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Disentangling the flow of signals between
populations of neurons

Evren Gokcei@!, Anna |. Jaspét Jo<o D. Semedy Amin Zandvakili®?, Adam Kohid347,
Christian K. Machen&” and Byron M. Y@te7 R

Technological advances now allow us to record from large populations of neurons across multiple brain areas. These recordings
may illuminate how communication between areas contributes to brain function, yet a substantial barrier remains: how do we
disentangle the concurrent, bidirectional flow of signals between populations of neurons? We propose here a dimensionality
reduction framework, delayed latents across groups (DLAG), that disentangles signals relayed in each direction, identifies how
these signals are represented by each population and characterizes how they evolve within and across trials. We demonstrate
that DLAG performs well on synthetic datasets similar in scale to current neurophysiological recordings. Then we study simul
taneously recorded populations in primate visual areas V1 and V2, where DLAG reveals signatures of bidirectional yet selective
communication. Our framework lays a foundation for dissecting the intricate flow of signals across populations of neurons, and
how this signalling contributes to cortical computation.

cross multiple brain areas are growing in availabiliffhese ronal populations is a challenging high-dimensional problem.

cordings present opportunities to illuminate how inter-areddimensionality reduction techniques capable of identifying low-
communication enables brain functigrbut they also present sub dimensional latent variables that describe activity shared by two
stantial conceptual and statistical challenges. Brain areas involveat imore recorded areas are thus increasingly*@&ed hese tech
sensor$P, cognitivé’ and motor functions are often reciprocally niques have driven new proposals for population-level mechanisms
connected: signals are relayed not only from one area to the nefkgating between motor cortex output and muscle movethent
but bidirectionally, and probably concurrently. The raw recordingselective communication between cortical aféagnhanced com
however, provide only a tangled view of this concurrent commonunication of stimulus information with attentiéhand the robust
nication (Fig.1, top): individual neurons simultaneously reflect amess of local computations to perturbations upstfé&m
area0s inputs, outputs and ongoing internal computétions The relationship between the correlated activity across areas

Determining the flow of signals between brain areas is therefatentified in these studies and the flow of inter-areal signals,
a non-trivial task. To dissect the direction of signal flow, one chowever, remains unclear. Specifically, does the correlated activ
leverage the fact that inter-areal communication is not instantity across areas reflect the flow of activity from area A to B, from
neous. The physiological properties of axons and synapses inBdo A, or in both directions concurrently (Fity. bottom left)? If
duce delays in signal transmission. These delays provide a workompmunication were to occur in one direction at a time, then-exist
definition of signal flow: the appearance of a signal first in aieg dimensionality reduction methods could, in principle, iden
A, and later in area B, is consistent with signal flow from A totiB/ the direction of population-level signal flow. If two areas were
(though this apparent flow could be due to common input fromta communicate in both directions concurrently, however, then
third area; see Discussion). existing methods would only identify the dominant direction of
Adopting this conception, several inter-areal studies have cosignal flow™.

pared the timing of the onset of neural respotf3eer of the emer We therefore propose delayed latents across groups (DLAG;
gence of selectivity attributable to top-down procé$8eacross Fig. 1, bottom right), a dimensionality reduction framework that
areas following the presentation of a stimulus. Other studies; levsentangles signals relayed in each direction, identifies how these
aging simultaneous recordings, have measured temporal dekigsals are represented by each population and characterizes how
between two areas through pairwise spiking correlatf8hend they evolve over time within and across trials. We first demonstrate
information-theoretic measuré€s Similarly, inter-areal phase delayshat DLAG performs well on synthetic datasets similar in scale to
of local field potentials have been measiffédThese timing-based current neurophysiological data. Then we study simultaneously
approaches have advanced our understanding of how signals propeorded populations in primate visual areas V1 and V2, where
gate across brain areas. However, because these approachesObé&d reveals that V1PV2 interactions are selective and bidirec
largely on pairs of neurons or aggregate measures of neural activityal. DLAG unlocks new opportunities to investigate the-bidi
much remains unknown about how neuronal populations ceordiectional flow of signals between populations of neurons and how
nate their activity to accomplish inter-areal signalling. inter-areal communication contributes to brain function.

S:ultaneous recordings from large populations of neurons To characterize inter-areal signal flow at the level of- neu
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Fig. 1] Disentangling the flow of signals between populations of neuron$op: recorded neural activity provides only a tangled view of the bidirectional,
concurrent interactions between brain areas (illustrated by the translucent magenta and orange arrows). Bottom left: existing dimensionality reduction
methods identify correlated population activity across areas (each correlated population activity pattern is represented by a braid of multicoloured arrows;
four different activity patterns are shown). Each activity pattern probably reflects a mixture of signals relayed in each direction. Within each activity
pattern, individual arrows represent a directed interaction; colour depicts the direction of signal flow and shading (light versus dark) distinguishes distinct
signals. Bottom right: DL@ identifies both within- and across-area population signals (indicated by colour and source/target of each arrow). Importantly,
DLAG disentangles signals relayed in each direction. The colour of each arrow depicts the direction of signal flow associated with a population activity
pattern, and shading distinguishes distinct signals.

Results All DLAG model parameters, including the GP timescales and
Model overview.Consider recording the activity of two populatime delays, are estimated from the neural activity using an exact
tions of neurons (Figz, left column), measured as, for examplexpectation-maximization algorithm (Supplementary Note). After
the number of spikes counted within non-overlapping time binthe DLAG model parameters are estimated from the neural activity,
Here we will take these populations as belonging to two differéim time courses of within- and across-area latent variables can be
brain areas, A and B. In principle, they can belong to any meanismdied on a trial-to-trial basis. Conceptually, DLAG can be viewed
ful groups, such as cortical layers or cell types. as a time-series extension of probabilistic canonical correlation
DLAG dissects the recorded population activity in each areaamalysis (CCAJ* or a multiarea extension of Gaussian process
individual trials into a linear combination (weighted sum) of twdactor analysis (GPFA)® with the added ability to estimate time
types of latent variable (Fig, centre column; equationd)(and delays between two areas.
(2) of Methods). The first type of latent variable, across-area vari Intuitively, if a particular time course is reflected in the popula
ables, describes population activity that is correlated across atieasactivity of area A, and a similar time course, but after a time
(illustrated by the magenta box spanning both areas ir2fighe delay, is reflected in the population activity of area B, then an across-
second type of latent variable, within-area variables, describes @pa variable pair can describe the apparent flow of that signal from
ulation activity in one area that is not related to population activify to B. Moreover, if concurrently a time course is first seen in area
in the other area (Fi@: blue, within A; red, within B). Whether B, followed by area A, a second across-area variable pair can also
or not the within-area variables are a subject of scientific studgscribe the flow of that inter-areal signal. The key to disambiguat
they are critical to the correct estimation of across-area variabtegthe first and second across-area variable pairs is that they involve
(Methods and Supplementary Discussion). different population activity patterns (that is, a Oloading® vector indi
The temporal structure of within- and across-area variables aeging how the activity of each neuron relates to the latent variable;
both described by relating each latent variable at different tiraguation (1) of Methods). In fact, DLAG can identify many across-
points through Gaussian processes (GPs; equatifx8) of area variable pairs, each with a delay of its own sign and magnitude,
Methods and Supplementary Fig. 1). Each GP is associated teitbapture multiple concurrent streams of signal flow between the
its own characteristic timescale that controls the temporal smoottvo populations at different timescales.
ing of neural activity. Across-area variables are defined in pairs;The relationship between within- and across-area latent variables
where the elements of each pair correspond to the two areas amil observed population activity in each area can be represented
covary with each other according to a common GP (equafipn geometrically with the concept of a population activity space (Fig.
of Methods). Importantly, the elements of each across-area pair@raght column). For each area, we can define a high-dimensional
time delayed relative to each other (Rid, between the first pair population activity space where each axis represents the activity
and D, between the second pair; equatiofjsand @) of Methods; of one neuron. Each point in the space represents the population
Supplementary Fig. 1). The numbers of within- and across-agedivity at a particular time, and the points trace out a trajectory
variables (that is, within- and across-area dimensionality) are estier time. DLAGOs two types of latent variable each define the axes
mated from the neural activity. (dimensions) of a low-dimensional subspace within this population
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Fig. 2| DLAG conceptual illustration.From left to right: neurons, latent variables and population activity space representations in two recorded brain

areas analysed by DL@ Left column: single-trial activity of neurons simultaneously recorded in each area. Only three neurgrg,(N;) are shown in

each area for clarity. Centre column: within-area variables are shown in the colour corresponding to the area in which they belong. For clarity, only two
within-area variables are shown in each area, but in principle there may be a greater number, as determined®yr@rhAhe recorded activity. Across-

area variables are shown in magenta. The magenta box inset overlaps the blue and red boxes for areas A and B, respectively, to indicate that across-
area variables are shared among neurons in both areas. The location of each across-area variable (that is, within the bounds of area A's box or area B's
box) indicates which area's activity it reflects. Between area A and area B, across-area variables are vertically paired. The time courses of each pair are
related after a time delay. The sign of this delay allows each pair to be associated with a directed interaction (A to B or B to A), which is indicated by grey
arrows. For clarity, only two across-area variable pairs are shown. Right column: the activity of each neural population can be represented in a population
activity space, where each axis represents the activity of a single neurgnNN\IN;). Each point in population space represents the population activity

at a particular time, and the points trace out a trajectory over time (magenta curve). ®ldentifies two linearly independent subspaces in each area: a
within-area subspace (not shown, for clarity) and an across-area subspace (magenta-shaded plane). Each dimension (Odim.0) of the across-area subspace
is associated with a directed interaction.

