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Abstract—Neural prostheses are becoming increasingly fea-
sible as assistive technologies for paralyzed patients. A major
goal is to provide control of a prosthesis rivaling the natural
arm in speed, accuracy, and flexibility. Here, we demonstrate
high-performance cursor control by training a monkey to move
a cursor in a 2D virtual reality environment using neural
activity recorded in primary motor cortex. On a standard
center-out task with 8 possible targets, the subject maintained
a success rate greater than 95% over many hundreds of
trials, on par with previous reports. We introduced the more
challenging task of moving the cursor along instructed paths
with zero, one, and two inflections. Over several weeks, the
subject’s performance with double-inflection paths reached a
stable level of greater than 55% success with movement times
approaching those of the natural arm. Our instructed trajectory
task provides a new standard for quantification of prosthesis
performance: since the subject’s intended movement is known
(i.e. the instructed path), we can compute the root mean-
square-error (RMSE) between the decoded and intended cursor
position throughout the reach. We found that, while success rate
tended to increase with training, the RMSE among successful
trials remained largely unchanged, consistent with the all-or-
none reward scheme. In sum, this work demonstrates the utility
of instructed paths for i) pushing the limits of the subject’s
control and ii) rigorously quantifying the accuracy of cursor
movements, both of which are critical for increasing the clinical
viability of neural prosthetic systems.

I. INTRODUCTION

NEURAL PROSTHESES aim to assist paralyzed patients

by translating neural activity into movements of a

computer cursor or prosthetic limb. Previous studies have

demonstrated that subjects are able to use neural activity

to guide a cursor or limb to a desired endpoint [1]–[3]. A

major challenge is to develop prostheses that rival the natural

limb in speed, accuracy, and flexibility. To this end, we must

push the limits of the subject’s control of the prosthesis, in

addition to more rigorously quantifying performance beyond
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endpoint accuracy and movement time [4]. Furthermore, in

natural arm movements, the trajectory is often as important as

the endpoint of the movement [5]. Examples include reaching

in cluttered environments, driving, and conversing with sign

language.

We developed a novel instructed trajectory task in which

the subject must steer a prosthetic cursor along a specified

path. Movement outside a narrow window around this path

was considered a failure. By increasing the number of in-

flections of the instructed path and/or decreasing the size

of the acceptance window around the path, we can increase

the difficulty of the task. This allows us not only to probe

the limits of the subject’s control, but also to challenge the

subject to increase its control accuracy. Since the subject’s

intended movement is known, we can compute the RMSE

between the decoded and intended cursor position throughout

the reach. To our knowledge, this work provides the first

demonstration of cursor control along instructed paths in a

closed-loop neural prosthetic setting.

Section II details the neural recordings, instructed tra-

jectory task, and modified Kalman filter used to decode

cursor movements from neural activity. Section III describes

the closed-loop experimental results for both the endpoint

and instructed trajectory tasks. For both tasks, prosthesis

performance will be compared to the subject’s performance

using its natural limb in the same task.

II. METHODS

A. Neural Recordings

Animal protocols were approved by the University of

Pittsburgh Institutional Animal Care and Use Committee.

A 96-channel electrode array (Blackrock Microsystems, Salt

Lake City, UT) was implanted in the primary motor cortex of

a male Rhesus monkey (Macaca mulatta), contralateral to the

reaching arm. Spike sorting was performed by an automated

procedure using OpenProject (Tucker-Davis Technologies,

Inc., Alachua, FL). Briefly, for each channel, waveforms that

exceeded 3.5x the RMS voltage were analyzed using Prin-

cipal Components Analysis. K-means was used to separate

the first three principal components of each channel into

two clusters, each of which could be a single-neuron unit

or a multi-neuron unit. All clusters were used for decoding

regardless of isolation quality.
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Fig. 1. The 28 possible instructed paths, each of which could be traversed
in two directions. The center of each panel corresponds to the center of the
monkey’s workspace; we split the paths into 8 panels and color-coded the
paths for clarity only. All paths were shown in green to the monkey.

B. Behavioral Task

The monkey was trained to perform an endpoint task

and an instructed trajectory task by moving a cursor in a

2D virtual reality environment using either its hand (hand

control) or its neural activity (brain control). During brain

control, the monkey was allowed to move its unrestrained

reaching arm. Hand position was tracked using LED sensors

(PhaseSpace, Inc., San Leandro, CA).

For the endpoint task, each trial began with the presenta-

tion of a central target. Upon acquisition of the target with

the cursor, one of 8 peripheral targets (127 mm from the

center; separated by 45◦) appeared. The monkey then moved

the cursor to the peripheral target to receive a juice reward.

This is identical to the commonly-used “center-out” task, but

no hold period was required.

