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Noisy, high-dimensional time series observations can often be described
by a set of low-dimensional latent variables. Commonly used methods
to extract these latent variables typically assume instantaneous relation-
ships between the latent and observed variables. In many physical sys-
tems, changes in the latent variables manifest as changes in the observed
variables after time delays. Techniques that do not account for these de-
lays can recover a larger number of latent variables than are present in
the system, thereby making the latent representation more difficult to
interpret. In this work, we introduce a novel probabilistic technique,
time-delay gaussian-process factor analysis (TD-GPFA), that performs
dimensionality reduction in the presence of a different time delay
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between each pair of latent and observed variables. We demonstrate
how using a gaussian process to model the evolution of each latent vari-
able allows us to tractably learn these delays over a continuous domain.
Additionally, we show how TD-GPFA combines temporal smoothing
and dimensionality reduction into a common probabilistic framework.
We present an expectation/conditional maximization either (ECME) al-
gorithm to learn the model parameters. Our simulations demonstrate
that when time delays are present, TD-GPFA is able to correctly identify
these delays and recover the latent space. We then applied TD-GPFA to
the activity of tens of neurons recorded simultaneously in the macaque
motor cortex during a reaching task. TD-GPFA is able to better describe
the neural activity using a more parsimonious latent space than GPFA,
a method that has been used to interpret motor cortex data but does not
account for time delays. More broadly, TD-GPFA can help to unravel
the mechanisms underlying high-dimensional time series data by taking
into account physical delays in the system.

1 Introduction

High-dimensional data are commonly seen in domains ranging from
medicine to finance. In many cases, these high-dimensional data can be
explained by a smaller number of explanatory variables. Dimensionality
reduction techniques are a family of techniques that seek to recover these
explanatory variables. Such techniques have been successfully applied to a
wide variety of problems such as analyzing neural activity (Cunningham
and Yu, 2014), modeling video textures (Siddiqi, Boots, & Gordon, 2007),
economic forecasting (Aoki & Havenner, 1997), analyzing human gait
(Omlor & Giese, 2011), seismic series analysis (Posadas et al., 1993), and face
recognition (Turk & Pentland, 1991). For time series data, dimensionality-
reduction techniques can capture the temporal evolution of the observed
variables by a low-dimensional unobserved (or latent) driving process that
provides a succinct explanation for the observed data.

The simplest class of dimensionality reduction techniques applied to
time series data considers linear, instantaneous relationships between the
latent variables and the high-dimensional observations. According to these
techniques the ith observed variable yi(t), (i = 1 . . . q) is a noisy linear com-
bination of the p low-dimensional latent variables x j(t), ( j = 1 . . . p, p < q),

yi(t)=
p∑

j=1

ci, jx
j(t) + di + εi(t), (1.1)

where ci, j ∈ R, di ∈ R and εi(t) ∈ R is additive noise. Many techniques based
on latent dynamical systems (Roweis & Ghahramani, 1999), as well as
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gaussian-process factor analysis (GPFA) (Yu et al., 2009), fall into this cate-
gory. This implicit assumption of instantaneous relationships between the
latent and observed variables is also made while applying static dimension-
ality reduction techniques to time series data. Examples of such techniques
include principal component analysis (PCA) (Pearson, 1901), probabilistic
principal component analysis (PPCA) (Roweis & Ghahramani, 1999; Tip-
ping & Bishop, 1999), and factor analysis (FA) (Everitt, 1984).

Many real-world problems involve physical time delays whereby a
change in a latent variable may not manifest as an instantaneous change in
an observed variable. These time delays may be different for each latent-
observed variable pair. For example, such time delays appear when a few
sound sources are picked up by microphones placed at various locations
in a room. Each sound source has a different delay to each microphone
that depends on the distance between them (Morup, Madsen, & Hansen,
2007; Omlor & Giese, 2011). Other examples where such time delays appear
include fMRI imaging, where these delays could arise from hemodynamic
delays (Morup, Hansen, Arnfred, Lim, & Madsen, 2008) and human motion
analysis, where the same control signal may drive muscles after different
delays (Barliya, Omlor, Giese, & Flash, 2009). Dimensionality reduction
algorithms that consider only instantaneous latent-observed variable rela-
tionships can explain these delays only by the introduction of additional
latent variables. To see this, consider a conceptual illustration (see Figure 1)
that shows three observed variables, each of which exhibits a single hill of
activity but at different times. A model that ignores delays presents a more
complicated picture of the underlying latent space, needing two latent vari-
ables to explain the observations (see Figure 1a). In contrast, a model that
accounts for these time delays needs only a single latent variable to describe
the observations (see Figure 1b). Because the goal of dimensionality reduc-
tion is to obtain the most parsimonious explanation of the observations, a
latent space that is lower dimensional is more desirable.

We can extend the observation model in equation 1.1 to explicitly account
for these delays,

yi(t) =
p∑

j=1

ci, jx
j(t − Di, j) + di + εi(t), (1.2)

where ci, j, di, εi(t) ∈ R. In equation 1.2, each observed variable is a linear
combination of latent variables, with ci, j as the weights, such that there
is a constant time delay Di, j between observed variable yi(t) and latent
variable x j(t). εi(t) is the observation noise. Equation 1.2 is known in the
signal processing literature as the anechoic mixing model (Omlor & Giese,
2011). In this work, we present time-delay gaussian-process factor analysis
(TD-GPFA), a novel technique that uses the observation model defined in
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Figure 1: Conceptual illustration showing how dimensionality reduction algo-
rithms that consider time delays can present a more compact view of the latent
space. (a) Three observed variables y1, y2, and y3 each shows a single hill of
activity but at different times. If only instantaneous latent-observation relation-
ships are considered, two latent variables are needed to explain these observed
variables. (b) If nonzero time delays between latent and observed variables are
considered, only one latent variable with a single hill of activity is needed to ex-
plain the same observed variables. The matrices show the delays as well as the
weights that linearly combine the latent variables to reconstruct the observed
variables.

equation 1.2 to capture time delays between latent and observed variables
while also accounting for temporal dynamics in the latent space.

While the TD-GPFA framework is applicable in any domain with noisy,
high-dimensional time series data where time delays may play a role, in
this work we focus on neuroscience as the area of application. The field
of neuroscience is witnessing a rapid development of recording technolo-
gies that promise to increase the number of simultaneously recorded neu-
rons by orders of magnitude (Ahrens, Orger, Robson, Li, & Keller, 2013).
Dimensionality-reduction methods provide an attractive way to study the
neural mechanisms underlying various brain functions (Cunningham &
Yu, 2014). In this context, the latent process can be thought of as a common
input (Kulkarni and Paninski, 2007; Vidne et al., 2012) that drives the sys-
tem, while the neurons are noisy sensors that reflect the time evolution of
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this underlying process. However, this common input from a driving area
in the brain may follow different pathways to reach each neuron. Phys-
ical conduction delays as well as different information processing times
along each pathway may introduce different time delays from the driv-
ing area to each neuron. Previous work in neuroscience has focused on
dimensionality-reduction techniques that do not consider time delays be-
tween latent variables and neurons. In this work, we investigate the effects
of incorporating time delays into dimensionality reduction for neural data.

