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SUMMARY

How do changes in the brain lead to learning? To answer this question, consider an artificial neural network
(ANN), where learning proceeds by optimizing a given objective or cost function. This ‘‘optimization frame-
work’’ may provide new insights into how the brain learns, as many idiosyncratic features of neural activity
can be recapitulated by an ANN trained to perform the same task. Nevertheless, there are key features of
how neural population activity changes throughout learning that cannot be readily explained in terms of opti-
mization and are not typically features of ANNs. Here we detail three of these features: (1) the inflexibility of
neural variability throughout learning, (2) the use ofmultiple learning processes even during simple tasks, and
(3) the presence of large task-nonspecific activity changes. We propose that understanding the role of these
features in the brain will be key to describing biological learning using an optimization framework.
INTRODUCTION

Learning is the process by which individuals accumulate knowl-

edge and develop skillful behavior. Over the course of minutes,

years, or even a lifetime of practice, we can learn a variety of skills

including how tomove and control our bodies, efficiently navigate

our surroundings, and obtain resources. What principles underlie

the brain’s ability to learn such a variety of different behaviors?

Answers to this question have spanned different levels of descrip-

tion. At the microscopic level, studies have revealed how plas-

ticity laws modify synapse strengths between neurons during

learning (Feldman, 2009). At the macroscopic level, studies

have revealed that behavioral changes during learning are guided

by different types of feedback such as supervision (Brainard and

Doupe, 2002), reward (Schultz et al., 1997), and sensory predic-

tion errors (Shadmehr and Holcomb, 1997), and develop on

different timescales (Newell and Rosenbloom, 1981; Boyden

et al., 2004; Smith et al., 2006; Yang and Lisberger, 2010).

We view neural population activity as the link between synap-

tic plasticity and behavior. Changes in plasticity affect which

neural population activity patterns a network can express, and

the firing activity of neural populations in turn drives behavior.

At the same time, coordinated patterns of spiking activity can

drive changes in synapse strengths via plasticity rules (Feldman,

2012). These considerations make the neural population an ideal

focal point for studying how the brain changes to improve

behavior (Sohn et al., 2020). As detailed below, studying learning

in neural populations has already begun to provide unique in-
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sights into the brain’s learning process. While many studies

have compared neural activity before versus after a learning

experience, many key insights necessary for understanding

how the brain learns are likely encoded in how neural population

activity changes throughout learning. Here we place a special

emphasis on these latter studies, highlighting the unique benefits

of this approach.

How should we interpret the changes in neural population ac-

tivity observed during learning? Taking inspiration from machine

learning may provide a useful starting point. After all, while the

brain is the most generally powerful learner we are aware of

(Lake et al., 2017; Sinz et al., 2019), artificial neural networks

(ANNs) can also learn complex behaviors, even exceeding hu-

man levels of performance at some tasks (Mnih et al., 2015;

Brown and Sandholm, 2019; Schrittwieser et al., 2020). An

increasing number of studies of artificial networks have revealed

remarkable similarities between the network activity of trained

ANNs and the activity of neurons in animals performing the

same task (Mante et al., 2013; Barak et al., 2013; Cadieu et al.,

2014; Sussillo et al., 2015; Rajan et al., 2016; Yamins and Di-

Carlo, 2016; Chaisangmongkon et al., 2017; Cueva and Wei,

2018; Wang et al., 2018b; Pospisil et al., 2018; Haesemeyer

et al., 2019; Saxe et al., 2021; Bakhtiari et al., 2021). These re-

sults make the tantalizing proposal that much of the complexity

and structure observed in neural population activity can be un-

derstood as the outcome of an optimization process, similar to

the one used to train ANNs. While these correspondences be-

tween artificial and biological networks have been observed
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Figure 1. Learning in artificial and biological networks under an optimization framework
(A–D) Schematic of learning in an artificial neural network (ANN) during a handwritten digit classification task. Given an image stimulus (A), the network’s activity
(B) determines the network’s behavior (blue box, C) (i.e., its guess as to which digit is present in the image). The network is given feedback about the correct
response (red box, C), which is used by a learning rule (e.g., backpropagation) tomodify the network ðdtÞ to improve the task objective (D) when the same image is
encountered on subsequent trials.

(legend continued on next page)
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only after each network has finished learning, more generally

these results suggest that we may be able to understand the

learning process in the brain similar to how we understand

learning in artificial networks (Marblestone et al., 2016; Richards

et al., 2019).

According to this point of view, which we will refer to as the

‘‘optimization framework’’ (Figure 1), learning is the outcome of

optimizing an objective function (also called a ‘‘cost function’’)

using a learning rule, subject to constraints. For example, one

can train an artificial network to recognize handwritten digits us-

ing an objective function known as cross-entropy and a learning

rule known as backpropagation (Figures 1A–1D). In neurosci-

ence, the idea that the brain learns by modifying its activity to

improve an objective function is not new and exists in many sub-

fields such as those studying perceptual learning and decision

making (Engel et al., 2015; Yamins and DiCarlo, 2016), motor

learning (Haith and Krakauer, 2013), song learning (Fiete et al.,

2007), and reinforcement learning (Niv, 2009; Neftci and Aver-

beck, 2019) (Figures 1E–1H). While learning in the brain is

certainly more complicated than in artificial networks, identifying

the brain’s objective function and learning rule for a given

behavior may be a promising approach for providing a normative

account of changes in neural population activity during learning.

However, as we will explain here, studies of neural population

activity during learning have identified a number of distinct fea-

tures not typically present in the activity of ANNs (Figure 1I).

These include (1) the inflexibility of neural variability throughout

learning; (2) the existence of multiple learning processes, even

during simple tasks; and (3) task-nonspecific changes in network

activity, which can persist evenwhen they negatively impact task

performance. As wewill discuss, these features refine our under-

standing of the extent to which learning in the brain can be

described through the lens of optimization.