activity space (in Fig2, we show only the across-area subspaaesover delays that are smaller than the sampling period (that is,
for visual clarity). Each dimension of these subspaces represemsjgilee count bin width, in the case of spiking activity).
population activity pattern. The synthetic datasets presented here were generated with a vari
ety of parameters representative of realistic data, but we also verified
Validation on realistic-scale synthetic dataBefore applying that DLAG performed well over a wider range of simulated eondi
DLAG to experimental data, we characterized its performance tions. Specifically, we systematically characterized DLAGOs perfor
synthetic datasets similar in scale to state-of-the-art neurophysitance as a function of number of trials, number of neurons, latent
logical recordings from multiple brain areas, and on additional sydimensionality and noise level (Supplementary Fig. 2), as well as
thetic datasets covering a wider range of experimental conditidasent timescale (Supplementary Fig. 3). We also characterized the
Informed by our recordings in macaque V1 and®2Dissecting runtime of the DLAG fitting procedure as a function of number of
bidirectional interactions between V1 and V2), we simulated-indeials, number of neurons, trial length and latent dimensionality
pendent datasets with representative numbers of neurons (aregSApplementary Fig. 4).
80; area B, 20), trial counts (100), trial lengths (h@)@nd levels  Finally, we explored DLAGOs robustness under several mere chal
of noise, where noise is defined as the variance independent to &amjing synthetic scenarios. DLAGOs parameter and latent-variable
neuron (see Methods for additional details). estimates remained stable in instances where we induced- imper
Across all datasets, within- and across-area latent time courees estimates of dimensionality (Supplementary Figs. 5 and 6).
(Fig. 35 see legend for quantification), across-area parametBisAG also showed robustness to mild deviations from its assump
(Fig. 3b, dimensionalities; Fig3c delays; Fig3d, GP timescales) tions of linearity and Gaussian observation noise (Supplementary
and within-area parameters (Figg dimensionalities; Fif,g GP Fig. 7; synthetic datasets were generated via a linearbnonlinearb
timescales) were all consistently and accurately estimated. We hiRgisson model) and its assumption that neural activity follows a GP
light, in particular, DLAGOs ability to estimate time delays betwéBunpplementary Fig. 8).
the two areas (Fig3c). Delay error was 1430.1ms (mean and
s.e.m. across all delays; maximum erromag)) despite observa Dissecting bidirectional interactions between V1 and V2aNe
tions occurring at 2hs time steps. This accuracy emphasizes #ren used DLAG to study interactions between two areas in the
important feature of the DLAG model that distinguishes it frorearly visual system: V1 and V2. V1 and V2 share strong reciprocal
other time-series modelling approaches (Discussion). Becaasenectiong“’ and show correlated activit§f“*5=¢, but the bidiree
latent time courses and time delays are continuous valued, DL#@hal nature of their interactions is not yet well understood. We
can leverage the correlated activity of the neuronal populationsstmultaneously recorded the activity of neuronal populations in the
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Fig. 3| Estimates of within- and across-area time courses and their parameters in synthetic daaSingle-trial latent-variable time-course estimates for a
representative synthetic dataset. For visual clarity, two latent variables of each type (across-area and within-area) are shown. Orange dashed tré&es, DLA
estimates; black solid traces, ground truth. a.u., arbitrary units. Across all synthetic datasets for which across- or within-area dimensionality was non-zero
(Methods; across, 100 datasets; within A, 120 datasets; within B, 100 datasets), the mean acciaof ime-course estimation was as follows: area A,
acrossNO0.90; area B, acrossN0.91; area A, withinN0.88; area B, withinN0.82 (all s.e.m. values less than 0.01). Similarly, the mean accuracy of subspace
(loading matrix) estimation was as follows$'N0.89; $N0.93; $"N0.92; $*N0.94 (where a value of 1 implies that the ground truth is fully captured

by estimates; all s.e.m. values less than 0.01,)Across-area dimensionality estimates versus the ground truth for all 120 synthetic datasets. Data points

are integer valued, but randomly jittered to show points that overlgpDelay estimates versus the ground truth. Displayed error (Oerr.0) indicates mean
absolute error and s.e.m. reported for 300 across-area variabdeg\cross-areaGP timescale estimates versus the ground truth. Displayed error indicates
mean absolute error and s.e.m. reported for 300 across-area varialgled/ithin-area dimensionality estimates versus the ground truth for all 120 synthetic
datasets. Data points are integer valued, but randomly jittered to show points that ovefl&ithin-area-AGP timescale estimates versus the ground

truth. Displayed error indicates mean absolute error and s.e.m. reported for 900 within-area variables in age&\ithin-area-BGP timescale estimates

versus the ground truth. Displayed error indicates mean absolute error and s.e.m. reported for 300 within-area variables in area B.

superficial (output) layers of V1 (619122 neurons; mean 86.3), amatlels separately to 40 OdatasetsO, corresponding to five recording
the middle (input) layers of V2 (15D32 neurons; mean 19.6) in theessions, each with eight different orientations. For comparison, on
anaesthetized monkeys (Figg data reported previously in refs.each dataset we also randomly split V1 into two equally sized sub
2639, Recording locations were selected to maximize the probabiptypulations (termed V1a and V1b; Fig), and then applied DLAG

that the recorded V1 and V2 populations interact by ensuring spa study V1abV1b interactions in a manner identical to V1BV2.

tial receptive field alignment. We analysed neuronal responses meaNe first used DLAG to study whether V1 and V2 interact selec
sured during the 1.28presentation of drifting sinusoidal gratinggively: whether in addition to fluctuations shared between V1 and
of different orientations, and counted spikes im20time bins. The V2 there are fluctuations that are not shared between the two areas.
periodic nature of the drifting gratings (188 per cycle) is evident Selective inter-areal communication may be a hallmark of cortical
in peristimulus time histograms (PSTHSs) for an example recordiogmputation that remains to be fully understood, particularly at
session and grating orientation (Fi). In total, we fitted DLAG the level of neuronal populationdndeed, significant across- and
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Fig. 4| Simultaneous population recordings in V1 and V&, Schematic showing a sagittal section of occipital cortex and the recording set-up. V1
population activity was recorded using a 96-channel Utah array. V2 population activity was recorded using a set of movable electrodes and tetrodes.

b, PSTHSs during the stimulus presentation period, for an example session and stimulus condition. For visualization purposes, neuronal spike trains were
first smoothed using a slidinGaussian window of width 20!ms, and therscored to produce normalized firing rates. Neurons are ordered from top to
bottom (separately for V1 and V2) according to the time at which their peak firing rate ocecutister- and intra-areal comparisons. Left: we applied [B.A

to spike counts in V1 and V2. Right: for comparison, we applied®toAtwo equally sized V1 subpopulations (V1a and V1b), randomly selected from the
V1 population. Each triangle represents a neuron. Box sizes illustrate typical relative population sizes.