The rest of this article is structured as follows. In section 2 we briefly
discuss related work and provide motivation for the TD-GPFA model. In
section 3 we provide a formal mathematical description and describe how
the model parameters can be learned using the expectation/conditional
maximization either (ECME) algorithm (Liu & Rubin, 1994). In section 4 we
demonstrate the benefits of TD-GPFA on simulated data and show that TD-
GPFA is an attractive tool for the analysis of neural spike train recordings.
Finally in section 5, we discuss our findings and mention possible avenues
for future work.

2 Background and Related Work

Factor analysis (FA) (Everitt, 1984) is a commonly used dimensionality-
reduction technique that has been applied across many domains ranging
from psychology (Spearman, 1904) to neuroscience (Sadtler et al., 2014; San-
thanam et al., 2009). FA is a linear dimensionality-reduction method that
incorporates the concept of observation noise, whose variance can be differ-
ent for each observed variable. An extension of FA, shifted factor analysis
(SFA) (Harshman, Hong, & Lundy, 2003a), allows integer delays between
latent and observed variables but requires an exhaustive integer search to
identify the values of these delays (Harshman, Hong, & Lundy, 2003b).
One way to avoid this combinatorial search over delays is to work in the
frequency domain, since a shift by τ in time domain can be approximated
by multiplication by e−ıωτ in the frequency domain, where ı = √−1 and ω

is the frequency. This property has been exploited to tackle the so-called
anechoic blind source separation problem where the aim is to separate mix-
tures of sounds received at microphones that have a different delay to each
source, assuming no echoes (anechoic). There has been a sizable body of
work in the underdetermined case, where the number of sources is greater
than or equal to the number of observed mixtures (Torkkola, 1996; Yeredor,
2003; Be’ery & Yeredor, 2008). The overdetermined case, where the number
of sources is strictly less than the number of observed mixtures, is simi-
lar in flavor to dimensionality reduction and has received less attention.
One approach uses an iterative procedure to perform joint diagonaliza-
tion of the observations’ cross spectra (Yeredor, 2001). Approaches based
on alternating least squares that minimize errors in time and frequency
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domain have been suggested (Morup et al., 2007, 2008). A framework de-
rived from stochastic time-frequency analysis uses properties of the Wigner-
Ville spectrum to tackle the blind source separation problem (Omlor &
Giese, 2011).

These techniques do not explicitly consider temporal dynamics in the
latent space. However, in many situations with time series data, we might
have some a priori information about the latent process that is driving the
observations. For example, while analyzing neural spike train recordings,
we typically seek to extract latent variables that evolve smoothly in time
(Smith & Brown, 2003; Kulkarni & Paninski, 2007; Yu et al., 2009). We
could model the latent variables using a linear dynamical system, but the
naive approach runs into the same problem as SFA, where the need for a
combinatorial search over integer delays makes the problem intractable in
the time domain.

Our novel technique, time-delay gaussian-process factor analysis
(TD-GPFA), uses an independent gaussian process to model the tempo-
ral dynamics of each latent variable along with a linear-gaussian observa-
tion model. As shown in subsequent sections, this allows us to tractably
learn delays over a continuous space while also combining smoothing and
dimensionality reduction into a unified probabilistic framework. Our ap-
proach can be viewed as an extension of gaussian-process factor analysis
(GPFA) (Yu et al., 2009) that introduces time delays between latent and
observed variables.

3 Methods

3.1 TD-GPFA Model. Given q observed variables y(t) ∈ R
q×1 recorded

at times t = 1, 2, . . . T, we seek to identify p latent variables x(t) ∈ R
p×1 that

provide a succinct explanation for these observations, where p < q.
The TD-GPFA model can be summarized as follows. Each observed

variable yi (i = 1, . . . , q) is a linear combination of p latent variables xj ( j =
1, . . . , p). The key innovation is the introduction of a time delay Di, j between
the ith observed variable and the jth latent variable such that yi reflects the
value of xj on a grid of T time points. Because each observed variable yi can
have a different time delay Di, j with respect to a latent variable xj, these
grids are shifted in time with respect to each other. Therefore, for q observed
variables, the value of each latent variable must be estimated along q such
grids (see Figure 2). We use an independent gaussian process for each latent
variable to weave these qT points along a smooth function that represents
the temporal evolution of the latent variable.

We specify a fixed time delay Di, j between the ith observed variable yi

and the jth latent variable xj, such that yi(t) reflects the values of x j(t − Di, j).
We then relate the latent and observed variables by the observation model
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Figure 2: Illustration of the TD-GPFA observation model. y1 and y2 are two
time series observed at times t = 1, . . . , 6. The first observed variable y1 reflects
the values of the jth latent variable xj at points on a grid (red dots) shifted by
D1 j. The second observed variable y2 reflects the values of xj at points on a grid
(blue dots) shifted by D2 j, and so on. For example, y1 and y2 could be binned
spike counts of neurons, with the bins centered at times t = 1, . . . , 6.

defined in equation 1.2 and specify the observation noise to be gaussian,

εi(t)∼ N (0, Ri,i), (3.1)

where εi(t) ∈ R.
For convenience of notation, let yi

t denote yi(t), and let x(i, j)
t denote x j(t −

Di, j). In words, x(i, j)
t is the value of the jth latent variable that drives the ith

observed variable at time t. We form the vector x(i,1:p)

t ∈ R
p by stacking the

values of the p latent variables that drive the ith observed variable at time
t. Then, collecting ci, j from equation 1.2 into a vector ci ∈ R

p, we have

yi
t = cT

i x(i,1:p)

t + di + εi
t . (3.2)
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We embed the vectors ci in a matrix of zeros and collect the noise terms εi
t

into a vector εt . This allows us to write the observation model as a matrix
product:

⎡
⎢⎢⎢⎢⎣

y1
t

y2
t
...

yq
t

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−c1
T−

−c2
T−

. . .

−cq
T−

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x(1,1:p)

t

x(2,1:p)

t
...

x(q,1:p)

t

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

d1

d2

...

dq

⎤
⎥⎥⎥⎥⎦ + εt

(3.3)

εt ∼N (0, R). (3.4)

We can then stack these vectors x(i,1:p)

t ∈ R
p for each observed variable i =

1, . . . , q to form a vector x(1:q,1:p)

t ∈ R
pq. Equations 3.3 and 3.4 can then be

compactly written as

yt |xt ∼ N (Cx(1:q,1:p)

t + d, R). (3.5)

Here C ∈ R
q×pq is a structured, sparse matrix that maps the latent variables

onto the observed variables. The vector d ∈ R
q is an offset term that captures

the nonzero mean of the observed variables, where the ith element is di. As
in FA we assume the noise covariance matrix R ∈ R

q×q is diagonal, where
the ith diagonal element is Ri,i as defined in equation 1.2. We collect all
the delays Di, j into a matrix D ∈ R

q×p. This completes our specification of
the TD-GPFA observation model parameters C, d, R, and D.