Below we will present these three features of learning in the

brain, with an emphasis on results from studies using a brain-

computer interface (BCI) learning paradigm. One key advantage

of a BCI for studying learning is that the causal link between neu-

ral population activity and behavior can be defined precisely and

controlled by the experimenter (Box 1 and Figure 2). We suggest

ways in which each feature refines our understanding of learning

in the brain as an optimization process, as well as how this

feature may differ from learning in artificial agents. While we

emphasize results from BCI learning, the features we discuss

are relevant to our understanding of learning in the brain in gen-

eral, spanning different brain areas and timescales. Overall,

these observations highlight the importance of understanding

not just the endpoint of learning, but also the path that neural ac-

tivity takes to get to that endpoint. Taking these observations

into account may lead to a better understanding of how the brain

learns, while also inspiring new methods for learning in artificial

networks.
(E–H) Schematic of learning in the brain during a variety of different tasks. As in an
drives the subject’s behavior (G), resulting in feedback ðrtÞ that can be used for lear
objective (H).
(I) In contrast to ANN activity, changes in neural population activity during learnin
correlated activity between neurons (purple ellipse), task-nonspecific changes (ora
(green curves) that may differ from the task objective.
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1. Neural variability shapes learning, but is often
inflexible
Can the brain control behavioral and neural variability?

Behavior is notoriously variable. Even star basketball players

miss free throws, and professional musicians sometimes play

the wrong note. But instead of being ‘‘the unintended conse-

quence of a noisy nervous system,’’ behavioral variability may

in fact be critical for learning, allowing us to fully explore reward

landscapes and adapt to ever-changing environments (Dhawale

et al., 2017). For example, juvenile songbirds learn the songs of

their adult tutors by trial-and-error, effectively exploring different

vocal strategies until they find the one that best matches their tu-

tor’s song (Ölveczky et al., 2005). The potential benefits of

behavioral variability during learning can be appreciated through

the lens of reinforcement learning (RL) (Sutton and Barto, 2018).

In RL, an agent tries to maximize their cumulative reward in a

particular task by finding a balance between exploring new ac-

tions (i.e., using behavioral variability) and exploiting successful

ones. Evidence in a variety of species suggests that the brain

may regulate its behavioral variability dynamically based on the

needs of the task, such that behavioral variability is reduced

when the stakes are high (Dhawale et al., 2017). For example,

as a songbird ages, its song ‘‘crystallizes,’’ becoming more ac-

curate and less variable (Konishi, 1985; Tumer and Brainard,

2007). Similarly, in primates, variability in both arm reaches and

eye movements has been shown to decrease given larger

reward expectation (Takikawa et al., 2002; Pekny et al., 2015).

These results suggest that the brain regulates behavioral vari-

ability to facilitate learning.

To what extent can the brain control neural variability during

learning? Of course, if variability is present at the level of

behavior, it will also be present in the brain areas that drive

that behavior. But surprisingly, a substantial amount of the vari-

ability present in neural population activity does not appear to be

modified during learning. Like behavior, the spiking activity of

neurons shows substantial variability. Some of this spiking vari-

ability, which we refer to as ‘‘population covariability,’’ is not in-

dependent to individual neurons but is correlated (i.e., shared)

across a population of neurons. There are many potential sour-

ces of population covariability, including variability in shared in-

puts to the network, architectural considerations (e.g., clustered

connectivity), neuromodulation, and others (Doiron et al., 2016).

As a result, even in the context of performing a familiar task (i.e.,

when there is no learning), neural population activity exhibits co-

variability, both across different task conditions, as well as

across trials with the same task condition. Multiple lines of evi-

dence suggest that the structure of population covariabilty is

somewhat inflexible—persisting over the course of days or

weeks of practice—even when it limits performance. As we

explain below, this inflexibility is an important consideration in

the context of learning.
ANN, the stimulus (xt, E) drives neural population activity (ut, F), which in turn
ning. The goal is for the subject to improve their performance relative to the task

g may be influenced by other factors beyond the task objective. These involve
nge vectors) (e.g., neural drift), andmultiple learning processes with objectives



Box 1. Studying biological learning using a brain-computer interface (BCI) paradigm

Systems neuroscientists usually do not fully know the causal relationship between neural activity and behavior. This makes it diffi-

cult to interpret how changes in neural activity during learning lead to improved behavior. In a brain-computer interface (BCI) para-

digm, by contrast, the precise causal relationship between neural activity and behavior is determined by theBCImapping, which is

known and set by the experimenter (Jarosiewicz et al., 2008; Ganguly and Carmena, 2009; Suminski et al., 2010; Koralek et al.,

2012; Hwang et al., 2013; Sadtler et al., 2014; Law et al., 2014; Stavisky et al., 2017; Athalye et al., 2018; Vyas et al., 2018; Mitani

et al., 2018). This paradigm allows one to understand how changes in neural activity during learning lead to improved behavior

(Golub et al., 2016; Orsborn and Pesaran, 2017). While BCI has certain limitations for studying the full learning system—such

as the absence of natural sensory feedback (e.g., proprioception) and involvement of areas downstream of cortex (e.g., spinal

cord)—BCI is known to engage similar cognitive processes and brain areas as arm reaching (Golub et al., 2016). Thus, BCI pro-

vides a powerful tool for studying how neural activity reorganizes in the brain during learning. In our BCI learning studies, monkeys

are trained tomodulate the activity of neurons inmotor cortex to control the velocity of a computer cursor on a screen (Sadtler et al.,

2014; Zhou et al., 2019; Oby et al., 2019) (Figure 2A). At each moment in time (e.g., a 45 ms time window), the cursor’s velocity, v˛
R2, is determined by the simultaneous spiking activity ofK neural units, u˛RK . For simplicity, supposewe have a linear relationship,

with v = Mu, where M˛R23K is the BCI mapping. On each trial, the subject is rewarded for moving the cursor to acquire a cued

visual target. Subjects first use an ‘‘intuitive’’ BCI mapping, chosen so that subjects can proficiently control the cursor. To induce

learning, the experimenter changes the BCI mapping, requiring the subject to modify the neural activity they produce in order to

restore proficient behavior. Knowing the BCI mapping allows us to link neural population activity to performance during learning.

