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Simultaneous recordings from large populations of neurons 
across multiple brain areas are growing in availability1–4. These 
recordings present opportunities to illuminate how inter-areal 

communication enables brain function5, but they also present sub-
stantial conceptual and statistical challenges. Brain areas involved in 
sensory6–9, cognitive10 and motor functions11 are often reciprocally 
connected: signals are relayed not only from one area to the next, 
but bidirectionally, and probably concurrently. The raw recordings, 
however, provide only a tangled view of this concurrent commu-
nication (Fig. 1, top): individual neurons simultaneously reflect an 
area’s inputs, outputs and ongoing internal computations12.

Determining the flow of signals between brain areas is therefore 
a non-trivial task. To dissect the direction of signal flow, one can 
leverage the fact that inter-areal communication is not instanta-
neous. The physiological properties of axons and synapses intro-
duce delays in signal transmission. These delays provide a working 
definition of signal flow: the appearance of a signal first in area 
A, and later in area B, is consistent with signal flow from A to B 
(though this apparent flow could be due to common input from a 
third area; see Discussion).

Adopting this conception, several inter-areal studies have com-
pared the timing of the onset of neural responses13–15 or of the emer-
gence of selectivity attributable to top-down processes16–20 across 
areas following the presentation of a stimulus. Other studies, lever-
aging simultaneous recordings, have measured temporal delays 
between two areas through pairwise spiking correlations21–26 and 
information-theoretic measures27. Similarly, inter-areal phase delays 
of local field potentials have been measured28–31. These timing-based 
approaches have advanced our understanding of how signals propa-
gate across brain areas. However, because these approaches focus 
largely on pairs of neurons or aggregate measures of neural activity, 
much remains unknown about how neuronal populations coordi-
nate their activity to accomplish inter-areal signalling.

To characterize inter-areal signal flow at the level of neu-
ronal populations is a challenging high-dimensional problem. 
Dimensionality reduction techniques capable of identifying low-
dimensional latent variables that describe activity shared by two 
or more recorded areas are thus increasingly used32–34. These tech-
niques have driven new proposals for population-level mechanisms 
of gating between motor cortex output and muscle movement35, 
selective communication between cortical areas36,37, enhanced com-
munication of stimulus information with attention38 and the robust-
ness of local computations to perturbations upstream39,40.

The relationship between the correlated activity across areas 
identified in these studies and the flow of inter-areal signals, 
however, remains unclear. Specifically, does the correlated activ-
ity across areas reflect the flow of activity from area A to B, from 
B to A, or in both directions concurrently (Fig. 1, bottom left)? If 
communication were to occur in one direction at a time, then exist-
ing dimensionality reduction methods could, in principle, iden-
tify the direction of population-level signal flow. If two areas were 
to communicate in both directions concurrently, however, then 
existing methods would only identify the dominant direction of  
signal flow41.

We therefore propose delayed latents across groups (DLAG; 
Fig. 1, bottom right), a dimensionality reduction framework that 
disentangles signals relayed in each direction, identifies how these 
signals are represented by each population and characterizes how 
they evolve over time within and across trials. We first demonstrate 
that DLAG performs well on synthetic datasets similar in scale to 
current neurophysiological data. Then we study simultaneously 
recorded populations in primate visual areas V1 and V2, where 
DLAG reveals that V1–V2 interactions are selective and bidirec-
tional. DLAG unlocks new opportunities to investigate the bidi-
rectional flow of signals between populations of neurons and how 
inter-areal communication contributes to brain function.
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Results
Model overview. Consider recording the activity of two popula-
tions of neurons (Fig. 2, left column), measured as, for example, 
the number of spikes counted within non-overlapping time bins. 
Here we will take these populations as belonging to two different 
brain areas, A and B. In principle, they can belong to any meaning-
ful groups, such as cortical layers or cell types.

DLAG dissects the recorded population activity in each area on 
individual trials into a linear combination (weighted sum) of two 
types of latent variable (Fig. 2, centre column; equations (1) and 
(2) of Methods). The first type of latent variable, across-area vari-
ables, describes population activity that is correlated across areas 
(illustrated by the magenta box spanning both areas in Fig. 2). The 
second type of latent variable, within-area variables, describes pop-
ulation activity in one area that is not related to population activity 
in the other area (Fig. 2: blue, within A; red, within B). Whether 
or not the within-area variables are a subject of scientific study, 
they are critical to the correct estimation of across-area variables 
(Methods and Supplementary Discussion).