We now desire a way to describe latent variables that evolve continuously
in time so that we can specify the elements of x(1:q,1:p)

t for any real-valued
setting of the delays in D. In addition, we seek a latent variable model
that can capture the underlying temporal dynamics of the time series. To
this end, we model the temporal dynamics of the jth latent variable, ( j =
1, 2, . . . p) by a separate gaussian process (GP) (Rasmussen & Williams,
2006):

x(1:q, j)
1:T ∼ N (0, Kj) (3.6)

In equation 3.6, x(1:q, j)
1:T ∈ R

qT is a vector formed by stacking the vectors
x(1:q, j)

t ∈ R
q for all times t = 1, . . . , T. Kj ∈ R

qT×qT is the covariance matrix
for this GP. Choosing different forms for the covariance matrix provides
different smoothing properties of the latent time courses. In this work, we
construct the elements of Kj using the commonly used squared exponential
(SE) covariance function (Rasmussen & Williams, 2006). Given two points
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along the jth latent variable, x
(i1, j)
t1

and x
(i2, j)
t2

:

k(�t) = σ 2
f, j exp

(
− (�t)2

2τ 2
j

)
+ σ 2

n, jδ�t, (3.7)

where �t = (t2 − Di2, j) − (t1 − Di1, j). (3.8)

The characteristic timescale τ j ∈ R+ specifies a degree of smoothness for
the jth latent variable, while the delays Di1, j and Di2, j, along with t1 and t2,
specify the temporal locations of the pair of points. δ�t is the Kronecker delta,
which is 1 if �t = 0 and 0 otherwise. σ 2

f, j ∈ R+ is the GP signal variance,
while σ 2

n, j ∈ R+ is the noise variance. The SE is an example of a stationary
covariance; other stationary and nonstationary GP covariances (Rasmussen
& Williams, 2006) can be seamlessly incorporated into this framework. This
completes our specification of the TD-GPFA latent variable model.

3.2 Fitting the TD-GPFA Model. Given observations Y and a pre-
scribed number of latent dimensions p, we seek to fit model parameters
θ = {C, d, R, D, τ1, . . . , τp}. We initially sought to learn the model parame-
ters using the expectation maximization (EM) algorithm (Dempster, Laird,
& Rubin, 1977). The EM algorithm iteratively seeks model parameters θ

that maximize the data likelihood P(Y|θ ), by performing alternating expec-
tation (E) steps and maximization (M) steps. The E-step updates the latents
X keeping the model parameters fixed, by computing P(X|Y) using the most
recent parameter values. The M-step updates the model parameters by max-
imizing f (θ ) = E[log P(X,Y|θ )] with respect to the parameters θ , where the
expectation in f (θ ) is taken with respect to the distribution P(X|Y) found
in the E-step. However, the delays in D moved very little in each iteration.
This motivated us to consider a variant of the EM algorithm, known as
the expectation/conditional maximization either (ECME) algorithm (Liu
& Rubin, 1994). The ECME algorithm uses the same E-step as EM but re-
places the M-step in each EM iteration with S conditional maximization
(CM) steps. Each CM step maximizes either the expected joint probability
f (θ ) or directly the data likelihood P(Y|θ ), with the constraint that some
function of θ , say, gs(θ ), s = 1, 2, . . . , S remains fixed. Different choices for
gs(θ ), and different choices of whether to optimize f (θ ) or P(Y|θ ) in each
CM step result in different ECME algorithms. If the gs(θ ) span the θ space
as described in Liu and Rubin (1994), then ECME guarantees monotone
convergence of the data likelihood.

We now describe an ECME algorithm with two CM steps, where the first
CM step maximizes the expected joint probability f (θ ) over all parameters
keeping the delays fixed, and the second CM step directly maximizes the
data likelihood P(Y|θ ) over the delays keeping all the other parameters
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fixed. This is outlined in algorithm 1. Here, the vec operator converts a
matrix into a column vector, while the diag operator extracts the diagonal
elements of a matrix into a column vector. Although it is often possible
to maximize P(Y|θ ) directly with respect to a subset of parameters while
keeping all other parameters fixed (as is done here), this does not imply
that it is possible to readily maximize P(Y|θ ) with respect to all parameters
jointly.

Because X and Y are jointly gaussian, the conditional in the E-step can
be calculated in closed form. In CM step 1, we can find analytical solutions
for C, d, and R, while the timescales for each GP, τ1, . . . , τp, are estimated
using an iterative gradient-based approach, for which the gradient can be
computed analytically. In CM step 2, the delays in D are updated using
an iterative gradient-based approach, where the gradient can be computed
analytically as well. The mathematical details for the parameter updates are
provided in appendix A. Partitioning the parameters θ in this way satisfies
the requirements for valid gs(θ ) specified in equation 3.6 of Meng and Rubin
(1993), and we are guaranteed monotone convergence to a local optimum
of the data likelihood.

Under this formulation, the delays D are unconstrained. However, we
may wish to constrain the time delays in D to lie within some desired
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range. This can be motivated by two reasons: (1) in some applications,
only delays that lie within a known range may be physically realizable,
and we may desire to use this domain knowledge to constrain the delays
learned by the model, and (2) if the delays are allowed to be arbitrarily
large (e.g., much larger than the observation duration T), the model can use
completely nonoverlapping segments from each latent variable to drive the
observations. Since we want to identify latent variables that are shared by
the observed variables, we need to enforce some overlap. We can constrain
the delays to lie within a desired range by reparameterizing Di, j using a
logistic function. If we want −Dmax ≤ Di, j ≤ Dmax, we can define

Di, j = Dmax
(1 − e−D∗

i, j )

(1 + e−D∗
i, j )

. (3.9)

This reparameterization converts the constrained optimization for Di, j into
an unconstrained optimization over D∗

i, j using a change of variable. For the
results presented in this article, we set Dmax = T

2 .
The TD-GPFA model as defined above exhibits a degeneracy in the de-

lays; shifting a latent variable xj in time can be compensated for by appropri-
ately subtracting out the shift from the delays between xj and all observed
variables (i.e., from all elements in the jth column of D). We temporally
align all the latents to the first observed variable by fixing all elements in
the first row of the delay matrix D at 0 during model fitting. The delays in
D are therefore specified with respect to the first observed variable.

The scale of the latents as defined by the Kj in equation 3.6 is arbitrary,
since any scaling of x(i, j)

t can be compensated by appropriately scaling ci, j
such that the scale of yi

t remains unchanged. Following Yu et al. (2009)
and, by analogy to factor analysis, we fix the scale of the latents by fixing
k(0) = 1, where k(�t) is defined in equation 3.7. This can be achieved by
setting σ 2

f, j = 1 − σ 2
n, j, where 0 < σ 2

n, j ≤ 1 to ensure that σ 2
f, j is nonnegative.

We fixed σ 2
n, j to a small quantity (10−6), which allowed us to extract smooth

latent time courses.
Since the ECME algorithm is iterative and converges to a local opti-

mum, initialization of the model parameters is important. We initialized
our model parameters using M-SISA, an extension of shift invariant sub-
space analysis (SISA) (Morup et al., 2007) that we developed to handle
multiple time series where each time series may correspond, for example,
to a different experimental trial. We chose to extend SISA as it identifies
delays between latent and observed variables and has low computational
demands for fitting model parameters. However, SISA does not take into
account temporal dynamics in the latent space, which motivates the use of
TD-GPFA. A detailed description of M-SISA is provided in appendix B. An-
other reasonable initialization would be to use the parameters fit by GPFA
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and initialize all delays in D to 0. Although in this work we present results
obtained by initializing with M-SISA, we found that in some cases, initializ-
ing with GPFA can yield higher cross-validated log likelihood. We describe
the computational requirements of the ECME algorithm in appendix C.