Consider each moment in time when the subject wants to move the cursor toward a cued target. Early in learning (Figure 2B), sub-

jects generate cursor velocities (blue arrow) that do not point directly toward the target, leading to indirect cursor trajectories (gray

line), and thus less frequent rewards. Later in learning (Figure 2C), subjects produce more direct cursor movements, resulting in a

higher reward rate. To quantify the subject’s moment-by-moment performance, consider the speed of the cursor’s velocity in the

direction of the target at some time t: pt = vut xt˛R, where xt˛R2 is a unit vector pointing from the cursor to the target. Because

cursor velocity is a function of the neural activity, we can rewrite this quantity directly in terms of neural activity: pt = ðMutÞuxt. This

link between neural activity and performance lets us think concretely about how neural activity might evolve during learning ac-

cording to different hypotheses. By considering neural activity and performance in a joint ‘‘neural performance’’ space

(Figure 2D), we can ask how neural activity might change as a function of the feedback received on each trial. For example, sup-

pose that during trial t, the subject generates the neural population activity pattern ut. The subject receives visual feedback about

the performance, pt, that resulted from generating ut. To improve their performance on subsequent trials, they must use this feed-

back to modify their neural activity in some direction in neural activity space, d (Figure 2E). Subjects may learn to control a new BCI

mapping in a process akin to supervised learning, reinforcement learning, or both. In any case, as long as dmoves the neural ac-

tivity ‘‘uphill’’ along the performance axis, performance will improve on the next trial. Repeating this process for multiple trials will

lead to changes in neural population activity that gradually lead to improvements in performance. Thus, the causal link between

neural activity and performance provided by a BCI paradigm can reveal important clues about how the brain learns. As we explain

in later sections, actual changes in neural population activity during BCI learning do not always align with what we might expect

from this purely optimization-based perspective.
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Constraints on neural variability limit performance

One line of evidence that the structure of population covariability

can be inflexible comes from BCI learning studies (Sadtler et al.,

2014). In these experiments, population activity recorded in pri-

marymotor cortex (M1) controlled themovement of a cursor on a

screen according to a BCI mapping (Figure 2A). The utility of a

BCI in this study was that it provided a direct causal test of

whether subjects could learn to modify their neural population

covariance structure. That is, by designing particular BCI map-

pings, the experimenters could challenge subjects to break

that structure, and observe whether or not they were able to

do so. Within a single day, subjects showed more performance

improvements for the BCI mappings that were aligned with di-

mensions of population activity that reflected shared variability

among neurons (Sadtler et al., 2014). Constraints on population

covariability limited which neural activity patterns subjects could

generate, which in turn impacted which BCI mappings could be

easily learned (Golub et al., 2018). These constraints were

evident not only across trials with different intended movement
directions, but also across trials with the same intended move-

ment (Hennig et al., 2018). Being able to modify the population

covariance structure during learning has other advantages

beyond improving task performance, such as minimizing energy

use. But in fact, the high-dimensional structure of population co-

variability changed remarkably little before and after learning,

regardless of these considerations (Hennig et al., 2018). Overall,

these results show that the structure of population covariability

may not be readily modifiable, despite the apparent benefits of

doing so.

Studies of perceptual learning provide another line of evidence

that the structure of population covariability can be somewhat

inflexible, even when it interferes with task performance. This re-

lates to the existence of population covariability that interferes

with the ability to decode information (e.g., about a stimulus)

from neural activity, so-called ‘‘information-limiting’’ correlations

(Moreno-Bote et al., 2014). When subjects perform a familiar

task (i.e., when there is no learning pressure), neural population

activity exhibits substantial trial-to-trial covariability across trials
Neuron 109, December 1, 2021 3723
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Figure 2. Studying learning using a brain-computer interface (BCI) paradigm
(A) Monkeys guide a computer cursor to one of eight visual targets by modulating the spiking activity of �90 neurons recorded in primary motor cortex. The
relationship between neural activity and the cursor’s velocity is defined by the BCI mapping. When a new BCI mapping is introduced, subjects must learn to
modify their neural activity to improve performance (i.e., guide the cursor to the target).
(B) Cursor position (black circle), target position (gray circle), and cursor velocity (vearly, blue arrow) at a single time step during a trial early in learning. Performance
(pearly, green line) can be quantified as the cursor velocity projected onto the line connecting the cursor and the target (dotted gray line; not visible to monkey).
Cursor positions at previous time steps (gray curve) and at the next time step (dashed circle) are shown for reference.
(C) Later in learning, monkeys are able to generate cursor velocities that move the cursor straighter toward the target, resulting in improved performance. Same
conventions as (B).
(D) Visualizing neural activity and performance during the trial shown in (B). The relationship between neural activity and performance (given by the BCI mapping)
is depicted as a gray plane.When the subject generates neural activity, uearly, they receive visual feedback about performance (e.g., the cursor’s speed toward the
target direction, pearly), which can be used to guide improvements to their neural activity on future trials.
(E) During learning, monkeys modify their average neural activity in a particular direction d (black arrow). This change will lead to improved performance if the
projection of the arrow onto the performance plane points ‘‘uphill.’’ Same conventions as (D).
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with the same task condition.When these correlated fluctuations

in firing activity are aligned with stimulus-encoding dimensions

of the population, they can potentially limit behavioral perfor-

mance. While the magnitude of information-limiting correlations

can be reducedwith learning (Gu et al., 2011; Jeanne et al., 2013;

Ni et al., 2018), these correlations persist even in over-trained

tasks (Rumyantsev et al., 2020; Bartolo et al., 2020b).