within-area latent variables (that is, latent variables that wearé relative to V2 is consistent with the stimulus response properties
selected via cross-validation) were identified consistently acrosieurons in each aréaevident in the neuronal PSTHs (Fidp).
datasets (Figha single-trial latent time courses from a represent&are should be taken, however, when interpreting these latent vari
tive dataset; Figa top, dimensionalities across all datasets; mediahles as across-area interactions (Discussion). By contrast, periodic
dimensionality across areas, 3; within V1, 14; within V2, 2). signals were not evident in V1a or V1b within-population variables,
We further sought to characterize the strength (in addition taut were evident in the activity shared between V1a and V1b (Fig.
the dimensionality) of across- versus within-area activity in eash OAcross 10 and OAcross 20). Other latent variables, particularly
area. We therefore considered the latent variables in V1 and inwithin V2, exhibited additional trial-to-trial variability whose eon
separately, and computed the fraction of shared variance that eattion to the presented stimulus is less apparent (for example, Fig.
latent variable explained in its corresponding area (in Frithe 5a bottom, Within 1 and Within 2). Latent-variable time courses, as
amplitude of each latent time course is scaled by this value). Acress} as estimated across- and within-area subspaces, were also sen
area variables explained only a portion of the shared variancesitive to the orientation of presented stimuli in a manner consistent
V1 and in V2 (Fig6b, top; median across-area strengths, 34% with the tuning of neurons in V1 and V2 (Supplementary Fig. 10).
V1; 76% in V2). Interestingly, across-area activity explained m@reAG also detected differences in the type of stimulus presented
of the shared variance in V2 than in V1 (FEg. top, points above (oriented gratings versus naturalistic textures) when we used it to
the diagonal). This observation could not be fully attributed to ditudy V1BV4 interactions in an awake animal (Supplementary Fig.
ferences in recorded population size or in the total dimensionalit{).
of each area (Supplementary Fig. 9). This difference in across-aré&le next used DLAG to study the bidirectional nature of interac
strength might be a consequence of the cortical layers from whicims between V1 and V2. Note that this task may not be straightfor
we recorded: much of the activity in the middle layers of V2 is prakard with a static dimensionality reduction method such as CCA
ably driven by V1. The superficial layers of V1, on the other ha8ypplementary Figs. 12D14). Each of DLAGOs across-area latent
receive input from other sources that do not also project to the midariables is associated with a time delay that indicates a feedforward
dle layers of V2. (positive delay: V1 to V2) or feedback (negative delay: V2 to V1)
Collectively, these observations (Fig.h) top) are consistent interaction. For example, the first representative V1bV2 across-
with the presence of a communication subspace between V1 areh variable (Figa Across 1) was associated with28ms delay,
V236, through which only a subset of population activity patternsiplying a feedback interaction. In contrast, the visually similar
is shared between the two areas. Our results further suggest WiabV1b across-population variable (Fig.Across 3) was associ
not only does there exist activity in V1 that is not shared with \d2ed with a @ns delay. A V1abV1b delay at or near zero is expected,
(as reported in ref9), but there also exists activity in V2 that is nagiven that the V1a and V1b populations belong to the same area,
shared with V1. By contrast, V1a and V1b do not interact-selaad probably receive common inputs with similar latencies (ir con
tively. V1abVib Oacross-populationd activity was of higher ditnast to the populations in distinct areas V1 and V2).
sionality than Owithin-population® activity and V1DV2 across-arede developed a statistical procedure to test whether such delays
activity (Fig.6a bottom; median dimensionality across populationsignificantly deviate from zero. In brief, we assessed whether setting
11; within V1a, 2; within V1b, 1), and accounted for nearly all of ttiee delay to fhs resulted in a significant reduction in model-per
shared variance in V1a and in V1b (FEg.bottom; median across- formance; if so, the delay was deemed significant (that is, Onon-zerod;
population strengths, 96% in V1a, 98% in V1b; note also the srividthods). Indeed, the directionality of this latent variable (Across 3
amplitudes of the within-population latent time courses in Fiy.  for V1abV1b) was identified as statistically Oambiguous® (that is, not
DLAGO:s latent variables enabled further qualitative characterignificantly different from zero, indicated by the bidirectional grey
tion of the moment-to-moment nature of within- and across-arearrow in Fig.5h). In separate analyses, we also verified that V1bV2
activity on individual trials. For instance, stereotyped periodic sigteractions are better described by DLAG models with time delays
nals, whose periods matched the period of the drifting grating ptean without time delays (Supplementary Fig. 15).
sented, appeared strongly within V1 (Fig.top, OAcross 30, OWithin Delays across all datasets reflected bidirectional interactions
10 and Owithin 20) and only weakly in V&§Fimttom, Across between V1 and V2 (Figc top). Notably, the delays between V1
3). The prominence of this stimulus-related periodic structure and V2 exhibited a striking asymmetry. The interactions across
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Fig. 5| Representative CLAG time courses for inter- and intra-areal analyses (same dataset as shown in Elg. a, V1PV2 time courses. Each panel
corresponds to the single-trial time courses of a latent variable. All time courses are aligned to stimulus onset. Each black trace corresponds to one trial;
for clarity, only 10 of 400 are shown. Note that the polarity of traces is arbitrary, as long as it is consistent with the polafitpiofs*. Across-area

variables are paired vertically; vertical arrows point in the direction of the identified signal flow, as determined by the sign of the delay next to each arrow.
All delays for the displayed dataset were deemed significantly different from zero (Methods). For visualization purposes, latent variables have been scaled
and ordered by the fraction of shared variance they explain (across- and within-area variables are sorted separately; across-area variables are sorted
according to shared variance explained in V2). All across-area variables and within-V2 variables uncovered Gyatd shown here. The top 2 of 14

within-V1 variables are displayed, which explain 46% of V1's within-area shared varibns.abV1b time courses. Conventions are the same asHere,

the delay for the third across-population variable (Across 3) was deemed to have an ambiguous sign, indicated by the bidirectional grey arrow. All other
delays for the displayed dataset were deemed significantly different from zero, indicated by the unidirectional black arrows. Three of 10 across-population
variables uncovered by DL@, which explain 23% and 17% of V1a's and V1b's total shared variance, respectively, are shown here. All uncovered within-V1a
variables are shown, and two of five within-V1b variables are shown. Within-population variables (including those not shown here) explained 5% and 7%
of Vl1a's and V1b's total shared variance, respectively.

these areas were predominantly directed from V2 to V1 @Ejg. V1 and in V2 (Fig6b, top), the magnitudes of the delays might
top; median over non-zero delaysgms; median over all delays,also reflect the cortical layers from which we recorded. The positive
I 5ms). Among the across-area latent variables with statisticalBlays tended to be short (Fiiy;, top; median across significant
significant delays, 76% were associated with a negative delay. pdsiive delays+7ms), consistent with the fact that the superfi
asymmetry remained even when we subsampled the V1- popial layers of V1 directly project to the middle layers 6f¥/2rhe
lation to match V2 in size, and reapplied DLAG (Supplementanggative delays tended to be longer (&igtop; median across sig
Fig. 9). Similarly to the strength of across-area activity observedificant negative delay$,11ms), consistent with a multisynaptic
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Fig. 6| Uncovering properties of V1BV2 interactions withlIAG. a, Within- and across-area dimensionalities (determined via cross-validation). Top:

V1BV2 results. Distribution of within-V1, within-V2 and across-area dimensionalities across 40 datasets. Triangles indicate the median of each distribution.
Bottom: V1abV1b results; same forntatFraction of shared variance of each area explained by across-area latent variables. Top: V1bV2 results. Across-
area strength is significantly greater in V2 than in V1 (one-sided paired sign fes7.5! 1109). Bottom: V1abV1b results; same format. Across-population
strength is not significantly greater in one population or the other (two-sided paired sign Bst).868). c, GP timescale versus time delay for across-area
latent variables. Top: V1BV2 results. Each point represents one across-area latent variable. Black points, across-area latent variables for which the delays
were deemed significantly non-zero (Methods; 95 of 135 across-area variables across all 40 dataSetg)points: across-area latent variables for which

delays were deemed ambiguous (not significantly positive or negative; 40 of 135 across-area variables across all 40 datasets). ***Delays are significantly
less than zero, representing feedback interactions from V2 to V1 (one-sided one-sample sign test on non-zero tel2y4! 1107). Bottom: V1abV1b

results; same format. Out of 437 across-population latent variables uncovered across all 40 datasets, 316 delays were deemed significantly non-zero,
while 121 delays were deemed ambiguous. ns, delays are not significantly negative (one-sided one-sample sign test on non-zeRrd&R§)5,d, GP

timescales for within-area latent variables. Top: V1BV2 results. Normalized distribution of within-V1 and witl@fithescales across all 40 datasets

(total within-V1 latent variables, 562; total within-V2 latent variables, 121). Triangles indicate the median of each distribution. **WitBR-Yiescales

are significantly longer than within-VGP timescales (one-sided Wilcoxon rank sum teBt:!1.611103Y. Bottom: V1abV1b results; same format (total
within-V1a latent variables, 100; total within-V1b latent variables, 92). *Within-GEbtimescales are significantly longer than within-VGR timescales
(one-sided Wilcoxon rank sum tesB=10.039), even though the magnitude of the difference is small (as expected for randomly assigned subpopulations).