3.3 Estimating Latent Dimensionality. We have thus far presented
an algorithm to extract a given number of latent variables from high-
dimensional observations. In practice, however, we do not know the true
dimensionality of the latent space. In order to estimate the unknown latent
dimensionality, we compute the cross-validated log likelihood (CV-LL) of
the data for a range of candidate latent dimensionalities. Although in prin-
ciple, we want to select the latent dimensionality at which the CV-LL curve
peaks, the CV-LL curve in practice often begins to flatten at a lower la-
tent dimensionality. Although the corresponding CV-LL is lower, it is often
close to the peak, and this latent dimensionality can be selected to provide
a more parsimonious representation of the data. Hence, we also report the
latent dimensionality at which each CV-LL curve begins to flatten, which
we define as the latent dimensionality at which the curve reaches 90% of
its total height, where the height of each curve is the difference between
its maximum and minimum values over the range of dimensionalities we
tested. We call this point the elbow. In all subsequent sections, the CV-LL is
computed using four-fold cross-validation.

3.4 Reach Task and Neural Recordings. All animal handling proce-
dures were approved by the University of Pittsburgh Institutional Animal
Care and Use Committee. We trained an adult male monkey on a center-out
reaching task. At the beginning of each trial, a start target (circle, radius =
14 mm) appeared in the center of the work space. The monkey needed to
acquire the start target with the center of the cursor (circle, radius = 15 mm)
and hold the cursor within the start target for a duration that is randomly
selected uniformly between 250 and 500 ms. Then one of eight possible pe-
ripheral targets appeared (circle, radius = 14 mm, 125 mm from the center
of the work space, separated by 45 degrees). The monkey needed to move
the cursor to the peripheral target and hold it there for a time randomly
selected uniformly between 200 and 300 ms. The monkey received a liquid
reward when he successfully held the cursor on the peripheral target. We
monitored hand movements using an LED marker (PhaseSpace Inc.) on the
hand contralateral to the recording array.

While the monkey was performing this reaching task, we recorded from
the shoulder region of the primary motor cortex using a 96-channel elec-
trode array (Blackrock Microsystems) as the monkey sat, head fixed, in
a primate chair. The neural activity was recorded 10 days after array
implantation. At the beginning of each session, we estimated the root-
mean-square voltage of the signal on each electrode while the monkey sat
calmly in a darkened room. We then set the spike threshold at 3.0 times the
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root-mean-square value for each channel and extracted 1.24 ms waveform
snippets (31 samples at 25 kHz) that began 0.28 ms (7 samples) before the
threshold crossing. We manually sorted the waveforms recorded on each
electrode using the waveforms themselves or the low-dimensional compo-
nents that resulted from applying PCA to the waveforms. In this work, we
used waveforms that were from well-isolated neurons.

We analyzed the activity of 45 simultaneously recorded neurons. For each
experimental trial, we analyzed neural activity for a duration of 520 ms
that started 100 ms before movement onset. We considered the first 700
successful trials of the experiment for which the movement times (i.e., from
movement onset to movement end) were longer than 420 ms. For these
trials, the mean movement time was 510 ms (standard deviation = 82 ms).

4 Results

We compared the performance of TD-GPFA to that of GPFA on two sets of
simulated data, as well as on neural spike train recordings. GPFA was cho-
sen as our benchmark for comparison for two reasons. First, the TD-GPFA
and GPFA models are nominally identical and differ only in that the former
accounts for time delays. This comparison therefore highlights the effects
of accounting for time delays while analyzing neural data. Second, for the
analysis of single-trial neural spike train data recorded from the motor
cortex of a monkey during a reaching task, GPFA has been shown to out-
perform two-stage approaches that involve kernel smoothing spike trains
and then applying PCA, PPCA, or FA (Yu et al., 2009). For both simulated
and real data, we fit the TD-GPFA model by running our ECME algorithm
for 200 iterations. GPFA was fit by running the EM algorithm described in
Yu et al. (2009) for 200 iterations.

4.1 Simulated Data

4.1.1 Simulation 1. Simulation 1 follows directly from our conceptual
illustration in Figure 1. We constructed a one-dimensional latent variable
that exhibits a single hill of activity (see Figure 3a). The height of this hill
of activity was different for each of 120 simulated trials, but its location in
time was the same. We then generated 10 observed variables sampled at
20 ms intervals for a total duration of 600 ms for each trial. These observed
variables were generated according to equation 3.5 such that each observed
variable is a noisy, scaled, and temporally shifted version of the latent
variable. The 10 delays in D were obtained by randomly drawing integers
from [−5, 5] and multiplying by 20 ms, the scale factors in C were all
identically 5, and the offsets in d were all identically 2. All the diagonal
elements of the observation noise matrix R were set to 0.5. We then evaluated
the performance of TD-GPFA and GPFA on this data set.
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Figure 3: Simulation 1. (a) Simulated latent variable (five trials shown).
(b) Cross-validated log-likelihood (CV-LL) plots versus latent dimensionality
for TD-GPFA (red) and GPFA (blue). For each curve, the open circle indicates
the peak, while the arrow indicates the elbow. The green star indicates the
CV-LL obtained by initializing ECME for TD-GPFA with ground-truth param-
eters. (c) Latent variable estimated by TD-GPFA for latent dimensionality 1
(same five trials as shown in panel a). (d) Ground truth (green) and estimated
(blue) delays from the latent variable to all observed variables. (e) Compari-
son of trial-averaged observed time courses for three representative observed
variables (light blue) with those predicted by TD-GPFA (red) and GPFA (blue),
with a single latent variable. (f) Histogram of the normalized difference between
GPFA and TD-GPFA reconstruction errors, computed separately for each ob-
served variable. Observed variables to the right of 0 are better reconstructed by
TD-GPFA, while those to the left of 0 are better reconstructed by GPFA.
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We computed four-fold cross-validated log likelihood (CV-LL) for a
range of candidate latent dimensionalities for both TD-GPFA and GPFA.
For each method, we evaluated performance by comparing the peak values
of the CV-LL curves (see Figure 3b). We found that the CV-LL curve for
TD-GPFA has a higher peak (red open circle) than the corresponding peak
for GPFA (blue open circle). Next, we compared the compactness of the
latent space required by each method to describe the data. In this simu-
lation, the CV-LL curve for GPFA has an elbow at three dimensions (blue
arrow) and reaches its maximum value at six dimensions (blue unfilled
circle). However, when we account for delays, we are able to find a more
compact model that describes the data better. This claim is supported by
the following two findings: (1) the CV-LL curve for TD-GPFA (red) at-
tains its maximum value at one latent dimension (red open circle), which
agrees with the true latent dimensionality, and (2) the maximum CV-LL
for TD-GPFA is higher than that of GPFA. Next, because ECME guarantees
convergence only to a local optimum, we sought to evaluate how good
the local optimum found by initializing ECME with M-SISA is. Since our
simulated latent variables were not drawn from the TD-GPFA latent vari-
able model (see equation 3.6), we did not have ground-truth values for the
timescales and only knew C up to scale. Therefore, we could not directly
evaluate CV-LL with the parameters used to simulate the data. Instead, we
performed this comparison by running our ECME algorithm for 100 iter-
ations initializing C, d, D, and R at their simulated values and initializing
the timescales τ at 300 ms. We then computed the corresponding CV-LL
(green star). We found that this CV-LL is close to the CV-LL attained by our
algorithm (red open circle on top of the green star).