The structure of neural variability can influence the path

of learning

Even if the structure of neural covariability is largely fixed, it may

nevertheless be a critical component of how neural population

activity evolves over time during learning. To explain why this

is the case, consider that the brain must use feedback from

the task to estimate the direction, or gradient, in which it should

modify its activity in order to improve future performance. In an

ANN, this gradient can be calculated using the chain rule from

calculus, in an algorithm called backpropagation. For the brain,

however, there are a number of reasons that backpropagation

may be biologically implausible (Bengio et al., 2015; Lillicrap et
3724 Neuron 109, December 1, 2021
al., 2020). If the brain has a different way of estimating gradients,

perhaps the structure of neural covariability can provide some

clues. For example, suppose the brain estimates the gradient

by exploring the outcomes of different neural activity patterns

(Figures 3A and 3B). (This is similar to the approach taken by

many ‘‘black-box’’ learning rules, including weight perturbation,

node perturbation, REINFORCE, and evolution strategies [Wil-

liams, 1992; Werfel et al., 2005; Wierstra et al., 2014; Salimans

et al., 2017].) In this case, the gradient might be estimated as a

weighted sumof the sampled neural population activity patterns,

with weights given by their resulting performance (Figure 3B).

From a statistical perspective, for this gradient estimate to be un-

biased, it must be multiplied by the inverted covariance matrix

that generated the sampled population activity patterns. Thus,

if the neural circuit is unable to account for the covariance, the

resulting gradient estimate will not point directly uphill (Figures

3C and 3D). This dependencewill then influence how neural pop-

ulation activity evolves throughout learning (Figure 3E). A similar

outcome can occur even if gradients are calculated directly (e.g.,
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Figure 3. Neural population covariability influences the path of learning
(A) During learning, samples of population activity (black dots), drawn from an underlying covariance structure, may help the brain explore the relationship
between neural activity patterns and performance (where the plane depicts this relationship, similar to Figures 2D and 2E). Relative to the average activity ðutÞ,
some activity patterns may result in improved performance (red dot), while other activity patterns may make performance worse (blue dot). Gray dashed line
depicts points on the plane with the same performance as ut . Here we suppose that on trial twe sample activity patterns as ut jð Þ = ut + εt jð Þ, for j = 1;.;J, with
εt jð Þ � N 0;Sð Þ. Let pj be the performance associated with utðjÞ.
(B) To improve performance on subsequent trials, the brain may use its past experience (e.g., the red and blue dots) to move its activity in a particular direction
(black arrow, dt ). In this example, dt weights each explored activity pattern by its performance: dt =

P

j

pjεt jð Þ (see text). Thus, dt moves toward the red arrow and
away from the blue arrow.
(C and D) Under the scheme illustrated in (B), differences in the sampling distribution of neural activity patterns (purple and pink ellipses depict the sampling
covariance in C and D, respectively) can lead to different neural activity changes (black arrows, dt ), even when the relationship between neural activity and
performance (depicted by the plane) is identical. Red-blue color scale depicts the relative performance of different activity patterns within each covariance ellipse.
(E) Schematic of repeating the process in (C) and (D) for multiple trials. Changes in neural activity during learning may thus take a path that depends on the
covariance structure.
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in a manner akin to backpropagation). These considerations

suggest that understanding how the structure of neural covari-

ability is accounted for by the learning process may provide in-

sights into the observed path of learning.

Differences in network variability between biological

and artificial networks

Neural variability in the brain is typically quite different from that

in ANNs. First, as detailed earlier, population covariability cannot

necessarily be attenuated or restructured by the learning pro-

cess, even if doing so would improve task performance. This

stands in contrast to what one might expect of an ANN trained

to perform a given task, where typically all the parameters of

the network are adaptable for the purposes of optimization.

More generally, identifying which aspects of biological networks
are unchanged during learning can provide clues for developing

better network models of learning. For example, one might

consider which aspects of an ANN could be optimized such

that learning a new task leaves the population covariance struc-

ture unchanged. Second, consider the presence of substantial

population covariability across trials with the same intended

movement, as exhibited in the BCI learning task. This form of co-

variability would not naturally occur in a rate-based ANN (i.e., a

network whose units have continuous-valued outputs), because

an ANN’s activity given a fixed input is deterministic. This sug-

gests that if ANNs are to serve as models of how the brain

changes during learning, we may need to consider classes of

artificial networks that can capture the properties of population

covariability described above, such as stochastic rate-based
Neuron 109, December 1, 2021 3725
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ANNs (Hennequin et al., 2018; Echeveste et al., 2020) or spiking

neural networks (van Vreeswijk and Sompolinsky, 1998; Savin

and Deneve, 2014; Litwin-Kumar and Doiron, 2014).

The inflexibility of neural variability in the brain during learning

can also be contrasted with the typical role of variability in

methods for reinforcement learning (RL). For example, consider

deep RL, where an agent approximates particular functions us-

ing an ANN, with the outputs of the ANN determining the agent’s

current best guess of the optimal behavior (Li, 2018). We can

think of the activations of the ANN as akin to the activity of a pop-

ulation of neurons in the brain (Botvinick et al., 2020). As dis-

cussed earlier, RL agents discover optimal behavioral policies

by effectively exploring their environment, where exploration

manifests as behavioral variability. However, variability in an arti-

ficial agent’s network activity during learning is likely distinct

from the variability observed in the brain. For one, RL agents’

behavioral variability is often added to the outputs after the

fact, as in the classical ‘‘ε-greedy’’ strategy, where with probabil-

ity ε the agent takes a purely random action, ignoring its current

policy (Sutton and Barto, 2018). In this case, there is behavioral

variability without any concurrent network variability, whereas in

animals, behavioral variability is driven by neural variability. Sec-

ond, even when RL agents do exhibit network variability, the

amount of variability is typically chosen by the modeler based

on the task and attenuated throughout training or when evalu-

ating performance (Mnih et al., 2015; Salimans et al., 2017; Plap-

pert et al., 2017). By contrast, as discussed above, population

covariability in the brain may be largely inflexible and unattenu-

ated, and likely only some of this variability reflects active explo-

ration. Understanding how learning proceeds alongside, or even

in spite of, substantial neural variability may inform the develop-

ment of RL agents that can learn complex taskswithout precisely

tuning or attenuating the amount of network variability.