The temporal structure of within- and across-area variables are 
both described by relating each latent variable at different time 
points through Gaussian processes (GPs; equations (3)–(8) of 
Methods and Supplementary Fig. 1). Each GP is associated with 
its own characteristic timescale that controls the temporal smooth-
ing of neural activity. Across-area variables are defined in pairs, 
where the elements of each pair correspond to the two areas and 
covary with each other according to a common GP (equation (6) 
of Methods). Importantly, the elements of each across-area pair are 
time delayed relative to each other (Fig. 2, D1 between the first pair 
and D2 between the second pair; equations (7) and (8) of Methods; 
Supplementary Fig. 1). The numbers of within- and across-area 
variables (that is, within- and across-area dimensionality) are esti-
mated from the neural activity.

All DLAG model parameters, including the GP timescales and 
time delays, are estimated from the neural activity using an exact 
expectation-maximization algorithm (Supplementary Note). After 
the DLAG model parameters are estimated from the neural activity, 
the time courses of within- and across-area latent variables can be 
studied on a trial-to-trial basis. Conceptually, DLAG can be viewed 
as a time-series extension of probabilistic canonical correlation 
analysis (CCA)42,43 or a multiarea extension of Gaussian process 
factor analysis (GPFA)44,45 with the added ability to estimate time 
delays between two areas.

Intuitively, if a particular time course is reflected in the popula-
tion activity of area A, and a similar time course, but after a time 
delay, is reflected in the population activity of area B, then an across-
area variable pair can describe the apparent flow of that signal from 
A to B. Moreover, if concurrently a time course is first seen in area 
B, followed by area A, a second across-area variable pair can also 
describe the flow of that inter-areal signal. The key to disambiguat-
ing the first and second across-area variable pairs is that they involve 
different population activity patterns (that is, a ‘loading’ vector indi-
cating how the activity of each neuron relates to the latent variable; 
equation (1) of Methods). In fact, DLAG can identify many across-
area variable pairs, each with a delay of its own sign and magnitude, 
to capture multiple concurrent streams of signal flow between the 
two populations at different timescales.

The relationship between within- and across-area latent variables 
and observed population activity in each area can be represented 
geometrically with the concept of a population activity space (Fig. 
2, right column). For each area, we can define a high-dimensional 
population activity space where each axis represents the activity 
of one neuron. Each point in the space represents the population 
activity at a particular time, and the points trace out a trajectory 
over time. DLAG’s two types of latent variable each define the axes 
(dimensions) of a low-dimensional subspace within this population 
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Fig. 1 | Disentangling the flow of signals between populations of neurons. Top: recorded neural activity provides only a tangled view of the bidirectional, 
concurrent interactions between brain areas (illustrated by the translucent magenta and orange arrows). Bottom left: existing dimensionality reduction 
methods identify correlated population activity across areas (each correlated population activity pattern is represented by a braid of multicoloured arrows; 
four different activity patterns are shown). Each activity pattern probably reflects a mixture of signals relayed in each direction. Within each activity 
pattern, individual arrows represent a directed interaction; colour depicts the direction of signal flow and shading (light versus dark) distinguishes distinct 
signals. Bottom right: DLAG identifies both within- and across-area population signals (indicated by colour and source/target of each arrow). Importantly, 
DLAG disentangles signals relayed in each direction. The colour of each arrow depicts the direction of signal flow associated with a population activity 
pattern, and shading distinguishes distinct signals.
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activity space (in Fig. 2, we show only the across-area subspaces 
for visual clarity). Each dimension of these subspaces represents a 
population activity pattern.

Validation on realistic-scale synthetic data. Before applying 
DLAG to experimental data, we characterized its performance on 
synthetic datasets similar in scale to state-of-the-art neurophysio-
logical recordings from multiple brain areas, and on additional syn-
thetic datasets covering a wider range of experimental conditions. 
Informed by our recordings in macaque V1 and V226,36 (Dissecting 
bidirectional interactions between V1 and V2), we simulated inde-
pendent datasets with representative numbers of neurons (area A, 
80; area B, 20), trial counts (100), trial lengths (1,000 ms) and levels 
of noise, where noise is defined as the variance independent to each 
neuron (see Methods for additional details).