The latent variable recovered by TD-GPFA (see Figure 3c) captures the
single hill of activity seen in the simulated latent variable (see Figure 3a),
even though it is determined only up to scale. There are 10 delays for the
latent variable, 1 to each observed variable (see Figure 3d). The estimated
delays are in close agreement with the true delays, with a mean absolute
error of 0.67 ms (standard deviation = 0.53 ms).

While the CV-LL curves provide a quantitative comparison of the two
algorithms, we also sought to illustrate the benefit of incorporating delays
into the dimensionality reduction framework. To this end, we compared the
abilities of TD-GPFA and GPFA to capture the time course of the observa-
tions using the same latent dimensionality. For each method, we used the
model parameters estimated from each training fold and the recovered la-
tent variable, E[X|Y] from the corresponding validation folds. We then used
the corresponding observation models (see equation 3.5 for TD-GPFA, and
equation 1.1 for GPFA) to reconstruct the high-dimensional observed vari-
ables. We show these reconstructions averaged across all trials for three
representative observed variables, y1, y2, and y3, plotted on top of their ac-
tual trial averaged values (see Figure 3e). Note that GPFA (blue) misses
the hill of activity for y1 and gets the location of the hill wrong for y3,
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while TD-GPFA (red) is in close agreement with the actual trial average.
Next, we asked if the reconstruction provided by TD-GPFA agrees better
with the observed time courses across all the observed variables. For each
of the four cross-validation folds, we calculated the reconstruction error
for each observed variable by computing the sum of squared errors be-
tween the observed and reconstructed values at each time point and then
averaging across trials. We then averaged this reconstruction error across
the four folds. To interpret the difference in reconstruction errors between
TD-GPFA and GPFA, we computed a normalized difference in reconstruc-
tion error for each observed variable by subtracting the reconstruction er-
ror of TD-GPFA from the reconstruction error of GPFA and then dividing
by the reconstruction error of GPFA (see Figure 3e). A normalized differ-
ence in reconstruction error equal to 0 implies that TD-GPFA provides no
improvement over GPFA, while a value of 1 implies that TD-GPFA pro-
vides perfect reconstruction. A negative value indicates that GPFA is better
than TD-GPFA at reconstructing the observed variable. For this simulation,
the normalized difference in reconstruction error is positive for all 10 ob-
served variables (0.82 ± 0.16, mean ± standard deviation), which means
that TD-GPFA is better able to capture the time course for every observed
variable.

4.1.2 Simulation 2. Our second simulation takes us a step closer to the
neuroscience application, where we posit that neural population activity
can be explained by latent variables that drive the neurons after differ-
ent delays. To simulate a data set with known delays, we first applied
GPFA to extract latents from real neural data, then artificially introduced
delays and constructed observed variables from these latents according
to the TD-GPFA observation model (see equation 3.5). We considered 140
experimental trials of neural activity of 45 neurons, where the monkey
made movements toward one reach target. We applied GPFA to this data
and extracted two latent dimensions (see Figure 4a). Next, we generated
TD-GPFA observation model parameters to simulate 45 observed variables.
The delays D were integers randomly chosen from [−5, 5] and multiplied
by 20 ms. The scale factors in C were integers randomly chosen from [1, 5].
All elements of d were set to 2, and the observation noise matrix R was
the identity matrix. Using these parameters and the TD-GPFA observation
model (see equation 3.5), we then constructed 140 trials from the latent
variables extracted from GPFA. Each trial was 520 ms, discretized into 26
time steps at intervals of 20 ms.

We found that by accounting for delays, TD-GPFA describes the data
using a smaller number of latent variables than GPFA (see Figure 4b). The
CV-LL curve for GPFA (blue) exhibits an elbow at 5 latent dimensions (blue
arrow) and reaches its maximum at 12 latent dimensions (blue open cir-
cle). In contrast, the CV-LL curve for TD-GPFA (red) has an elbow at 2
latent dimensions (red arrow) where 2 is the true latent dimensionality,
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Figure 4: Simulation 2. (a) Simulated latent variables (5 trials shown). (b) Cross-
validated log-likelihood (CV-LL) plots versus latent dimensionality for TD-
GPFA (red) and GPFA (blue). For each curve, the open circle indicates the peak,
and the arrow indicates the elbow. The green star indicates CV-LL obtained
by initializing ECME for TD-GPFA with ground-truth parameters. (c) Latent
variables estimated by TD-GPFA for latent dimensionality 2 (same five trials as
shown in panel a). (d) Ground-truth (green) and estimated (blue) delays from
each latent variable to all observed variables. (e) Comparison of trial-averaged
observed time courses for three representative observed variables (light blue)
with those predicted by TD-GPFA (red) and GPFA (blue), with a latent dimen-
sionality of 2. (f) Histogram of the normalized difference between GPFA and
TD-GPFA reconstruction errors, computed separately for each observed vari-
able. Observed variables to the right of 0 are better reconstructed by TD-GPFA,
while those to the left of 0 are better reconstructed by GPFA.
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although the peak is attained at 4 latent dimensions (red open circle). As
in simulation 1, the maximum CV-LL attained by TD-GPFA is higher than
that of GPFA. Next, we ran ECME for 100 iterations initializing C, d, D,
and R at their ground-truth values and the time scales τ at the values
estimated by GPFA for the simulated latents. We found that the CV-LL at-
tained by TD-GPFA for 2 latent variables is close to the CV-LL obtained by
this initialization (green star). The latent variables recovered by TD-GPFA
for latent dimensionality 2 show time courses that closely resemble those of
the simulated latents (see Figure 4c), even though the scale of the latent vari-
ables is different. Each latent variable has 45 delays, one to each observed
variable (see Figure 4d). The estimated delays are again very close to the
true delays, with a mean absolute error of 1.84 ms (standard deviation =
1.79 ms).

As in simulation 1, we show trial-averaged reconstructions achieved by
each method using two latent variables for three representative observed
variables y1, y2, and y3 (see Figure 4e). Once again we see that TD-GPFA
is able to capture the empirical trial average well. GPFA, however, misses
out on key features of the activity time course. We then asked if this is
true across all observed variables by computing the normalized difference
in reconstruction error between TD-GPFA and GPFA (see Figure 4f). We
found that this difference is positive across all observed variables (0.84 ±
0.17, mean ± standard deviation), indicating that TD-GPFA reconstructed
all 45 observed time courses better than GPFA.

4.2 Neural Spike Train Data. We applied TD-GPFA and GPFA to neural
spike train recordings obtained as described in section 3.4. Our observations
were spike counts taken in nonoverlapping 20 ms bins and then square-root-
transformed to stabilize the variance of the spike counts (Yu et al., 2009).

We compared the CV-LL versus latent dimensionality curve of TD-GPFA
with that of GPFA (see Figure 5a). The CV-LL curve of TD-GPFA is consis-
tently higher than that of GPFA. Furthermore, with as few as four latent
dimensions (red dotted line), TD-GPFA finds a better description of the
data than GPFA with any latent dimensionality up to 10. This is the main
result of this work: that TD-GPFA finds a model that is more compact yet
can describe the neural recordings better than GPFA.