The instructed trajectory task began with the appearance

of one of eight possible start targets (separated by 45◦). After

the monkey moved the cursor to the start target, an instructed

path appeared. The monkey guided the cursor through the

path in order to receive a juice reward (successful trial). If the

center of the cursor was more than 35 mm from the center of

the path at any time after acquiring the start target and before

completing the reach, the trial aborted (unsuccessful trial).

The straight-line distance from the start to the end of the path

was 227 mm; the path length varied depending on the shape

of path. There were four types of paths, as shown in Fig. 1:

straight, single-inflection, double-inflection, and U-shaped.

These paths spanned the monkey’s full reaching workspace.

With 28 possible instructed paths and two traversal directions

for each, there were a total of 56 trial conditions.

At the beginning of each session, the monkey performed

∼100 hand control trials, chosen pseudorandomly from all 56

trial conditions. These trials were used to fit the parameters of

the modified Kalman filter described below. Then, the cursor

was switched to brain control. In a typical brain control

session, we presented only endpoint trials, only straight paths,

only single-inflection paths, or only double-inflection paths.

In this paper, we focus on the endpoint trials and double-

inflection paths, which were the most difficult instructed

paths that we tested. Fig. 2 shows the neural activity and

cursor path for one typical brain control trial. We also

conducted sessions with hand control exclusively.
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Fig. 2. Neural activity (middle panel) and cursor movement (black lines in
upper and lower panels) along a double-inflection path for one representative
trial under brain control. Green outline indicates the acceptance window of
the instructed path. Blue triangles indicate the times at which each snapshot
of the cursor trajectory is taken. [J20101106.844]

For the endpoint task, movement time was measured from

when the cursor left the central target to when it arrived

at the peripheral target. For the instructed trajectory task,

movement time was measured from when the cursor left the

start target to when it arrived at the end of the path. RMSE

was calculated by finding the square root of the average

squared distance between the cursor and the closest point

along the center of the instructed path at each timepoint.

Percent correct and RMSE timelines in Fig. 6 were smoothed

using a boxcar filter across 200 trials.

C. Decoding Methods

During the brain control phase, neural signals were de-

coded into cursor movements using a modified Kalman filter.

We first reduced the dimensionality of the neural data using

factor analysis (FA)

z ∼ N (0, I) (1)

y | z ∼ N (Λz+ µ, Ψ) , (2)

where y ∈ R
q×1 is a vector of spike counts taken in

60 ms bins across the q simultaneously-recorded units, and

z ∈ R
p×1 contains the p latent factors. Unlike principal

components analysis, FA allows each unit to have a different

noise variance (Ψ). Each latent factor can be understood as a

well-modulated pattern of neural activity across the recorded

units. In this work, we set p = 10. The parameters Λ ∈ R
q×p,

µ ∈ R
q×1, and diagonal covariance Ψ ∈ R

q×q were fit using

the expectation-maximization algorithm.

We then used a Kalman filter [6] to relate the estimated

latent factors at each timepoint zt = E[z | y] to the cursor

kinematics xt ∈ R
r×1, which included position, velocity, and

acceleration in the horizontal and vertical directions (r = 6).
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Fig. 3. Sample cursor trajectories for endpoint task under brain control.
The colors of the trajectories are only for clarity. [J20110105]

The Kalman filter is described by

xt | xt−1 ∼ N (Axt−1, Q) (3)

zt | xt ∼ N (Cxt + d, R) , (4)

where the parameters A ∈ R
r×r, Q ∈ R

r×r, C ∈ R
p×r,

d ∈ R
p×1, R ∈ R

p×p are fit using maximum likelihood [6].

The position estimate in E[xt | z1, . . . , zt] determines the

cursor position shown to the monkey.

Preconditioning the neural data using FA restricts the

Kalman filter to associate cursor movements with only the

best-modulated patterns of neural activity, even if they are

not the patterns that correlate most highly with kinematics.

We believe that there are advantages to this approach in a

closed-loop prosthetic setting involving the subject’s ability

to learn, which will be explored in future work.

III. RESULTS

To baseline our work with instructed paths, we performed

experiments with a standard endpoint task. Fig. 3 shows

sample cursor trajectories under brain control, which are

reliably directed towards the instructed endpoint. The monkey

was able to succeed with greater than 95% accuracy across

many hundreds of trials. Fig. 4 compares the movement times

under hand and brain control. Although movement times

under brain control (mean: 863 ms) were longer than under

hand control (mean: 545 ms), the histograms were almost

entirely overlapping, indicating how similar brain control was

to hand control.