2. Multiple neural learning processes are in play at
all times
Learning in the brain involves multiple learning

processes, even in simple tasks

Amajor hurdle to understanding learning in the brain is to identify

the learning objectives underlying the observed neural and

behavioral changes. In an artificial network, by contrast, this is

not an issue because the modeler decides how feedback from

the task is used to drive learning. For example, consider teaching

an ANN and a child to identify which animals are shown in

different images. For the ANN, the modeler can choose the

objective function (e.g., cross-entropy) that the ANN tries to opti-

mize during the training process. But when teaching a child,

while the teacher may have a particular task objective in mind

(e.g., naming the animals correctly), there is no guarantee that

this is the objective driving changes in the child’s brain during

learning.

This issue of identifying the objective underlying learning is

complicated by the fact that, even in simple tasks, behavioral

changes during learning appear to reflect multiple learning pro-

cesses (McDougle et al., 2016; Marblestone et al., 2016; Neftci

and Averbeck, 2019; Morehead and de Xivry, 2021). Here we

define a ‘‘learning process’’ as an optimization process with its

own objective function, learning rule, and/or instantiation in neu-
3726 Neuron 109, December 1, 2021
ral circuitry. Because behavior is multi-faceted, there are multi-

ple aspects of behavior that might be optimized to achieve a

given task goal. Consider the seemingly simple task of moving

one’s hand toward an object. Behavioral studies of adaptation

have identified a number of different learning processes used

by the brain to solve this task (McDougle et al., 2016; Morehead

and de Xivry, 2021). For example, some learning processes have

been distinguished behaviorally based on the type of feedback

that engages them. In the case of reaching toward an object,

some learning processes use visual or proprioceptive feedback

to minimize errors in motor execution (e.g., so that the intended

movement direction of the hand matches its actual movement

direction) (Tseng et al., 2007), in a manner akin to supervised

learning. Other processes seem to be driven only by whether a

trial was successful or not (Vaswani et al., 2015), akin to rein-

forcement learning. More generally, it has been proposed that

the brain learns new motor skills via supervised learning, unsu-

pervised learning, and reinforcement—perhaps even simulta-

neously (Doya, 2000; Izawa and Shadmehr, 2011). These

findings and others illustrate that, even for the simple task of

reaching one’s hand toward an object, behavioral changes

appear to be driven by a variety of different learning processes.

Disentangling the presence of multiple learning

processes in neural population activity

As we discussed above, even a simple task such as reaching for

an object may involve multiple learning processes. Although this

may be beneficial from the brain’s perspective, it poses a chal-

lenge for the neuroscientists seeking to identify the neural sub-

strates of these learning processes. Neural signatures of multiple

learning processes have been identified in a variety of different

tasks, including motor learning (Zhou et al., 2019; Oby et al.,

2019), perceptual learning (Poort et al., 2015), rule learning

(Sigurdardottir and Sheinberg, 2015), and reinforcement learning

(Cohen et al., 2015; Schultz, 2007, 2019). While these processes

may originate in distinct brain areas, signatures of multiple

learning processes can also coexist within the same population

of neurons. When this happens, how can we, as neuroscientists,

tease them apart?

One of the primary means of teasing apart the influence of

distinct learning processes in the brain is to identify distinct time-

scales of behavioral or neural change (Schultz, 2007; Lak et al.,

2016; Schultz, 2019; Zhou et al., 2019; Morehead and de Xivry,

2021). For example, after subjects are first introduced to a new

task, one might observe rapid performance improvements due

to learning the rules and basic strategies, while mastery may

take weeks or even years (Newell and Rosenbloom, 1981). While

observing multiple timescales of behavioral or neural change

does not on its own guarantee the presence of distinct learning

processes (Newell et al., 2009), it can serve as a clue that there

may indeed be multiple learning processes at play. BCI learning

paradigms similar to those mentioned in the previous section

have begun to identify the neural signatures distinguishing

different learning processes in motor cortex. In a recent study

(Zhou et al., 2019), population activity showed distinct changes

following learning for a few hours versus learning for multiple

weeks. These fast and slow changes to population activity ap-

peared to be responsible for improving distinct aspects of task

performance (directional errors and reward rate, respectively).
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Another study of long-term learning using a BCI paradigm found

that, given weeks of practice, subjects learned a difficult BCI

mapping by developing the capacity to generate new patterns

of population activity—that is, patterns of spiking activity across

the population that were not observed before the learning expe-

rience (Oby et al., 2019). In both of these studies, long-term

learning appeared to be made possible by changes to the cova-

riability in firing across neurons. This stands in contrast to the

studies of short-term BCI learning discussed in the previous sec-

tion (Sadtler et al., 2014; Golub et al., 2018; Hennig et al., 2018;

Zhou et al., 2019), where the structure of neural covariability was

largely unchanged before and after learning.

Together, these results suggest the presence of at least two

distinct neural processes: one fast, one slow (Figure 4). The

fast process, observable within a day, may be explained by

changes to the inputs to the network (e.g., changes in the in-

tended movement direction) (Golub et al., 2018; Hennig et al.,

2021), a change that can presumably be achieved more quickly

as it requires less network reorganization (Sohn et al., 2020). By

contrast, the slow process—resulting in changes to the correla-

tions between neurons—may take more time to complete

because it requires more synaptic modifications (W€arnberg

andKumar, 2019; Feulner andClopath, 2021). The different time-

scales of these neural processes may explain why some tasks

can be learned within a few hours while others take weeks or

years of practice.