path from the middle layers of V2 back to the superficial layersané consistent with previous evidence that timescales increase for
V1. We also found that the strongest across-area interactionsaiaas higher up the cortical hierar¢gy.
V1 were nominally feedforward (V1 to V2), while the strongest
across-area interactions in V2 were nominally feedback (V2 to \[liscussion
(Supplementary Fig. 16). By leveraging the correlated activity across two neuronal popula
By contrast, V1abV1b interactions were symmetric {jdnot  tions, DLAG can disentangle concurrent signals relayed in each
tom; median over non-zero delay2ms; median over all delays,direction and characterize how those signals evolve over time within
0ms; neither median significantly different from zero; 54% of noand across trials. Although we applied DLAG to the spiking activity
zero delays were negative; see also Supplementary Fig. 16).of luspulations of neurons in distinct brain areas, DLAG is appli
centring of the delay distribution around zero is expected, giveable to any high-dimensional time-series data, including other
that the neurons in V1a and V1b were randomly chosen and belowgiral recording modalities (for example, calcium imaging, subject
to the same area. Still, the magnitudes of V1abV1b delays wer¢onibie temporal resolution inherent to the recording technology). It
universally zero. These non-zero delays probably reflect aggregatealso be used to study the interaction of two populations ef neu
differences in the stimulus response properties of the randomiws in different cortical layers or of different cell types. DLAG can
chosen Vla and V1b subpopulations. For example, inspect@ren be used to study the relationship between a neuronal popula
of PSTHs (Fig4b) suggests that the phase of trial-averaged petion and a dynamic stimulus or behavioural variables.
odic structure can vary by tens of milliseconds between individualRecently, feedforward and feedback signalling was studied in the
V1 neurons. same V1DPV2 recordings as analysedh€@€A was used in a sliding
Finally, we examined the timescales of neural activity identiindow scheme to identify trial epochs dominated by either-feed
fied by DLAG within V1 and V2. Within-V2 GP timescales wer®rward or feedback signalling. V1bV2 (and V1BbV4) interactions
longer than within-V1 GP timescales (Figl, top; median within were found to involve distinct population activity patterns during
V1, 24ms; within V2, 74ns). Within-V1a and within-V1b GP tim feedforward- versus feedback-dominated trial epochs. This statisti
escales, on the other hand, were nearly the same(Figottom; cal approach, however, could not be used to study the concurrent
median within V1a, 2fhs; within V1b, 2&1s). These observationsnature of feedforward and feedback signalling (see Supplementary
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Figs. 13 and 14 for further discussion). In this Article, we have pro The sign and magnitude of DLAGOs time delays can, however,
vided a complementary view of V1DV2 interactions, using DLAGHrarrow the set of hypotheses consistent with the data. We might
identify concurrent, distinct feedforward and feedback activity patasonably suspect, for example, that short positive (V1 to V2)
terns that characterize the stimulus presentation period as a whdédays identified by DLAG reflect direct interactions from the out
Future work could characterize how the activity patterns uncoverngat layers of V1 to the input layers of V2 (the layers from which we
by DLAG and their associated time delays might change during teeordedj*?. Larger negative (V2 to V1) delays might instead indi
course of a trial (see more below). cate indirect interactions, given that the path from the input layers
DLAG identified V1DBV2 interactions in both directions, whosef V2 to the output layers of V1 involves multiple synapses. Some
strengths and associated time delays appear to reflect the coréicadss-area latent variables were associated with delays statistically
layers from which we recorded. DLAG might have been expeciedistinguishable from zero (that is, ambiguous), and could indicate
to identify at least as many feedforward (V1 to V2) interactions either tight recurrent interactions or common input from an unob
feedback (V2 to V1). Generally, feedback intercortical connecti@esved source. Future experimental interventions could further dis
equal feedforward connections in number; moreover, specificambiguate these cases.
our recording arrangement, feedback connections do not originateA phenomenon widely recognized by cross-correlation -stud
in the input layers of V2%, Surprisingly, DLAG revealed a markedes’®° is the presence of correlations across areas due simply to
asymmetry, such that a majority of across-area latent variables vweeramon stimulus drive, rather than an inter-areal interaction. For
associated with a feedback interaction. This apparent disparity plBEAG, these stimulus-driven effects can appear as an across-area
ents an opportunity for future study. variable. The stereotyped periodic signals evident in V1DV2 across-
DLAG has commonalities with several other methods. Farea latent variables (Figg Across 3) are a probable example. If
instance, static dimensionality reduction methods such as CQissired, one could control for these effects with straightforward pre
sparse structured CCA and their probabilistic varfanigentify processing steps, such as the subtraction of PSTHs from single-trial
across- and/or within-area latent variables, but do not charactenieeponses, thereby emphasizing trial-to-trial fluctuations correlated
inter-areal interactions over time or the directionality of signal floacross areés
(but see ref, discussed above). Multivariate time-series methods Assumptions explicit in the DLAG model definition warrant
such as Granger causal modefiiig generalized linear mod&f$®” additional care when interpreting estimated delays. First, DLAG
or recurrent neural network&characterize the directionality of signatreats time delays as constant parameters. However, the direction
flow, but not in a low-dimensional manner. Time-series methods thaft interaction associated with a dimension of population activ
provide a low-dimensional description of across-area activity do rigt might not be constant across different trial epochs or different
provide a low-dimensional description of within-area activity, shoukekperimental (for example, stimulus) conditions. Thus, we interpret
low-dimensional within-area activity be of scientific intefé%tor, a delay as a summary of this direction of interaction throughout
they do not characterize time delays between‘rtasontrast with the course of an experiment. Similarly, neurons within the same
all of these methods, DLAG jointly reduces dimensionality and charea can respond to a common input with different latencies (evi
acterizes the directionality of signal flow by estimating across- ateht in, for example, Figb). An estimated delay hence also-rep
within-area latent variables with time delays and timescales. resents a summary across neufarSecond, DLAG assumes that
DLAG offers unique advantages when characterizing the teeach dimension of population activity is associated with one delay,
poral structure of activity within and across areas. Applied to it direction. If a set of interactions were to occur concurrently in
and V2, DLAG uncovered latent variables with diverse tempolaith directions but evolve along the same dimension, then teas
profiles and timescales. The ability to capture diverse dynamica apart directionality might be difficultNalbeit for any statistical
motifs stems from DLAGOs definition via @GRseyond temporal method, not just DLAG. Third, DLAG assumes that signals are lin
smoothness, DLAG makes no additional assumptions about gely transformed across areas. DLAG therefore does not take into
form of dynamics within or across areas. In contrast, multiaraacount nonlinear transformations of signals. We believe that there
methods proposed by refs.and®, for instance, describe interac are many experimental scenarios for which the assumption of a lin
tions between areas according to a parametric dynamical modal. transformation or direct signal transmission is appropriate (for
GPs provide DLAG with another advantage: the ability to discoxestample, ref’; Supplementary Fig. 7). Nonetheless, in practice, this
wide-ranging delays with high precisiarExisting multiarea meth assumption should be evaluated on a case-by-case basis.
ods (nearly all of which, above, are defined in discrete time) areSolutions to these interpretational challenges might be well
limited to delays restricted to be integer multiples of the samplingthin reach, if not already available through DLAGOs existing
period or spike count bin width of neural activity. machinery. For example, one could fit DLAG to subsets of trials,
With the conceptual and statistical advantages described abtwsubsets of neurons or to separate trial epochs to understand how
DLAG is a powerful tool for exploratory data analysis. For exami#,AGOs estimates depend on these elements of the neural record
after performing a new experiment, one can use DLAG to geniags. We have already employed some of these strategies here (Fig.
ate data-driven hypotheses about plausible dynamical motifs witBiand Supplementary Figs. 9 and 11), and could continue to build
and across areas. Then, one can test these hypotheses usiqprathis foundation.
dynamical system-based approachNfor example, data-constrained
recurrent networks©2%, B Methods
The population activity patterns represented by DLAGOs acr@gghematical notation. To disambiguate each variable or parameter in the DLAG
area variables might be interpreted as distinct OchannelsO throestigh we need to keep track of up to four labels that indicate their associated
which two areas cammunicdizAs wih any statistical method. () Sbepin (o S, e (8 el il e
_however’ m;erpr_etatlon Qf the features extracted by DLA(_B I5S ee IabF()eIs via subscrip?s, where subpopulations (areas).are indéxed 2y .
ject to ambiguities, particularly when not all relevant brain are@srons or latent variables are indexed bye will indicate the upper bound
and neurons are record&tl. An across-area latent variable, foas appropriate) and time is indexedtbyl,E , T. For example, we delne the
instance, could reflect an interaction between areas A and B thabssrved activity of neurgr(out ofqg) in area at timet as 4 ¢ (R. To indicate
either direct or indirect, mediated by a third (unobserved) area @:_ollectlon of all variables along a_partlcular |nde>§, we replace that |_ndex with
Similarly, a with_in-area latent \(ariable could reflect activity intern l?rlggé ';te)ggrevgde i:fg:i;‘f?itnzzteass'r?ﬁgigi?;%aﬁtwg.Ogério%%?:ifgmﬁ;re
to one area, or it could reflect inputs sent from unrecorded neurQigarticular index is either not applicable or not immediately relevant, we omit it.
to one area but not the other. "e identities of the remaining indices should be clear from context. For example,
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throughout this work we consider only the activity of a full population, and not Supplementary Fig. 1a. The loading matrigéand $] linearly combine latent

