DLAG) (Gokcen et al., abstract T [257_TD$DIFF]-27, Computational

and Systems Neuroscience (Cosyne) Conference, Den-

ver, CO, February 2020) and Dynamic CCA (DCCA)

[58]. All of these methods share a similar framework:

latent variables are used to summarize the population

activity within each area and/or shared across areas. A

state (i.e., dynamics) model describes how the latent

variables change over time and interact with other latent

variables. An observation model describes how the

recorded population activity relates to the latent

variables.

Interpretational Challenges and
Considerations
By leveraging neuronal population responses, multivari-

ate methods can be powerful tools for understanding

inter-areal interaction. But they also introduce several

interpretational challenges, particularly when not all rel-

evant brain areas or neurons are recorded (Figure 3 a).

Thus, care should be taken when interpreting what the

outputs of these methods imply about interactions

between brain areas [25�]. Below we outline three such

challenges.

Changes within an area can masquerade as changes in

inter-areal interactions

Suppose we record from two brain areas, A and B. One

might ask whether the interaction between areas A and B

has changed — between, for example, two points in time

or two experimental conditions. A straightforward

approach to address this question might be to look for

changes in the pairwise correlation between neurons in

the two areas. However, changes in across-area correlation

can either be due to a change in across-area interaction or

some other change that is independent of the across-area

interaction. For example, an increase in independent

input to one area might lead to a decrease in across-area

correlation (because of increased variance; Figure 3b),

even though the interaction between areas remains fixed.

One can construct examples where multivariate methods

similarly detect spurious changes in inter-areal interac-

tion. As a result, interpreting changes in the way brain

areas interact requires one to carefully consider the

method used to summarize the interactions (e.g., pairwise
www.sciencedirect.com
correlations, CCA, etc.), as well as to apply a clear defini-

tion of what should, and should not, be considered a

change in interaction structure. For example, if approxi-

mating an interaction using a linear model, one might

define a change in inter-areal interaction as a change in

the matrix that maps source to target activity. Using these

definitions, one can create a null model, and generate

surrogate data that matches the observed recordings as

well as possible [48], but for which there is no change in

the interaction structure (e.g., the mapping matrix is held

fixed) [31�� [245_TD$DIFF]]. One can then assess whether the statistical

method used still detects a change in interaction structure

in this instance. If so, one should carefully reevaluate the

effects found in the neuronal recordings.

Regression weights do not reflect synaptic weights

For the methods described above, one may be tempted to

relate the estimated weights of each source neuron to its

functional properties (e.g., tuning). However, this

endeavor can be dangerous: the weight for each source

neuron can depend on which other source neurons are

included in the analysis. For example, consider using five

source neurons to predict the activity of a target neuron

(Figure 3 [246_TD$DIFF]c). The regression procedure returns a set of

weights. When the regression is re-performed using only

three neurons, the regression weights for those neurons

can change drastically. This phenomenon is relevant to

most experimental settings, since we are only able to

monitor a subset of neurons providing input to the target

area. For these reasons, it is often safer to interpret instead

the predicted target activity returned by the regression,

the rank of the interaction, or how the identified predic-

tive dimensions are related to the structure of the source

population activity [31��,33��,35].

Orthogonal does not mean uncorrelated

Suppose one identifies a dimension of interest within a

population activity space (Figure 3d, left). Projections of

population activity onto this dimension (z1) could be pre-

dictive of, for example, an external variable [33�� [254_TD$DIFF][258_TD$DIFF],35,
43,48,59] or activity in another area [30��,31��,32��]. If we
interpret this projection as a linear readout by downstream

neurons, then population activity that lies in orthogonal

dimensions will not be read out by downstream neurons

(such activity lies in the ‘null space’ of the readout).Hence,

orthogonal dimensions describe a means by which popula-

tions of neurons can compartmentalize information

[30��,31��,32��,35,47–50,59–67].