The importance of identifying the brain’s prior

assumptions about learning

One of the primary differences between learning in biological and

artificial agents is that, for a living creature, the environment and

reward contingencies change continually (Neftci and Averbeck,

2019). To deal with the complexities of learning in such a dy-

namic environment, rather than being a blank slate of optimiza-

tion tools, the brain comes ready-prepared with a variety of

ecologically relevant ‘‘inductive biases’’ (Zador, 2019). Inductive

biases are the prior assumptionsmade by a learner to predict the
outcomes of novel inputs. Given the variety of different time-

scales and contexts in which animals need to adapt their

behavior, the brain may employ a suite of inductive biases,

each reflected in a different learning process. For example,

learning processes with fast timescales may enable rapid

learning for the tasks an animal is most likely to encounter (Braun

et al., 2009; Sinz et al., 2019; Sohn et al., 2020), while those with

slower timescales may enable generalization across tasks

(Braun et al., 2009; Wang et al., 2018a).

Thus, understanding learning in the brain may involve not only

a description of the multitude of learning processes engaged by

the task, but also a characterization of the brain’s inductive

biases. We provide two examples of cases where identifying

the brain’s inductive biases is a critical part of the puzzle for un-

derstanding changes in neural activity during learning. First,

rather than implementing a general-purpose optimization ma-

chine, the brain may employ a collection of heuristics and

‘‘good enough’’ solutions sufficient for solving most problems

(Beck et al., 2012; de Rugy et al., 2012; Zhou et al., 2019; Gard-

ner, 2019; Rosenberg et al., 2021; Mochol et al., 2021). While

these heuristics may enable rapid learning in many tasks, other

tasks—even those with simple rules—may be surprisingly diffi-

cult to learn (e.g., mirror reversal learning in primates, or decision

tasks in mice) (Hadjiosif et al., 2021; Rosenberg et al., 2021). In

these cases, it may be that the brain is making incorrect assump-

tions about how to solve the task. These incorrect assumptions

may be reflected in terms of how the brain estimates the gradient

of neural activity with respect to errors in the task (Hadjiosif et al.,

2021). Second, asmentioned earlier, the objective specified by a

task is not necessarily the objective used by the subject to learn

that task. Differences in these objectives may influence how a

task is learned (Gershman and Niv, 2013). ANN models can

help test hypotheses regarding the relevant objective. For

example, predicting human performance at a particular task us-

ing an ANN can require first training the ANN to perform a

different task (Nicholson and Prinz, 2021), presumably because
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the pre-training encourages the network to acquire the relevant

inductive biases. Overall, these results suggest that the

brain’s inductive biases may be just as critical as the task objec-

tive itself when interpreting changes in population activity during

learning.

3. Not all changes to neural activity during learning are
driven by task performance
‘‘Task-nonspecific’’ changes in population activity can

interact with the learning process

During learning, neural activity changes to improve behavior.

One common approach for understanding this process is to

characterize which aspects of neural activity change, or do not

change, during or after a learning experience (Schoups et al.,

2001; Li et al., 2001; Law and Gold, 2008; Gu et al., 2011; Uka

et al., 2012; Jeanne et al., 2013; Peters et al., 2014; Yan et al.,

2014; Makino and Komiyama, 2015; Golub et al., 2018; Perich

et al., 2018; Singh et al., 2019). This approach can offer clues

as to how different parts of the brain contribute to improvements

in task performance. For example, following perceptual learning,

changes in earlier visual areas may suggest improved represen-

tations of stimuli shown in the task (Schoups et al., 2001; Yan

et al., 2014), while changes in downstream areas may suggest

improved readout of those representations (Law and Gold,

2008; Uka et al., 2012).

But not all changes in neural activity during learning are

directly interpretable in terms of the task objective. As a growing

list of studies has observed, changes in neural activity during

learning are not always driven by performance considerations

(Rokni et al., 2007; Okun et al., 2012; Singh et al., 2019; Hennig

et al., 2021). We refer to these changes, which appear to occur

without regard to the details of the task at hand, as being

‘‘task-nonspecific.’’ Operationally, we consider changes in pop-

ulation activity to be task nonspecific if they occur with or without

any learning pressure, or if they occur despite making perfor-

mance worse. For example, even when an animal is performing

a familiar task, neural activity is not stable over time, but can

show substantial ‘‘drift’’ (Druckmann and Chklovskii, 2012;

Fraser and Schwartz, 2012; Liberti et al., 2016; Driscoll et al.,

2017; Mau et al., 2020; Cowley et al., 2020; Schoonover et al.,

2020). Task-nonspecific changes in neural activity may arise

from a variety of sources, including synaptic turnover (Holtmaat

and Svoboda, 2009), the accumulation of neural noise (Rokni

et al., 2007), or the influence of internal states such as changes

in arousal or satiety (Musall et al., 2019a; Allen et al., 2019;

Stringer et al., 2019; Cowley et al., 2020; Hennig et al., 2021).

Regardless of their source, task-nonspecific changes in neural

activity must be accounted for by the brain if they are not to inter-

fere with downstream processing or behavior (Rokni et al., 2007;

Clopath et al., 2017; Rule et al., 2020; Xia et al., 2021). However,

as we will discuss next, task-nonspecific changes can and do

impact behavior, making them an integral part of the learning

process.

Changes in an animal’s internal state, such as its arousal,

satiety, or attention, are reflected in brainwide changes in neural

activity. Because these signals are known to fluctuate over time,

internal states are one potential source of task-nonspecific

changes in neural population activity during learning. Impor-
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tantly, internal state changes can impact behavior even when

doing so impairs performance. For example, professional ath-

letes can ‘‘choke’’ under pressure, failing to succeed at prac-

ticed behaviors when the stakes are high (Baumeister, 1984;

Gucciardi et al., 2010; Yu, 2015; Hsu et al., 2019). Similarly, sus-

tained changes in satiety or fatigue represent task-nonspecific

factors that have clear impacts on behavior, and thus perfor-

mance. As highlighted by a recent BCI learning study (Hennig

et al., 2021), task-nonspecific changes can be large and may

even make up the bulk of changes in population activity during

learning. In that study, population activity in primarymotor cortex

varied not only with the direction in which subjects intended to

move the cursor, but it also showed large and stereotyped

changes following experimenter-controlled events such as

pauses in the task or changes to the BCI mapping. During

learning, these task-nonspecific changes in neural activity

impacted the speed and the direction in which the cursor moved,

which in turn impacted how neural activity evolved on subse-

quent trials. This result illustrates that task-nonspecific factors

can make up a large part of changes in population activity during

learning and that these changes can influence the path of

learning via their impact on behavior.