of single neurons, so we rewntg asy,,. Finally, we indicate a latent variableOs

variables and map them to observed neural activity. The parasneger be

or parameterOs designation as within- or across-area via a superscript, where Glefight of as the mean firing rate of each neutpis.a zero-mean Gaussian
indicates within-area, and Oa0 indicates across-area. For example, we de!ne acapsiom variable, where we constrain the covariance nRtrixbe diagonal, as

area latent variabje(out ofp?) in area at timet as ¥; J (R, and the collection
of allp* latent variables as the vectdf § R S. We similarly de'ne within-area
latent variabl¢ (out of @) in area attimet as Y; ¢ (R, and the collection of all

d latent variables as the vectdf § RS
It is conceptually helpful to understand the above notation for obseyyed (

and latent X) variables as taking cross-sections of matrices. For example, obsery

activity in area can be grouped into the matrix=[ 2 aaa 1! R® S Then,
eachy,, is a column oF,. Similarly, across-area latent variables in iacea be

grouped into the matrix95=[ ¥ aaaf J! R? % Each¥ isa column of

9'. Similarly, we represent a row 6f (that is, the values of a single latent variabl

in factor analysis (FA) and GPFAto capture variance that is independent to each
neuron. This constraint encourages the latent variables to explain as much of the
shared variance among neurons as possible.

As we will describe, at time poiptacross-area variable§ B O¥ inarea
1 and area 2, respectively, are coupled with each other, and thus each area has the
age number of across-area variabl@syithin-area variables are not coupled
across areas, on the other hand, and thus eachraasahave a different number
of within-area variables(. Because we seek a low-dimensional description of
neural activity in each area, the combined number of across- and within-area
variables is less than the number of neurons, that is, J<q, where Cand q

cAre determined by the data (see below).

The parameterss) and $' have an intuitive geometric interpretation (Fig.

j atall time points) a8, ¢ R°. Within-area latent variables can be understood right column). Each element gf can be represented as an axis in a high-

5

analogously from the matriX%=[ ¥\ aaaX 31 R? S Finally, we note
that there is a separate set of observed and latent varigbles 93) for each

dimensional population activity space. Then the column$!othe across-area
loading matrix for areg define a subspace in this population activity space,

trial, while there is a single set of DLAG model parameters shared across trialswhere each dimension corresponds to a distinct across-area latent variable. This

For concision, we index trial number only as needed, and omit the trial
index otherwise.

across-area subspace represents patterns of population activity that is correlated
across areas. Analogously, the column$jodefine a within-area subspace, which

We will explicitly define all other variables and parameters as they appear, bigpresents patterns of population activity that is shared only among neurons

for reference we list common variables and parameters below.

Observed neural activity.
t ¢ N number of neurons observed in aliea

t v @ q" T matrix of observed activity in area
t y, N g" 1 vector of observed activity in aiegt timet; thet™ column ofY;

Latent variables.

t ¢ N number of across-area variables (same for both areas)

t  9'N " T matrix of across-area variables in drea

t Y N Q" 1 vector of across-area variables in aetaimet; thet™ column
of 9'

t Y. N T" 1 vector of values of across-area varigiol@rea over time; thg"
row of 9!

t @ N number of within-area variables in area

t 95N @" T matrix of within-area variables in area

t Y3 N @ 1vector of within-area variables in afes timet; thet" column
of 9)

t Yy, N T" 1 vector of values of within-area variapile areai over time; the
j™ row of 9]

Model parameters.

$'N g" Cacross-area loading matrix for aiea
$3N g" d within-area loading matrix for aréa

1 mean parameter for area

g; observation noise covariance matrix for area

me delay parameter between aread across-area varialple
relative time delay associated with across-area vajidje D,;! D;;
GP timescale for across-area varigble

GP noise parameter for across-area varipble

GP timescale for within-area varialple area

GP noise parameter for within-area variapie area

)

Z

q'
G
ti

P =

i

t
t
t d
t R
t Dy
t DN
t IR
t N
t N
t N

t
b
X
J
X
J

GP covariances.
B R e ) . - )
t 55 NT" T covariance matrix for across-area varigbbetween areas

andi,
t L, N covariance function for across-area varigbleetween areasandi,

t 2N T" T covariance matrix for within-area variahlie area
t L5 N covariance function for within-area varialjlen area

DLAG observation modelFor area at timet, we define a linearbGaussian
relationship between observed activty,and latent variables; B O% (ref.”):

28 $Y ¢ $YN o B

JIN (B

where$81 RR ¢ ¢X1 RR 9 E! R"and 3t S® F(SR Fisthe setof

within areai. Additionally, as we will discuss below, sincg'thgir of across-

area variables¥®  Y°,) is associated with a direction of population sigiwav
(Fig. 2, centre column), so too are the corresponding columr&®iB O%.

The across-area subspace can thus be partitioned further on the basis of the
nominal directionality of activity patterns (area 1 to area 2, or area 2 to area 1).
Finally, note that the columns @ are linearly independent but not, in general,
orthogonal. Likewise, the columns 8 are linearly independent but not, in
general, orthogonal. The across- and within-area subspaces ir{syaaned

by the columns of$! and by the columns o8], respectively) are also linearly
independent but not, in general, orthogonal. The ordering of the columns of each
loading matrix, and of the corresponding latent variables, is arbitrary.

DLAG state model We seek to extract smooth, single-trial latent time courses,
where the degree of smoothing is determined by the neural activity (as described
below). The time course of each within-area and across-area latent variable is
described by a GP

Within-area latent variablegor each within-area variakjle 1,E, @ in brain
areai, we define a separate GP as follows

VN (0 Dk

where , 1 S¥ is the covariance matrix for within-area varighté ared.

DLAG is compatible with any valid form of GP covariance, but for the present work
we choose the commonly used squared exponential function. Then, elepgnt (

of , 7, the covariance between samples of the within-area variable at,tands,

can be computed according to

! (T
DU 1 (9 FYQ ((3; +( a1
J/K
THE U U

where the characteristic timescalg,}x R , and GP noise variance,
( ! ( ), are model parametets, is the Kronecker delta, which is 1 for
#t=0 (equivalentlyt, = t,) and 0 otherwise.

Notice that Lj is stationary: the squared exponential function depends only
on the time difference{ t,) (Supplementary Fig. 1b). This stationarity gives the
covariance matrix, } a characteristic banded structure (Supplementary Fig. 1c).
The characteristic timescalej, dictates the width ofj(t,,t,), or equivalently
how rapidly the latent variable changes over time. Thearameters are estimated
from the neural activity, together with the other DLAG parameters (see below). We
follow the same conventions as in féfand fix ( 5)2to a small value (19. Note
also that, under this definition, the process is normalized solffftt,) = 1 for
t,=t,. Thus, the prior distribution of within-area latent variabMs in area at
each time follows the standard normal distribution, ( ). This normalization
removes model redundancy in the scalingddf B O%.