To challenge the monkey to increase its control accuracy,

we introduced instructed paths. We presented the different

path types in separate sessions. Over the course of several

weeks, the monkey improved its level of control as we

gradually increased the task difficulty by increasing the

number of path inflections and by decreasing the size of the

acceptance window around the path. Here, we focus on the

performance for double-inflection paths after this learning

period. Fig. 5 shows sample successful cursor paths under

hand and brain control. The subject was able to carry out

smooth and natural-looking cursor movements under brain

control, reminiscient of those under hand control.
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Fig. 4. Movement time histograms for the endpoint task under hand
control (red) and brain control (black). Dots indicate distribution means.
The distributions were normalized for visual clarity (hand control: 675 trials
[J20110112]; brain control: 206 trials [J20110105]) by setting the area under
the distributions equal to 1.0.

We quantified these movements by computing a running

average of the success rate and RMSE. A representative ses-

sion is shown in Fig. 6. The success rate on this demanding

task increased from around 30% to 50% during the first 300

trials, then increased to over 55% during the remainder of the

session. On the same task under hand control, the monkey’s

success rate was 85%. We also computed the RMSE of

the cursor movements among only successful trials. This

performance metric was enabled by the use of instructed

paths. We found that, although success rate increased during

the session, the RMSE stayed flat at around 15 mm. This is

consistent with the all-or-none reward scheme. Namely, the

monkey was rewarded solely based on whether the cursor

traversed the instructed path sucessfully. We did not, for

example, give a larger reward on successful trials with lower

RMSE. Although the RMSE under brain control was larger

than under hand control (12.7 mm), it was far closer to

hand control than to the maximum RMSE for the acceptance

window size used (35 mm). We also compared the move-

ment times for double-inflection paths under hand and brain

control. We found that, although movement times under brain

control (mean: 1259 ms) were longer than under hand control

(mean: 865 ms), their distributions had substantial overlap,

as shown in Fig. 7.

IV. DISCUSSION

In this work, we have demonstrated the utility of instructed

trajectories for i) challenging subjects to increase their cursor

control accuracy and ii) rigorously quantifying the decoded

cursor movements in terms of RMSE, both of which are

critical for increasing the clinical viability of neural prosthetic

systems. By using instructed paths, we have achieved a level

of cursor control that approaches the subject’s performance

with its natural limb, as measured by success rate, RMSE,

and movement time.

Nevertheless, there is still a substantial performance dif-

ference between cursor control and movement of the natural

limb, and further work will continue to close the gap.
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Fig. 5. Sample cursor trajectories for instructed paths. (A) Hand control
trajectories for 4 of the 16 double-inflection paths. The gray dots indicate
the start of the path. [J20110112] (B) Brain control trajectories for the same
paths. The blue trajectory in the bottom left panel corresponds to the trial
shown in Figure 2. [J20101106]
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Fig. 6. Success rate (black curve) and RMSE (gray curve) during a
representative session with double-inflection paths under brain control.
[J20101106] For comparison, success rate (black triangle) and RMSE (gray
triangle) for the same task under hand control are also shown. [J20110112]
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Fig. 7. Movement time histograms for instructed trajectory task under hand
control (red) and brain control (black). Dots indicate distribution means.
The distributions were normalized for visual clarity (hand control: 642 trials
[J20110112]; brain control: 895 trials [J20101106]) by setting the area under
the distributions to 1.0.

Recent work has shown that subjects can accurately move

a prosthetic cursor around visual barriers to acquire targets

[7]. Although that task does not allow for measurement

of RMSE, it complements the instructed trajectory task by

demonstrating obstacle avoidance. Another related approach

is the “pursuit tracking” task, where the objective is to track

a target that moves according to a random walk [4], [6] . This

task allows for measurement of RMSE, but to our knowledge,

it has not yet been tested in a closed-loop setting. Importantly,

all of these tasks allow the experimenter to specify details of

the movement trajectory beyond the desired endpoint and to

push the limits of the subject’s control.

We fit the decoder parameters using hand-control data from

all path types (i.e., we used all 56 trial conditions in the

first ∼100 trials of each session), regardless of which path

type(s) were to be tested under brain control. We found that

fitting using a wide variety of paths led to higher brain con-

trol performance, presumably because the movements more

thoroughly sampled the kinematic space (i.e., the combined

space of position, velocity, and acceleration) [4], [6].

There are several future directions for this work. First,

although our preliminary results indicate that the Kalman

filter with FA preconditioning outperforms the standard

Kalman filter, we plan to perform a systematic performance

comparison. In this comparison, we will sweep the number of

latent factors used by FA. Second, we seek to understand the

relationship between the Kalman filter with FA precondition-

ing and the Kalman filter with hidden states [8]. Third, we

plan to conduct experiments with a graded reward scheme to

encourage the subject to improve its RMSE during a session.
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