We present a closer look at the model parameters returned by TD-GPFA
with five latent dimensions, which is the latent dimensionality at the elbow
of the CV-LL curve. We found that most of the recovered delays are nonzero
(see Figure 5b). This indicates that TD-GPFA makes use of time delays to
obtain a more compact yet better description of the neural activity. As in
our simulations, we sought to illustrate the benefit of incorporating delays
in capturing the neural activity. We show trial-averaged reconstructions
using five latent variables for three representative neurons (y1, y2, and y3)
plotted on top of the empirical trial average (see Figure 5c). TD-GPFA
(red) is better able to capture the firing rate profiles of neurons y1 and
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Figure 5: TD-GPFA applied to neural activity recorded in the motor cortex.
(a) Cross-validated log-likelihood (CV-LL) plots versus latent dimensionality
for TD-GPFA (red) and GPFA (blue). For each curve, the open circle indicates
the peak, and the arrow indicates the elbow. The red dotted line is the CV-LL
of the TD-GPFA model with four latent dimensions. (b) Estimated delays from
each latent variable to all neurons. (c) Comparison of empirical firing rate his-
tograms (light blue) to firing rate histograms predicted by TD-GPFA (red) and
GPFA (blue) for three representative neurons. The vertical axis has units of
square-rooted spike counts taken in a 20 ms bin. Five latent variables were used
for both TD-GPFA and GPFA. (d) Histogram of the normalized difference be-
tween GPFA and TD-GPFA reconstruction errors, computed separately for each
neuron. Neurons to the right of 0 are better reconstructed by TD-GPFA, while
those to the left of 0 are better reconstructed by GPFA.
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y2 as compared to GPFA (blue), which tends to underestimate the hills
of activity. We also show a neuron (y3) for which GPFA is better than
TD-GPFA at capturing the trial-averaged activity. Finally, to compare TD-
GPFA and GPFA for all neurons, we computed the normalized difference
in reconstruction error (see Figure 5d). We found that this difference is
positive for 38 out of 45 neurons (0.09 ± 0.09, mean ± standard deviation).
Thus, TD-GPFA provided overall better reconstructions than GPFA (paired
t-test, P < 0.001). In addition, we verified that TD-GPFA with five latent
dimensions is able to provide better reconstructions than GPFA with 6 to
10 latent dimensions, consistent with our findings from the CV-LL curves
(see Figure 5a).

The time courses of the estimated latent variables (see Figure 6) can
be interpreted as time courses of latent drivers that influence neurons at
different time delays. Although we leave a detailed analysis of the estimated
latent variables for future scientific studies, we can verify here that the
extracted time courses of the latent variables vary systematically with reach
target, as would be expected from neurons with smooth tuning curves. For
example, the first latent variable (x1) shows a pronounced peak for right-
ward reaches, and this peak becomes less pronounced for directions that
are farther from the right. Similarly, the fifth latent variable (x5) shows a
pronounced peak for upward reaches. Note that while the shapes of the
latent time courses are meaningful, the absolute position in time for each
latent variable is arbitrary. Intuitively, if we have a number of observed
variables that reflect a latent driver after different delays, we can determine
the delays of the observed variables only with respect to each other, but not
the absolute delay between the latent driver and the observed variables.
Thus, a latent variable (i.e., all the time courses for the latent variable)
can be shifted arbitrarily forward or backward in time by correspondingly
adding or subtracting the shift to all the delay values of that latent variable
in D.

5 Discussion

In this work we have presented a novel method (TD-GPFA) that can extract
low-dimensional latent structure from noisy, high-dimensional time series
data in the presence of a fixed time delay between each latent and obser-
vation variable. TD-GPFA unifies temporal smoothing and dimensionality
reduction in a common probabilistic framework, using gaussian processes
to capture temporal dynamics in the latent space. We then presented an
ECME algorithm that learns TD-GPFA model parameters from data. Next,
we verified using simulated data that TD-GPFA is able to recover the time
delays and the correct dimensionality of the latent space, while GPFA,
which is nominally identical but does not consider delays, needs a latent
space of higher dimensionality to explain the same observations. Finally, we
applied TD-GPFA to neural activity recorded in the motor cortex during a
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Figure 6: Latent variable time courses extracted by TD-GPFA from neural ac-
tivity recorded in the motor cortex. Results shown for latent dimensionality five
and plotted separately for each latent dimension (x1, x2, x3, x4 and x5) and each
reach target (five trials shown per target).

center-out reaching task. We found that (1) the 45-dimensional neural activ-
ity could be succinctly captured by TD-GPFA using five latent dimensions,
and (2) TD-GPFA finds a more compact description of the latent space that
better describes the neural activity, as compared to GPFA.

Modeling temporal dynamics of the latent variables using gaussian
processes (GPs) offers us the following advantages. First, using GPs al-
lows us to tractably learn time delays over a continuous domain. In our
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formulation, the delays appear only in the GP covariance kernel. During
parameter learning using the ECME algorithm, these delays can be opti-
mized using any gradient descent method. Second, GPs offer an analytically
tractable yet expressive way to model time series in cases where the true
latent dynamics are unknown, as is often the case in exploratory data anal-
ysis. This is because we need only to specify the covariance kernel for each
GP. The extracted latent variables can guide further parametric modeling
of latent dynamics, such as using a dynamical system (Smith & Brown,
2003; Yu et al., 2006; Kulkarni & Paninski, 2007; Macke et al., 2011; Petreska
et al., 2011; Pfau, Pnevmatikakis, & Paninski, 2013). Third, the GPs smooth
the latent dynamics according to the specified covariance kernel and can be
thought of as performing regularization on the latent space, which is helpful
in analyzing time series data (Rahimi, Recht, & Darrell, 2005). Fourth, our
approach allows us to combine smoothing of the noisy time series with di-
mensionality reduction in a unified probabilistic framework. This has been
shown to be advantageous in analyzing neural spike train data, as opposed
to previous methods that smooth the data as a preprocessing step using a
kernel of fixed width (Yu et al., 2009). The key insight is that performing
smoothing as a preprocessing step assumes a single timescale of evolution
of neural activity, while our approach allows each latent variable to evolve
with its own timescale. This benefit may translate well to other domains as
well, where underlying latent variables evolve with different timescales.

In neuroscience, dimensionality reduction methods have proven useful
in studying various neural systems, including the olfactory system (Mazor
& Laurent, 2005; Broome, Jayaraman, & Laurent, 2006; Saha et al., 2013),
the motor system (Briggman, Abarbanel, & Kristan, 2005; Yu et al., 2009;
Churchland et al., 2012; Sadtler et al., 2014), decision making (Harvey, Coen,
& Tank, 2012; Mante, Sussillo, Shenoy, & Newsome, 2013) and working
memory (Machens, Romo, & Brody, 2010; Rigotti et al., 2013). However,
these and other previous studies do not consider delays between latent
variables and neurons. Because information in the brain can flow across
multiple pathways to reach the recorded neurons, physical conduction de-
lays as well as differences in the information processing times along each
pathway can give rise to delays. For example, a latent process originating in
the visual cortex may influence some motor cortical neurons (M1) through
parietal cortex but may also influence some M1 neurons through a longer
path involving parietal cortex and dorsal premotor cortex. When we ap-
plied TD-GPFA to M1 neurons recorded during a reaching task, TD-GPFA
recovered different nonzero delays, which is suggestive of latent drivers
influencing neurons at different delays. Future experiments are needed to
establish the connection between latent variables and upstream brain ar-
eas. Another property of the TD-GPFA framework that makes it suitable
to application in neuroscience is its ability to perform single-trial analysis.
If neural activity varies substantially on nominally identical trials, com-
mon approaches like averaging responses across trials may mask the true
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underlying processes that generate these responses. TD-GPFA allows us to
leverage the statistical power of recording from an entire neural population
to extract a succinct summary of the activity on a trial-by-trial basis.