Beyond describing within-area interactions, within-area variables are critical
to the interpretability of across-area variables. As we will define below, across-area
variables describe the activity of neurons in both areas. Within-area variables
could, in principle, be formulated as a special case of across-area variables,
where the loading coefficients to one area (the appropriate colun$iof$'
in equation ()) are identically zero. If the model does not allow for within-area

g" g symmetric matrices) are model parameters to be estimated from data. Thevariables, then across-area variables must explain within-area activity in addition
relationship between observed and latent variables is illustrated graphically in to across-area activity. Across-area variables could thus reflect a mixture of
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within- and across-area activity in this case, obfuscating their interpretation as noise covariance matriceR;(see equation (47) of Supplementary Note), this
representing population activity patterns that are correlated across areas. The special-case DLAG model would describe within-area activity via low-dimensional
presence of within-area variables allows the across-area variables to isolate actatignt variables.
that is truly correlated across areas. This statistical phenomenon applies to other
statistical models, and is not specific to DERG See Supplementary Discussion Selecting the numbers of within- and across-area latent variab[@sAG
for further mathematical discussion. has three hyperparameterg, the number of across-area latent variables; and

@ B O@, the number of within-area latent variables for each area. Model
Across-area latent variabl&ge next describe across-area temporal structure. selection therefore poses a scaling challenge. Grid search over even a small range
Across-area variables are different from within-area variables in two respects: of within- and across-area dimensionalities can result in a large number of models
(1) across-area variables are defined in pairs, where the elements of each pair that need to be fitted and validated. For example, considering just 10 possibilities
correspond to the two areas, and (2) the elements of each pair are time delayedor each type of latent variable would result in 1,000 candidate models. Thus,
relative to each other (Fig. centre column). Thus in contrast to our definition exhaustive search for the optimal DLAG model is impractical.
of within-area variables, in which we considered each area separately, we now  We therefore developed a streamlined cross-validation procedure that improves
consider across-area variables in both areas togeﬁgn: R%and Y ' R 5 scalability. In brief, our model selection ~pr0cedure~occurs in two stages. First,
thej™ rows of 9% B O, respectively, for thé across-area variable. we consider each area separately, andNusing FANwe find the number of latent

The across-area latent variables of ared*})(and area 2 ¥ ) belong to the variables needed to explain the shared variance among neurons within each
b

) . area. We reasoned that, while there is not a direct correspondence between the
same GP (Supplementary Fig. 1d). THg are values of the GP sampled on a tInF'E(\)ptimal number of latent variables in DLAG and FA models (because of temporal

grid. The Y, are values of the same GP, also sampled on a time grid, but offsetsmqqthing and other differences in model structure), it is unlikely that the total
from the time grid of area 1 by a time delay. We define the GP for each across-aig@ber of within- and across-area latent variables extracted by DLAG will exceed
variablgj=1,E , Cas follows: the FA dimensionality for an area (such a case would imply that there exists a
neuron in, for example, area A that covaries with one or more neurons in area B,
but no other neurons in area A). Hence we believe this approach to be reasonable
¥ ' B B given the computational benefits. We then use the FA dimensionality in each area
to reduce the space of DLAG model candidates to a practical size.
In greater detail, we first applied FA to each area independently, and identified

where , ® = ,® describe the autocovariance of each across-area variable, . . - X o
K the optimal FA dimensionality througk-fold cross-validation (here we chose

and ,® = ,® describe the cross-covariance that couples the two areas K= 4). We randomly split all trials intié equally sized partitions. For th
(Supplementary Fig. 1e). _ , , . cross-validation foldk= 1,E ,K), we held out th&" partition of trials and fitted

To express the auto- and cross-covariance functions, we introduce additionata model parameters to the trials in the remairtiigl partitions. Using the
notation. Specifically, we indicate brain areas with two subsdtipts,2 and fitted parameters, we evaluated the data log likelihood on the held-out trials.
i,=1,2. Then, we define § ; § R¥ Sto be either the auto- or cross-covariance e repeated this procedure for each ofiHelds and summed the held-out
matrix between across-area variahfg, in area, and across-area variable data log likelihoods computed for each fold. We refer to this value as the cross-

p Validated data (log) likelihood. The FA model with the highest cross-validated data
likelihood was taken as OoptimalQ.
We then used the optimal FA dimensionalitie§( i = 1,2) to constrain
5 ! " h (TY - the space of DLAG model candidates. In particular, we consider only DLAG
B,U = (4§ FYQ 8 +( g ATy models that satisfyd+ ¢f= @, fori=1,2;and ¢$min( Q" '€). In words,
we consider only DLAG models such that the number of within- and across-
area latent variables in each area sum to that areaOs optimal FA dimensionality.

Y5 ; in ared,. We again choose to use the squared exponential function for G
covariances. Therefore, elemenit{) of each, § ; can be computed as follgWws

TE U %! U % g Furthermore, the number of across-area latent variables is limited by the area with
the smallest optimal FA dimensionality. Not only does this streamlined cross-
where the characteristic timescalé! R , and the GP noise variance validation approach provide an upper limit on the possible number of within- and

across-area latent variables, it also effectively collapses the DLAG hyperparameter
space from three free hyperparameters to one (across-area dimensidg)ality,
markedly improving scalability.

Among the model candidates within this constrained search range, we selected
models that exhibited the largest cross-validated data likelihood, using the same
K-fold cross-validation scheme as for FA. For each df floéds, we evaluated (the
log of) equation (31) of Supplementary Note on held-out trials using DLAG model

arameters fitted to all remaining trials. We then took the cross-validated data
likelihood to be the sum (across kéolds) of held-out data log likelihoods.
To further reduce runtime, we limited the number of expectation-maximization
iterations during cross-validation to 1,000. The optimal DLAG model was then
refitted to full convergence, where the data log likelihood improved from one
iteration to the next by less than a preset tolerance (here we u%ed 10
We also note that throughout this work we explicitly considered model

( § ' ( ) are model parametets, is the Kronecker delta, which is 1 for
#t=0 and 0 otherwise.

We also introduce two new parameters: the time delay to,aréa ¢ R,
and the time delay to aréa % ¢ R. Notice that, when computing the
autocovariance for aredthat is,i,=i,= i), the time delay parametefd and %
are equal, and g6t (equation 8)) reduces simply to the time differentg (t,),
as in the within-area case (equatié))(Time delays are therefore only relevant
when computing the cross-covariance between area 1 and area 2. The time de|
to area 1D,;, and the time delay to area®;, by themselves have no physically
meaningful interpretation. Their differené=D,;! D,;, however, represents
a well defined, continuous-valued time delay from area 1 to area 2. The sign of
the relative time deld; indicates the directionality of the leadblag relationship
between areas captured by latent varipfpesitive, area 1 leads area 2; negative,

area 2 leads area 1), v_vh.ich‘ we interpret as a Qescription of inter_-areal signal ﬂo}%ndidates for which across-area dimensionality was 28roQ): the two areas

Both the che_lracterlsnc tlm_escaTﬁsand relative delays, are estimated from are independent, and any correlations between neurons are purely within-area.
the neural activity, together with the other DLAG parameters (Supplementary Similarly, we explicitly considered model candidates for which within-area
Notg). More specifically, to ensure identifiability of time delay parameters, we _dimensi(;nalities were zero= P &= ) all variance shared among neurons
designate area 1 as the refer_ence area, and fix the delays fpr area 1at 0'. that 'Sh one area is attributed to their interactions with neurons in the other area. The
D,=0 for all across-area varlab]esl,E_, C. Then, (_each relative time delz\jy_s case where all dimensionalities are zef=( @ = = ) is equivalent to fitting
S"T‘p'y Dy the tha‘Di need not be an !n_teger ”."“'“p'e (.)f Fhe sampling period or a multivariate Gaussian distribution to the data with diagonal covariance (that is,
spike count bin width of the neural activity. As in the within-area case, the acrosgy nerons are treated as independent). We similarly considered zero-dimensional
area GP noise varlancd‘ij,axz, is set to a small valge (90 Furthermore, the.across- FAmodels @ = P® = ) during the first stage of our model selection
area GP is also normalized so thiit; (U )= if#t=0, thereby removing procedure, equivalent to fitting a multivariate Gaussian distribution with diagonal
model redundancy in the scaling 85 B OE. covariance to observations in the respective area. The inclusion of these zero-

dimensionality model candidates protects against the identification of spurious

DLAG special casésnally, we consider some special cases of the DLAG model interactions across or within areas.
that illustrate its relationship to other dimensionality reduction methods. First, by
fixing all time delays to zer®(= 0), and by removing within-area latent variables Synthetic data generationWe generated synthetic datasets according to the
(@= @= ), DLAG becomes equivalent to GPFapplied to the two areas DLAG generative model, so that we could leverage known ground truth to evaluate
jointly. By removing instead the across-area latent varialflesQ), and keeping the accuracy of estimates and characterize DLAGOs performance over a range
the within-area latent variables intact, DLAG becomes equivalent to GPFA appliedsimulated conditions. We started by randomly generating the set of model
to each area independently. Finally, by removing temporal smoothing (that is, parameters$ (see equation (19) of Supplementary Note), subject to constraints
in the limit as all GP noise parameters 7 approach 1), while retaining both informed by experimental data. For all datasets, we chose the numbers of neurons
within- and across-area latent variables, DLAG becomes similar to probabilisticin each area on the basis of our V1DV2 recordings (aga 80; area By, = 20).
CCA™* Whereas probabilistic CCA describes within-area activity via observatitde set the combined total dimensionality in each area to representative values
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(area A, C+ J=10; area B+ J@=5), but varied the relative number of area variables at all time points in areinally, defind$® RR® @5 and
within- and across-area latent variables across datasets, Generating 20 datasetg8§ RR3 ¢ tg pe block diagonal matrices comprisihgopies of the (ground
each of six configurations¢=0,E ,5; @=5,E ,10; @=0,E ,5) resulted in a (i%j h) matrices $' and $, respectively; and defidg! R R by vertically