Reverse-engineering learning in the brain in the

presence of task-nonspecific changes

We suspect that accounting for task-nonspecific changes in

neural activity will prove to be a critical ingredient in attempts

to reverse-engineer the process by which the brain learns (e.g.,

Lim et al. (2015); Lak et al. (2016); Roy et al. (2018); Ashwood

et al. (2020); Nayebi et al. (2020)). In particular, accounting for

task-nonspecific changes in population activity may be neces-

sary for the challenge of determining the brain’s learning objec-

tive. This is true even if, rather than providing clues about how the

brain learns, task-nonspecific changes are simply a nuisance

factor we have to deal with when interpreting neural activity

changes. For example, suppose the observed population activity

changes in the opposite direction with respect to a hypothesized

objective function (Richards et al., 2019). Rather than this

implying that the hypothesized objective is wrong, this may

instead indicate the presence of task-nonspecific changes in

activity, whichmay drive neural activity independently of the pro-

posed learning objective. In this case, changes in neural popula-

tion activity during learning may be best thought of as the com-

bination of task-specific (e.g., related to the learning objective)

and task-nonspecific influences (Figure 5). This idea may even

explain why performance sometimes fails to improve during

learning: in these situations, the task-nonspecific influence on

neural activity may be overpowering the task-specific influence.

Overall, a complete description of how neural activity changes

during learning may require accounting for the influence of

various task-nonspecific processes (e.g., arousal) the brainman-

ages concurrently with learning. This may be a challenge given

that many task-nonspecific processes are often not under

experimental control, resulting in these processes having a var-

iable and latent influence on population activity. One potential

approach to this problem involves leveraging natural behavior.

Animals often show rich, uncued behaviors such as fidgeting

even during over-trained tasks (Musall et al., 2019a). These

uncued movements are themselves modulated by an animal’s
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internal state such as its arousal or satiety (Musall et al., 2019a;

Allen et al., 2019; Stringer et al., 2019). Thus, onemight be able to

use these behaviors to infer an animal’s internal state, and its re-

sulting influence on population activity (Musall et al., 2019b).

Experimentally, this would involve monitoring more aspects of

an animal’s behavior that are not directly related to the task,

such as recording pupil size during an armmovement task (Hen-

nig et al., 2021) or movements during a decision-making task

(Musall et al., 2019a). Thus, continuous whole-body behavioral

monitoring, alongside statistical methods for relating behavior

to animals’ latent internal states, may provide a means of ac-

counting for task-nonspecific changes in population activity dur-

ing learning.

Potential benefits of task-nonspecific activity

Task-nonspecific changes in the brain during learning can be

contrasted with network activity in ANNs, where task-nonspe-

cific changes are typically small or absent. For example, in an

ANN trained by gradient descent, changes in network activity

are determined by the learning rule (e.g., given by the gradient

of the task objective), such that all changes are, by construction,

task specific. By contrast, as we saw above, a substantial pro-
portion of changes in neural population activity during learning

may have little to do with the task at hand.

Why might the brain exhibit such large task-nonspecific

changes? Answering this question may help us build better

models of biological learning, while also inspiring new methods

for artificial learning. When performing any given task, the brain

must alsomanage awhole host of processes that are not directly

related to task execution, such as arousal, attention, and mem-

ory. These processes may have their own objectives, which,

while relevant to whatever process they subserve, are neverthe-

less irrelevant to executing the task itself, and therefore drive

task-nonspecific changes in population activity. As one example

of this, a recent study had subjects reach toward different targets

in a perturbed environment, where some but not all targets

required learning (Sun et al., 2020). The subjects’ population ac-

tivity in motor cortex exhibited a ‘‘uniform shift’’ across all tar-

gets, including those that did not require learning. In contrast

to the task-nonspecific changes discussed earlier (Hennig

et al., 2021), this uniform shift in population activity did not

appear to influence motor output, indicating that task-nonspe-

cific changes need not always impact performance. Because
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the shift persisted even when the perturbation was removed, the

authors propose the shift in activity may help maintain, or ‘‘in-

dex,’’ a motor memory of the learned experience. In other words,

the task-nonspecific changes observed in Sun et al. (2020) may

reflect the influence of a memory-related objective, perhaps one

that ensures the newly acquired memory is maintained in popu-

lation activity even when subjects go on to perform different

tasks. This may serve as a mechanism for preventing cata-

strophic forgetting—that is, learning new tasks without over-

writing previously learned tasks—a well-known issue for ANNs

(French, 1999), and one of the key goals of methods for lifelong

or continual learning (Chen and Liu, 2018).

Another potential benefit of task-nonspecific changes in the

brain is that they may encourage robustness—by making the

learner insensitive to large variance changes in network

activity—or provide a means of escaping local optima or saddle

points. In both cases, the brain may be willing to accept any

negative impacts on performance caused by the task-nonspe-

cific changes in the short-term, so as to achieve a more robust

or optimal solution in the long run. Overall, understanding the

role of task-nonspecific activity in the brain may inspire methods

for developing flexible, robust artificial agents.

Challenges and future directions
Understanding synaptic plasticity from neural

population activity

Learning in the brain is typically thought to be governed by

changes in the synaptic strengths between neurons. Similarly,

ANNs are trained to perform new tasks via modifications to the

synaptic strengths between artificial neurons. Here we expand

this view to consider learning in terms of changes in neural pop-

ulation activity. The differing viewpoints of studying learning in

terms of plasticity versus neural population activity raises several

potential questions for future study. First, what governs whether

a given task is learned via plasticity? While learning may often

require plasticity, this does not always have to be the case

(Mayo and Smith, 2017; Wang et al., 2018a; Sohn et al., 2020).