While our metrics show that the description of the neural activity ex-
tracted by TD-GPFA is more accurate than one extracted without consider-
ing delays, it remains to be seen whether these delays correspond to actual
neural processes and, if so, to understand their physical underpinnings.
In addition, TD-GPFA may provide an attractive tool for analyzing data
recorded simultaneously from multiple brain areas, where a driving pro-
cess may manifest in neurons belonging to each area after different delays
(Semedo, Zandvakili, Kohn, Machens, & Yu, 2014).

Several extensions to the TD-GPFA methodology can be envisaged. It
may be possible to allow each latent variable to drive an observation at
multiple delays, which might be a more realistic assumption for some sys-
tems; allow nonlinear relationships between latent and observed variables;
or use nonstationary GP covariances. Software for TD-GPFA is available at
http://bit.ly/1HAjyBl.

Appendix A: ECME Update Equations

Given observations y1:T and a prescribed number of latent dimensions p <

q, we seek to fit model parameters θ = {C, d, R, D, τ1, . . . , τp}. We first define
ỹ ∈ R

qT and x̃ ∈ R
pqT by stacking observed variables yt and latent variables

x(1:q,1:p)

t (as defined in equations 3.3 to 3.5) across all time points:

ỹ =

⎡
⎢⎢⎣

y1
...

yT

⎤
⎥⎥⎦ , x̃ =

⎡
⎢⎢⎣

x(1:q,1:p)

1
...

x(1:q,1:p)

T

⎤
⎥⎥⎦ . (A.1)

This allows us to write the latent and observation variable models across
all time as follows:

x̃ ∼ N (0, K̃), (A.2)

ỹ|x̃ ∼ N (C̃x̃ + d̃, R̃), (A.3)

where C̃ ∈ R
qT×pqT and R̃ ∈ R

qT×qT are block diagonal matrices comprising
T blocks of C and R, respectively. d̃ ∈ R

qT is constructed by stacking T copies
of d. The elements of K̃ ∈ R

pqT×pqT can be computed using the covariance
kernel defined in equation 3.7. From Equations A.2 and A.3, we can write
the joint distribution of x̃ and ỹ as
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[
x̃

ỹ

]
∼ N

([
0

d̃

]
,

[
K̃ K̃C̃T

C̃K̃ C̃K̃C̃T + R̃

])
. (A.4)

A.1 E-Step. Using the basic result of conditioning for jointly gaussian
random variables,

x̃|ỹ ∼N (K̃C̃T (C̃K̃C̃T + R̃)−1(ỹ− d̃), K̃− K̃C̃T (C̃K̃C̃T + R̃)−1C̃K̃). (A.5)

Thus, the extracted latent variables are

E[x̃|ỹ] = K̃C̃T (C̃K̃C̃T + R̃)−1(ỹ − d̃). (A.6)

A.2 CM Step 1. In CM step 1 we maximize f (θ ) = E[log P(x̃, ỹ|θ )] with
respect to {C, D, R, γ1 . . . γp} keeping g1(θ ) = {vec(D)} fixed. The expecta-
tion in f (θ ) is taken with respect to the distribution P(x̃|ỹ) found in equation
A.5. Although this is a joint optimization with respect to all the parame-
ters, their optimal values are dependent on only a few or none of the other
parameters.

We first define the following notation. Given a vector v,

〈v〉= E[v|ỹ], (A.7)

〈vvT〉= E[vvT |ỹ], (A.8)

where the expectations can be found from equation A.5.
C, d update: Maximizing f (θ ) with respect to C and d yields joint updates

for each row of C and the corresponding element of d, such that for i ∈
1, 2, . . . , q,

[cT
i di] =

(
T∑

t=1

yi
t

[〈x(i,1:p)

t 〉T 1
])⎛

⎝ T∑
t=1

⎡
⎣〈x(i,1:p)

t x(i,1:p)T

t 〉 〈x(i,1:p)

t 〉
〈x(i,1:p)

t 〉T 1

⎤
⎦

⎞
⎠

−1

.

(A.9)

R update: Maximizing f (θ ) with respect to R yields

R = 1
T

diag

{
T∑

t=1

((yt − d)(yt − d)T − (yt − d)〈xt〉TCT

− C〈xt〉(yt − d)T + C〈xtx
T
t 〉CT )

}
. (A.10)
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The updated C, d found from equation A.9 should be used in equation A.10.
τ1 . . . τp update: Although there is no analytic form of the update equa-

tions for the timescales, we can learn them using any gradient optimization
technique,

∂ f (θ )

∂τ j
= tr

⎛
⎝(

df (θ )

∂Kj

)T
∂Kj

dτ j

⎞
⎠ , (A.11)

where

∂ f (θ )

∂Kj
=−1

2
K−1

j + 1
2
(K−1

j 〈x(1:q, j)
1:T x(1:q, j)T

1:T 〉K−1
j ), (A.12)

∂k j(�t)

∂τ j
= σ 2

f, j
(�t)2

τ 3
j

exp

(
− (�t)2

2τ 2
j

)
. (A.13)

This is a constrained optimization problem because the GP timescales need
to be positive. We can turn this into an unconstrained optimization problem
by optimizing with respect to log τ j using a change of variable.

A.3 CM Step 2. In CM step 2 we directly optimize the log likelihood
L(θ ) = P(ỹ|θ ) with respect to each Di, j. P(ỹ|θ ) can be computed easily since

ỹ ∼ N(d̃, C̃K̃C̃T + R̃). (A.14)

The delays, like the GP timescales, can also be learned using any gradient
optimization technique. If � = C̃K̃C̃T + R̃,

∂L(θ )

∂Di, j
= tr

((
∂L(θ )

∂�

)T
∂�

∂Di, j

)
, (A.15)

where

∂L(θ )

∂�
=−1

2
�−1 + 1

2
(�−1(ỹ − d̃)(ỹ − d̃)T�−1), (A.16)

∂�

∂Di, j
= C̃

∂K̃
∂Di, j

C̃T , (A.17)

∂k j(�t)

∂Di, j
= σ 2

f, j
�t
τ 2

j

exp

(
− (�t)2

2τ 2
j

)
∂(�t)
∂Di, j

, (A.18)
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∂(�t)
∂Di, j

=
{

1 if i = i2
−1 if i = i1

, (A.19)

where �t, i1, i2 are defined in equation 3.8.
The derivations in this section are presented for a single time series

(corresponding to a single experimental trial) of duration T. In many cases,
we wish to learn the model given multiple time series, each of which may
have a different T. It is straightforward to extend equations A.5 to A.15
to account for N time series by considering ∂[

∑N
n=1 fn(θ )]/∂θ instead of

∂ f (θ )/∂θ . This assumes that each time series is independent given the
model parameters, meaning that we do not explicitly constrain the latent
variables to follow similar time courses on different trials. However, the
latent variables are assumed to all lie within the same low-dimensional
state-space with the same timescales and delays.