total of 120. independent data_se_ts. Importantly, among_these datasets, we inclu catenating copies of (the ground truttg,. WeQll denote the estimates of each
datasets without across- or within-area structure (that is, datasets for which across-

or within-area dimensionality was zero), to test if our framework could identify of these values W ij % %J and‘E. The estimate?{ and Wj are posterior
such cases. means, computed according to equation (30) of Supplementary Note.
To ensure that synthetic datasets exhibited realistic noise levels, we first Then, to separate the accuracy of across-area variable estimation from
evaluated the strength of latent variables relative to the strength of single-neurothie accuracy of within-area variable estimation (as reported it Bigl
variability exhibited in the V1DV2 recordings. Specifically, we computed the ~ Supplementary Fig. 2), we estimated denoised (smoothed) observations, using only
Osignal-to-noise ratio (where OsignalO is defined as the shared activity descrivgf@ss-area or only within-area latent-variable estimates:
by latent variables), t&,$,)/tr(R), for V1 and V2 using the parameters of the " s
optimal DLAG models fitted to each V1DV2 dataset. Representative values were 7 = .67, + %
0.3 and 0.2 for V1 and V2, respectively. Then for each dataset, we generated our Y .
synthetic observation model paramet@sandR, as follows. We first drew the ~ wherefZ = [ & 44&, 5] ! RFR® Here, the asterisk is used to indicate
elements o€, and a diagonal matrix ;¢ R® F from the standard normal either 'a’ or 'w' as a superscript, where observations have been denoised
distribution N (). Then, we sd® =% §(so thaiR was a valid covariance using only across- or within-area variable estimates, respectively. We then
matrix) and rescaleR such that areaexhibited the correct signal-to-noise ratio. collect the denoised sequences oNailals, Iz'J .n=1,E N, into the matrix
gii?riiljt:gir.ns of the mean parametevere also drawn from the standard normal @!J _ [‘Z'J a4 &;J ]! R RS/ Analogously, defin_e!J I R RS/ to be the set of
Finally, we drew all timescalds § S 1 ng 1 ng ) uniformly from g;of;:}r;c:jtir#?qizggﬁ;)gés generated before adding noise (that is, the noisg term
U(" mins " mad» With " ;= 10ms and’, .= 150ms. We drew all delayg % y %}) We then computed thB? value between estimated and (noiseless) ground
uniformly from U(D i, Dinays With Dy =" 30ms andD,,,,= +30ms. All GP noise  truth sequences:

variances{(( § } ¢ .{( Xk} . 1( Xk} J) were fixed at 10 With all model

parameters specified, we then generatedL00 independent and identically

distributed trials &6 &, n= 1,E ,N) according to equations (26) and (27) of

Supplementary Note. Each trial comprided 50 time points, corresponding to wheref.‘!J =1 fZJ éé@] I RR®% /s constructed by horizontally concatenathhg

1,000ms sequences sampled with a period oh20o mimic the 2Ms spike count  copies of the sample mean for each neuron in the ground ttytiaken over all

time bins used to analyse the experimental data. time points and trials@, ! R R%). Note that, in the multivariate cag®; (!( 1],
where a negative value implies that estimates predict the ground truth less

Synthetic data performance metric§o quantify DLAGOs performance across  accurately than simply the sample mean.

all synthetic datasets, we employed a variety of metrics. We first consider the

estimation of DLAGOs observation model parameters. To assess the accuracy ®isual stimuli and neural recordingsAnimal procedures and recording details

loading matrix estimation §5 % reported in Fig3 and Supplementary Figs. 2 have been described in previous vk Briefly, animalshacaca fasciculatis

o'
R
T
7

and 7), we computed a normalized subspace%rror young adult males) were anaesthetized with ketamine@k@ *) and maintained
1 ", on isoflurane (1D2%) during surgery. Recordings were performed under sufentanil
P 6 08" 6 8y, (typically 6D18gkd *h' %) anaesthesia. Vecuronium bromide (158g *h'?)
Frvt — was used to prevent eye movements. The duration of each experiment (which

comprised multiple recording sessions) varied from 5d&oAll procedures were
approved by the Institutional Animal Care and Use Committee of the Albert
Einstein College of Medicine.

The data analysed here are those reported irfféfand a subset of recording
sessions reported in réf. Activity in V1 output layers was recorded using a
96-channel Utah array (40@n interelectrode spacingmm length, inserted to
a nominal depth of 600m). We recorded V2 activity using a set of electrodes/
tetrodes (interelectrode spacing 3@@) whose depth could be controlled
independently (Thomas Recording). These electrodes were lowered through
V1 and the underlying white matter, and then into V2. Within V2, we targeted
neurons in the input layers. We verified that the recordings were performed
the input layers using measurements of the depth in V2 cortex, histological
nfirmation (in a subset of recordings) and correlation measurements. For
complete details see refsand?®. Voltage snippets that exceeded a user-defined
threshold were digitized and sorted offline. The sampled neurons had spatial
receptive fields within 2D4; of the fovea, in the lower visual field.

W AN We measured responses evoked by drifting sinusoidal gratings ¢g&Mslper
Fv e W degree; drift rate 6.24; 2.6D4.95; in diameter; full contrast, defined as Michelson
contrast, Lmax! Lmin)/(Lnax* Lmin), WhereL;, is Gcdm' 2 andL,,,, is 8Gcdm' ?) at
eight different orientations (22.5j steps), on a calibrated cathode-ray tube monitor
h S ) laced 116m from the animal (1,024768 pixel resolution at a 16@ refresh
We next consider the estimation of DLAGOs state model parameters. Repor; ing. Expohitp://sites.google.com/a/nyu.edu/e)p&ach stimulus was presented

the accuracy of Qelay anq _t|mesca|g est|mgte53(5rgj Supple_mentary Figs. 400 times for 1.28 Each presentation was preceded by an interstimulus interval of
2, 3 and 7) required explicitly matching estimated latent variables to the ground 1(?5 during which a grey screen was presented

truth. Given the large number of synthetic datasets presented here, we automate We recorded neuronal activity in three animals. In two of the animals, we

this matching pracess as follows. First, for eachi areatook the unordered recorded in two different but nearby locations in V2, providing distinct middle-

across- and Wlth!n—area Iatent—vanable' estimatanday, 'and computed the layer populations, yielding a total of five recording sessions. We treated responses
pairwise correlation between each estimated latent variable and each ground tr

latent variable,\ﬁ‘ B O‘ﬁ, across all time points and trials. We then reordered the
estimated latent variables to match the ground truth latent variables with which

whereM is the appropriate ground truth parameté,is the corresponding
estimate and®x is the Frobenius norne,,, quantifies the magnitude of the
projection of the column spaceMfonto the null space o . A value of 1

indicates that the column spaceblies completely in the null space &f and
therefore the estimate captures no component of the ground truth. A value of 0
indicates that the column space $fcontains the full column spaceMf and
therefore the estimate captures all components of the ground truth. This metric
offers two advantages: (1) it does not require that the colunMsaofi O are
ordered in any way (the ordering of DLAG latent variables is arbitrary) and (2) it
does not require tha&¥l and 6 have the same number of columns, so it can be us
to compare the performance of models with different numbers of latent variable%0
We report the accuracy of loading matrix estimation'ag,}, (Fig.3). To assess
the accuracy of estimatingandR (reported in Supplementary Figs. 2 and 7), we
computed the normalized error

wherev is eitherd or diagR), andd is the corresponding estimate.

Data preprocessingWe counted spikes in 2@s time bins during the 1.28

Stimulus presentation period (64 bins per trial). For all analyses corresponding to
each recording session, we excluded neurons that fired fewer tlspik6s§*, on
average, across all trials and all grating orientations. Because we were interested
in V1DV2 interactions on timescales within a trial, we subtracted the mean across
time bins within each trial from each neuron. This step removed activity that
fluctuated on slow timescales from one stimulus presentation to thié. vt

then applied DLAG to each dataset separately.

estimation performance, we computed the absolute error between ground truth
and (matched) estimated parameters, to express the error in units of time (ms).
Finally, we consider the moment-by-moment estimation of latent variables.
As with the loading matrix, delay and timescale estimates, quantifying the
accuracy of latent-variable estimates requires care since the sign and ordering
of latent variables is arbitrary and will not, in general, match between estimates

and the ground truth. First, 16¥3=[ ¥ aaaf J' 1 R® be a collection

of all (ground truth) across-area variables at all time points ini aBailarly, Intra-areal and subsampled population comparison3o contrast with the
let!V=[ Y aaa'd ! R 4% pe a collection of all (ground truth) within- V1DbV2 results, we also used DLAG to characterize the interactions between two
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V1 subpopulations. For each dataset, we randomly split V1 into two equally sizeaf a variableOs importance in describing observed neural activity: for example,

subpopulations (for datasets with an odd number of V1 neurons, we discarded @ameacross-area variable with an ambiguous time delay between areas could, in

neuron at random). Each subpopulation was labelled arbitrarily as either OV1alpunciple, still explain a large portion of an areaOs shared variance.