Given this property, orthogonal dimensions would seem

like a useful tool for statistically partitioning population

activity: after identifying a dimension z1, activity that is

unrelated to projections onto z1 could be identified using

orthogonal dimensions (z2). Perhaps counterintuitively,

activity along orthogonal dimensions might still be

highly correlated with activity along the original dimen-

sion (Figure 3d, upper right). As a result, activity along z2
Current Opinion in Neurobiology 2020, 65:59–69
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Figure 3

(a)

(c)

(d)

(b)
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Interpretational challenges and considerations of multivariate methods. (a) Recorded areas A and B (shaded gray) are just two areas of a larger

network made up of areas A–F. Thus the identified statistical associations between these areas reflect both direct and indirect interactions.

Interactions may be asymmetric, and occur over connections with different latencies (t1, t2). (b) A change in the variance (var) of input from area F

to area B can change the strength of the correlation (corr) between areas A and B. In this case, one can be led to believe that the interaction

between areas A and B changed, even though the only change was in the input from area F to area B. (c) The regression weight for each source

neuron can depend on which other source neurons are included in the regression. Leaving out neurons in the regression can dramatically change

the regression weights of remaining neurons. (d) (Left) One may identify a dimension in population activity space that encodes a variable of

interest (z1), for example, the stimulus or a behavioral variable (grayscale shading of dots). Then, in an effort to find a variable unrelated to the

activity projected onto z1, one could identify projections of activity onto an orthogonal dimension (z2) or projections onto an uncorrelated

dimension (z3). This uncorrelated dimension is not, in general, orthogonal to z1, and depends on the covariance of the population activity. (Upper

right) Changing to the orthogonal basis, where the axes represent z1 and z2, reveals that these dimensions are correlated. Bottom inset shows

one-dimensional projections onto z1, which was identified so that the dot coloring would be ordered. Right inset shows one-dimensional

projections of population activity onto z2, which show some ordering based on dot color. (Lower right) Changing to the uncorrelated basis, where

the axes represent z1 and z3, illustrates that these variables are uncorrelated. Right inset shows one-dimensional projections of population activity

onto z3, which show little to no ordering based on dot color.
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is still predictive of the target variable (color is still

ordered; see right inset). Thus, orthogonal does not

mean uncorrelated.

To find uncorrelated dimensions (z3), where projections

of population activity are uncorrelated to those along z1,
one would need to compute them using the covariance of

(source) population activity [31�� [254_TD$DIFF]] (Figure 3 [254_TD$DIFF]d, lower

right). Activity along z3 is not predictive of the target

variable (color is not ordered; see right inset). Whether or

not a pair of dimensions is uncorrelated depends on the

distribution of activity in the (source) population activity

space. In contrast, whether or not a pair of dimensions is

orthogonal is a purely geometric notion, independent of

activity. Dimensions that are both orthogonal and uncor-

related are a special case — these dimensions are the

principal components of the (source) population activity.

Discussion
As population recordings in multiple brain areas are

becoming increasingly common, the need for statistical

methods that can dissect interactions between brain areas

is ever increasing. Although the methods reviewed here

have yielded new scientific insight, there remain oppor-

tunities and challenges for further methods development.

First, there is a need for methods that can uncover the

intricate temporal relationships between areas (which

arise from spike conduction delays, recurrent interactions,

indirect pathways, etc.), yet remain interpretable. Second,

the methods described here aim to capture interactions

across areas, while remaining indifferent to experimental

variables of interest (e.g., stimulus, choice, motor output,

etc.). Inter-areal activity patterns are then related to these

experimental variables after the fact. To aid interpreta-

tion, future methods might leverage all information

jointly, for example segregating which aspects of a sen-

sory stimulus are shared across areas and which ones are

not. Third, as the number of brain areas that can be

simultaneously monitored increases [37�,68,69], there is

a need for methods that can interrogate the interaction of

more than two brain areas. Although some existing meth-

ods have natural extensions to three brain areas or more,

the number of possible models that need to be compared

can grow exponentially with the number of areas. Thus,

we need ways to guide model selection. Finally, although

we have focused on scenarios in which we know the brain

area that each neuron belongs to, there are settings in

which the functional groupings of neurons are less clear.

There is a need for methods that can identify functional

groupings among neurons based on their interactions

[70,71]. Taken together, the development of new meth-

ods is likely to enable new and deeper insights into how

brain areas work together to enable sensory, cognitive,

and motor function.
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