Appendix B: Parameter Initialization for ECME

Shift invariant subspace analysis (SISA) (Morup et al., 2007) is a technique
developed to address the anechoic blind source separation problem. It uses
the fact that a delay Di, j in the time domain can be approximated by multi-
plication by the complex coefficients e−ıωDi, j in the frequency domain, where
ı = √−1 and ω = 2π k−1

T , where k = 1, . . . , T and T is the number of time
steps in the time series. While SISA was originally designed to handle a
single time series, in some applications, observations are collected as mul-
tiple time series as opposed to a single long time series, as in the neural
application considered in this work. We developed an extension M-SISA
that can handle multiple time series.

If Yi is the Fourier transform of yi, we can rewrite the anechoic mixing
model as a matrix product in the frequency domain. We first center our
observed variables at mean 0 by subtracting out the mean computed across
all time points in all time series. For convenience of notation, in the rest of
this section, y will denote the mean 0 observed variables.

Then for each time series, we have

yi
t =

p∑
j=1

ci, jx
j
t−Di, j

+ εi
t, (B.1)

where i ∈ 1 . . . q, j ∈ 1 . . . p. Taking the Fourier transform of each side yields

Yi
k =

p∑
j=1

ci, jX
j

k e−ı2π k−1
T Di, j + Ei

k. (B.2)
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We can collect the terms of ci, j into a matrix Č ∈ R
q×p, where the elements

of Č are the same as the nonzero elements of the sparse matrix C ∈ R
q×pq

defined in equation 3.5. If Č(k) = Č ◦ e−ı2π k−1
T D, where ◦ denotes Hadamard’s

(element-wise) product and the exponential is computed element-wise for
the matrix D ∈ R

q×p, we can write this for each time series indexed by n in
matrix notation as

Yk{n} = Č(k)Xk{n} + Ek{n}, (B.3)

where Yk{n}, Ek{n} ∈ C
q×1 and Xk{n} ∈ C

p×1. We can now alternatingly solve
for Č, X, and D to minimize the least-square error in both time and fre-
quency domain (Morup et al., 2007). Briefly, at each iteration of the M-SISA
algorithm, Č and X are computed using a pseudo-inverse, while D is com-
puted using Newton-Raphson iterations. The detailed update equations are
presented below.

X update: For each time series indexed by n,

Xk{n} = Č(k)†Yk{n}. (B.4)

For X to be real valued, we update only the first �T/2� + 1 elements accord-
ing to equation B.4 and set the remaining elements such that XT−k+1 = X∗

k
where ∗ denotes the complex conjugate.

Č update: Let X j(i)
k = X j

k e−ı2π k−1
T Di, j be the delayed version of the latent

X ( j)
k to the ith observed variable. Then for each time series indexed by n,

yi
t{n} =

p∑
j=1

Či, jx
j(i)
t {n} + εi

t{n} (B.5)

= Či,:x
(i)
t {n} + εi

t{n}. (B.6)

We form ỹi ∈ R
1×NT , X̃i ∈ R

p×NT , and ε̃i ∈ R
1×NT by horizontally stacking

yi
1:T{n}, x(i)

1:T{n}, and εi
1:T{n} as follows:

ỹi = [ yi
1:T{1} yi

1:T{2} . . . yi
1:T{N} ], (B.7)

X̃i = [ x(i)
1:T{1} x(i)

1:T{2} . . . x(i)
1:T{N} ], (B.8)

ε̃i = [ εi
1:T{1} εi

1:T{2} . . . εi
1:T{N} ]. (B.9)

Then,

ỹi = Či,:X̃
(i) + ε̃i. (B.10)
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This allows us to update each row of Č as

Či,: = ỹiX̃ (i)† . (B.11)

D update: Following Morup et al. (2007), the least square error for the
single time series, equation B.3, is given by

ls{n} = 1
T

∑
k

(Yk{n} − Č(k)Xk{n})H(Yk{n} − Č(k)Xk{n}). (B.12)

Analytical forms for the gradient g{n} and the Hessian H{n} of ls{n} with
respect to the delays D can be computed (Morup et al., 2007). Therefore, for
multiple time series indexed by n,

ls =
N∑

n=1

ls{n}, (B.13)

g=
N∑

n=1

g{n}, (B.14)

H =
N∑

n=1

H{n}. (B.15)

We performed Newton-Raphson using the gradient g and the Hessian H to
update the delays D.

M-SISA itself is prone to local optima and is initialized using a multistart
procedure. Briefly, we ran 15 iterations of M-SISA initialized at 30 randomly
drawn settings of the model parameters. Of these 30 draws, we selected the
draw with the lowest least square error and ran 100 more iterations.

Once Č and D are computed, we can compute the residuals ε such that

εi
t{n} = yi

t{n} −
p∑

j=1

Či, jx
j
t−Di, j

{n}. (B.16)

We then form R such that the diagonal elements of R are equal to the
diagonal terms of the covariance matrix of ε across all time points and
time series. C is formed by rearranging the elements of Č as required in
equation 3.5. The initial value of the offset d is the mean of all observations,
computed across all time steps in all the observed time series. We set the
initial values of all the GP timescales τ j, j = 1, . . . , p to 100 ms. We fix the
GP noise variance σ 2

n, j to a small positive value (= 10−6) as in Yu et al. (2009).
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Appendix C: Computational Requirements

This section summarizes the computational time required to fit TD-GPFA
model parameters and extract the latent variables. The computation time
depends on the latent dimensionality p, number of observed variables q,
number of trials, length of each trial T, and number of ECME iterations.

In the ECME algorithm, the most expensive equation to compute is the
E-step, equation A.5, which involves the inversion of a qT × qT matrix and
multiplication with matrices of size pqT × pqT. Large parts of this computa-
tion are constant for a fixed p, q, and T, and therefore they can be performed
once for all trials of the same length T as they do not depend on the val-
ues of the observed variables in each trial. Each gradient computation in
CM-step 2, equation A.15, is fast, but because this computation is performed
thousands of times, it accounts for a large fraction of the total running
time.

Our results were obtained on a Linux 64-bit workstation with a 4 core
Intel Xeon CPU (X5560), running at 2.80 GHz and equipped with 50 GB
RAM. To fit the parameters for 45 observed variables and 140 trials of
length 520 ms (T = 26 with 20 ms time bins), our ECME algorithm (for 200
iterations) took 3 hours 14 minutes for two latent dimensions, and 9 hours
54 min for six latent dimensions. These results were obtained using an ex-
act implementation without harnessing any possible advantages of using
approximate techniques. We can also take advantage of parallelization to
reduce run time, especially since during each ECME iteration, the delays
and timescales can be learned independently for each latent variable. Lower
run times may also be obtained by running fewer overall ECME iterations
(in practice, the parameters often converge within the first 100 ECME itera-
tions), as well as relaxing convergence criteria for gradient optimization of
the delays (see equation A.15).
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