OV1b0 (Fig). We then applied DLAG to dissect these V1abV1b interactions in a

manner identical to V1bV2 (Figsand6). Across-area predictionAs described above, we selected the number of within-
We also sought to understand the extent to which the V1DV2 results were and across-area latent variables for DLAG models using cross-validated data log

driven by disparities in population size between V1 and V2 (Supplementary FigliRglihood (from equation (31) of Supplementary Note). Cross-validated data log

For each dataset, we therefore randomly subsampled the V1 population to matdikelihood offers a principled performance metric, as it is precisely the (training)

the size of the V2 population. We then applied DLAG to each subsampled dataskdtta log likelihood that a fited DLAG model maximizes, and it fits within

in the same manner as above. DLAGOs probabilistic framework. However, interpretation of the performance
differences between models can be difficult given the scale of log likelihood values.

Variance explained by DLAG latent variablesfter fitting a DLAG model to Furthermore, log likelihood values can vary markedly from dataset to dataset,

each experimental dataset, we sought to compare the relative strengths of acrogien by orders of magnitude. We therefore sought an alternative metric that

or within-area latent variables extracted from the same dataset (asdj Fig. facilitates more intuitive comparison between models/methods (Supplementary

and across different datasets (as in &ly. To quantify these comparisons, we ~ FigS: 12 and 15) and across datasets (Supplementary Fig. 11).
computed the variance explained by each latent variable, as derived from fitted  Towards this end, we developed a leave-group-out prediction procedure that

model parameters. From equatidt), (the total variance in aréaimplifies to measures a modelOs ability to capture interactions across areas (similar to the
) leave-neuron-out prediction, or Oco-smoothingO, procedures dit9efdur goal,
W S ) SSE88 + 1Y + 3, therefore, is to use a fitted model to predict the unobserved activity of held-out

neurons in one area, given the observed activity of neurons in the other area. Let
. . h vari ) h | us first collect observed variables (for one trial) in a manner that highlights group
By mBS;;ectlon,t e.tota variance decomposes |-n‘tot re;(c!a separabg componentsi, .+ re. We definéz = [ 7 aad g! | RR®and1Z=[ 7 a4& 4! | RRS,
tr( $5%5 ), the variance due to across-area activity$}&)' ), the variance due  gprained by vertically concatenating the observed neural agtiyindy,, in
to within-area activity, and tR), the variance that is independent to each neuron ' i

i -areas 1 and 2, respectively, across all timasE | T.
In fact, the across-area and within-area components can be decomposed further . . T .
To predict!Z from !Z, we use the conditional distribution & given!Zz,

into contributions by individual latent variables. LBt} R " be thg™ column of
X!Z|!Z), which can be obtained from the joint distributiof{!Z !Z). For a

i BeB - - ¢
$.and o R: be thg" column of $3. Then, U $3$7' ) = k! !\ and derivation and discussion df!Z !Z), see Supplementary Discussion (equation
ysisy )=~ E LoDty (52)). From X!Z|'Z), we take predictions to be the expected value of activity in

Because we were interested in variance shared among neurons, rather thanf'e@ 2 given activity in area 1:

independent to each neuron, we focused on the variance components involving B 1B B w8 X XlaX! " | |
$' and $, rather tharR. Furthermore, since the total variance of recorded = E(z|1Z)= 8% °1° (87 °18° + $L 7Y 113y (z1 ')+ E
neural activity may vary widely across animals, stimuli and recording sessions, we

computed two normalized metrics to facilitate comparison of these shared varia\r)v eere!$Bl RR3 @5 1$X| RRS s 1$8) RRS &= I$X| RRS Is
components across datasets. First; Jdte thg™" column ofC, whereC;=[ $5 $) : SR U T '

lis the same as in equation (22) of Supplementary Note. To visualize the relativi ! SF? R®and!'3 1 SR¥ R%are all block diagonal matrices comprisihg

strength of latent variables in each area @igve computed copies of the loading matrice®, $*, $'and $* and observation noise covariance

) I Bl matricesR, andR,, respectivelyE | RR€and!E ! RR®are constructed by

Yo USB$E + $X$X vertically concatenating copies of mean parametersandd,, respectively. The

J¥J J I
GP covariance matricdsX! S8 ¢85 1B | R@3 Fgng!l B | REI &5

that is, the fraction of shared variance explained by latent vajriateed. We are qefined in equat_ions (50) and (51) of Supplementary Discussion. We similarly
then displayed latent time courses multiplied by the appropgjae each time predict!Z from !Z usingE ['Z|'Z]. ) .
point. Similarly, to quantify the strength of across-area activity (relative to within-  YV& next use equatiori () to define a cross-validated measure of a modelOs
area activity) in each area (Fidj), we computed across-area predictive performance. Assume that we are given the parameters

| B of a DLAG model fit to training data (equation (19) of Supplementary Note).

GB_ | U $?$§’ N Then let!Z be the activity of ardéaon trialn of a held-out validation set,

BT g S5+ s and letz, be its predicted value given by equatibn.(Collect these values
across alh=1,E ,N held-out validation set trials into the respective matrices

that is, the fraction of shared variance explained by all across-area latent variables= [ 17, 448z J1 RR?® / and®,=| DZJ éé% }! R®E ! \We then define a

in areai. leave-group-ouR? value as follows:
Uncertainty of estimated delaysDLAGOs performance on the synthetic data g = g o tteTarit BT,
presented here suggests that time delays are estimated with high accuracy and MHP R A

precision. For our neural recordings, however, where no Oground truthQ is accessible,
we sought to assess the certainty with which fitted delay parameters were indesthere? ;= [ Zaad ! R™ ! is constructed by horizontally concatenathhg
positive or negativeNindicating a particular direction of inter-areal signal flow. Weopies of the sample mean for each neuron in observaticiaken over all time
therefore developed the following non-parametric bootstrap procedure. points and trials &! R 7). InK-fold cross-validation, we evalua, on each of
First, consider a DLAG model that has bpen fitted to a particular dataset witkhe K validation sets, and report the average value ovér all
N trials. We construct a bootstrap samiptel,E , B from this dataset by selecting In a typical multivariate regression settiffjjs an asymmetric measure of
N trials uniformly at random with replacement (here we Used ,000). Then, let  predictive performance: prediction b from !Z yields a differerf value than
' be the data log likelihood of the DLAG model evaluated on bootstrap samplegoes prediction ofZ from !Z. In contrast, 3, is a symmetric measure that
b, and let ,-, be the data log likelihood of the same DLAG model evaluated on
bootstrap samplb, but for whichD;, the delay for across-area latent varigtias
been set to zero (all other model parameters remain unaltered).
To compare the performance of this Ozero-delay® model with the performa

aggregates predictions in both directions. IRke3,," (!/( ,1], where a value
of 1 implies perfect prediction of neural activity, and a negative value implies that
sstimates predict neural activity less accurately than simply the sample 3gean.

of the original model, we define the following statistic: is normalized by the total variance of neural activity within each dataset, thereby
facilitating comparison across datasets, in which the variance of neural activity
Mek="!c ek could vary widely. This more intuitive comparison across datasets (compared

with log likelihood) comes at the expense of a principled characterization of
If the zero-delay model performed at least as well as the original DLAG model performance within DLAGOs probabilistic framework, and we emphasize that
(equivalently#' ;-,$ 0) on 5% or more of the bootstrap samples, then we could across-area prediction is not the objective that a fitted DLAG model is designed
not say, with sufficient certainty, that the delay for across-area vgnedestrictly  to maximize.
positive or strictly negative. Otherwise, we took the magnitude of the delay for
across-area variabléo differ significantly from zero. Statistics and reproducibility.All statistical analyses described here were carried

For each of our V1BV2 datasets, then, this procedure allowed us to label soout in MATLAB (MathWorks). To assess whether across-area strength was

delays as ambiguous, where the corresponding population signal could not be significantly greater in V2 than in V1, we performed a one-sided paired sign
confidently categorized as flowing in one direction or the other §EjigFinally, test (Fig6b). To assess whether V1DV2 time delays were significantly less than
note that the concept of ambiguity defined here is distinct from the concept zero, we performed a one-sided one-sample sign tes6(rigo assess whether
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