In particular, learning may sometimes unfold as changes in neu-

ral population activity without any corresponding changes in

synaptic strengths. Thismight be possible if, for example, the un-

derlying neural circuit always tries to counteract any changes in

sensory feedback that indicate errors (Sohn et al., 2020). In other

cases, improving performance may require plasticity. Perhaps

the brain learns via plasticity only when the benefits of doing

so offset the associated metabolic cost of adding or modifying

synapses.

Second, which aspects of learning can be understood using

only recordings of neural population activity? Because changes

in synaptic strength influence downstream behavior via their

influence on the spiking activity of postsynaptic neurons, record-

ings of neural population activity during learning may offer a suf-

ficient view of how the brain modifies its activity to drive

improved behavior. This would be beneficial from a technical

standpoint given that measuring plasticity in vivo in single neu-

rons is challenging, and methods for measuring plasticity across

multiple neurons simultaneously are still in their infancy. By

contrast, studies incorporating recordings of the simultaneous

postsynaptic spiking activity of hundreds or even thousands of
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neurons are increasingly common (Ahrens et al., 2012; Steinmetz

et al., 2019; Stringer et al., 2019; Bartolo et al., 2020a; Urai

et al., 2021).

Third, can leveraging studies of neural population activity dur-

ing learning guide the search for new plasticity rules? For

example, numerous studies have observed that population ac-

tivity shows low-dimensional structure, and that this structure

is highly conserved during learning on short timescales (Chase

et al., 2010; Hwang et al., 2013; Sadtler et al., 2014). Understand-

ing how plasticity, which occurs at the level of single neurons,

can maintain low-dimensional structure at the level of neural

population activity is not easily explained by our current under-

standing of plasticity rules. Overall, studying neural population

activity during learning offers a unique viewpoint of the neurobi-

ological changes driving learning.

Understanding incomplete or suboptimal learning

One puzzling aspect of biological learning that may benefit from

ideas in mathematical optimization and machine learning is the

question of why biological learning is often incomplete. For

example, performance at some tasks often converges to a sub-

optimal level (Vaswani et al., 2015; Golub et al., 2018; Langsdorf

et al., 2021), and sometimes learning fails to occur at all. If

learning in the brain occurs via an optimization process, how

are we to understand these failure modes? We have mentioned

earlier two possibilities: mismatches between the brain’s induc-

tive bias and task demands, and the presence of task-nonspe-

cific changes in neural activity. Other possible explanations

might come from machine learning, where the causes of incom-

plete or failed learning have been studied extensively. For

example, the failure of an artificial network to learn can be due

to premature convergence, the existence of local optima or

‘‘good enough’’ solutions, or other reasons. These ideas may

provide hypotheses for understanding suboptimal learning in

the brain. Another promising direction is to build probabilistic

models of different learning hypotheses and use statistical infer-

ence to infer the (potentially suboptimal) principles underlying

animal learning directly from data (Linderman and Gershman,

2017; Roy et al., 2018; Ashwood et al., 2020, 2021).

Using ANNs as artificial model organisms for

understanding the brain

Using ANNs as artificial model organisms may be a key tool for

understanding how the brain learns via optimization. Here we

sketch out different approaches one might take. First, ANNs

can serve as testbeds for developing new methods that infer

the components of the optimization framework from recordings

of neural activity. This is possible because we can analyze the

activity of ANNs just like we analyze neural recordings. For

example, recent work demonstrated how one might infer a net-

work’s learning rule from neural population activity, regardless

of the network’s architecture or learning objective (Nayebi

et al., 2020).

Second, ANNs can shed light on how the components of the

optimization framework interact. For example, recent work sug-

gests it might not be possible to identify the brain’s objective

function without also considering its architecture, as these two

components interact when determining a network’s activity

(Bakhtiari et al., 2021). This raises the question of whether build-

ing ANNs with architectures even more similar to the brain—for
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example, networks incorporating distinct cell types (Doty et al.,

2021), or even networks whose architectures match an identified

connectome (Yan et al., 2017; Morales and Froese, 2019)—will

be necessary for understanding how population activity changes

with learning.

Finally, ANNs may help us build models of how learning pro-

ceeds throughout an animal’s lifetime. For example, learning in

a mature animal may resemble an ANN changing its synaptic

weights in a network with a fixed architecture. By contrast,

learning early in life, when a huge number of synapses are grown

and then pruned, may more resemble an ANN where the archi-

tecture itself changes throughout learning (Millán et al., 2018;

Elsken et al., 2019; Gaier and Ha, 2019). Developing a stronger

parallel between learning in ANNs and brains has the potential

to benefit both our understanding of the brain and methods for

artificial learning.
Conclusion
To learn, the brain must discover the changes in neural activity

that lead to improved behavior. How canwe begin to understand

the complex processes in the brain that drive these changes?

The optimization framework for learning suggests that changes

in neural activity during learning might be understood as the nat-

ural outcome of an objective function, learning rule, and network

architecture. As we propose here, applying the optimization

framework to biological networks requires us to focus on the

key ways in which neural activity in the brain differs from network

activity in typical artificial networks. In particular, we have pre-

sented three key observations about learning from studies of

neural population activity that we believe need to be accounted

for by models of learning in the brain: (1) the inflexibility of neural

variability throughout learning, (2) the use of multiple learning

processes even during simple tasks, and (3) the presence of

large task-nonspecific activity changes. These challenges were

readily apparent when considering neural population activity

but would have been harder to detect from the vantage points

either of synaptic weight changes or single-unit tuning prop-

erties.

The optimization framework is a promising starting point for

understanding learning in the brain. But as we have seen, even

in relatively simple tasks, changes in neural population activity

during learning are not always easy to interpret as an optimiza-

tion process. This difficulty may be even more salient in the

context of understanding how more complex, naturalistic tasks

are learned. Moving forward, accounting for the features of pop-

ulation activity described here into new computational models of

learning in the brain and new experimental designs may be a

useful next step for reverse engineering the process by which

the brain learns.
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