Across all datasets, within- and across-area latent time courses 
(Fig. 3a; see legend for quantification), across-area parameters 
(Fig. 3b, dimensionalities; Fig. 3c, delays; Fig. 3d, GP timescales) 
and within-area parameters (Fig. 3e, dimensionalities; Fig. 3f,g, GP 
timescales) were all consistently and accurately estimated. We high-
light, in particular, DLAG’s ability to estimate time delays between 
the two areas (Fig. 3c). Delay error was 1.3 ± 0.1 ms (mean and 
s.e.m. across all delays; maximum error 7.0 ms), despite observa-
tions occurring at 20 ms time steps. This accuracy emphasizes an 
important feature of the DLAG model that distinguishes it from 
other time-series modelling approaches (Discussion). Because 
latent time courses and time delays are continuous valued, DLAG 
can leverage the correlated activity of the neuronal populations to 

recover delays that are smaller than the sampling period (that is, 
spike count bin width, in the case of spiking activity).

The synthetic datasets presented here were generated with a vari-
ety of parameters representative of realistic data, but we also verified 
that DLAG performed well over a wider range of simulated condi-
tions. Specifically, we systematically characterized DLAG’s perfor-
mance as a function of number of trials, number of neurons, latent 
dimensionality and noise level (Supplementary Fig. 2), as well as 
latent timescale (Supplementary Fig. 3). We also characterized the 
runtime of the DLAG fitting procedure as a function of number of 
trials, number of neurons, trial length and latent dimensionality 
(Supplementary Fig. 4).

Finally, we explored DLAG’s robustness under several more chal-
lenging synthetic scenarios. DLAG’s parameter and latent-variable 
estimates remained stable in instances where we induced imper-
fect estimates of dimensionality (Supplementary Figs. 5 and 6). 
DLAG also showed robustness to mild deviations from its assump-
tions of linearity and Gaussian observation noise (Supplementary 
Fig. 7; synthetic datasets were generated via a linear–nonlinear–
Poisson model) and its assumption that neural activity follows a GP 
(Supplementary Fig. 8).

Dissecting bidirectional interactions between V1 and V2. We 
then used DLAG to study interactions between two areas in the 
early visual system: V1 and V2. V1 and V2 share strong reciprocal 
connections46,47 and show correlated activity22–24,26,36, but the bidirec-
tional nature of their interactions is not yet well understood. We 
simultaneously recorded the activity of neuronal populations in the 
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superficial (output) layers of V1 (61–122 neurons; mean 86.3), and 
the middle (input) layers of V2 (15–32 neurons; mean 19.6) in three 
anaesthetized monkeys (Fig. 4a; data reported previously in refs. 
26,36). Recording locations were selected to maximize the probability 
that the recorded V1 and V2 populations interact by ensuring spa-
tial receptive field alignment. We analysed neuronal responses mea-
sured during the 1.28 s presentation of drifting sinusoidal gratings 
of different orientations, and counted spikes in 20 ms time bins. The 
periodic nature of the drifting gratings (160 ms per cycle) is evident 
in peristimulus time histograms (PSTHs) for an example recording 
session and grating orientation (Fig. 4b). In total, we fitted DLAG 

models separately to 40 ‘datasets’, corresponding to five recording 
sessions, each with eight different orientations. For comparison, on 
each dataset we also randomly split V1 into two equally sized sub-
populations (termed V1a and V1b; Fig. 4c), and then applied DLAG 
to study V1a–V1b interactions in a manner identical to V1–V2.

We first used DLAG to study whether V1 and V2 interact selec-
tively: whether in addition to fluctuations shared between V1 and 
V2 there are fluctuations that are not shared between the two areas. 
Selective inter-areal communication may be a hallmark of cortical 
computation that remains to be fully understood, particularly at 
the level of neuronal populations5. Indeed, significant across- and  

a
Across-area Within-area

D2 = +8.4 ms
D
^
2 = +7.5 ms

D1 = –10.5 ms
D
^
1 = –10.3 ms

Within 1Across 1 Across 2 Within 2

Within 1Across 1 Across 2 Within 2

Across-area
parameters

Within-area
parameters

0

3.3

–3.3

0

3.3

–3.3

e

b

5
0

True across-area dim.

True within-area dim.

0 10

5

E
st

. a
cr

os
s-

ar
ea

 d
im

. 

0E
st

. w
ith

in
-a

re
a 

di
m

. 10

Area A
Area B

c

f

–40 00 40
–40

0

40

True delay (ms) 

err.: 1.3 ± 0.1 msE
st

. d
el

ay
 (

m
s)

 

True timescale (ms) 

d

g

80 1600

80 160080 1600

True timescale (ms) 

0

160

80

err.: 3.0 ± 0.2 ms

True timescale (ms) 

E
st

. t
im

es
ca

le
 (

m
s)

 

Area BArea A

err.: 2.1 ± 0.1 msE
st

. t
im

es
ca

le
 (

m
s)

 160

80

0

Ground truth
Estimated

0

160

80

err.: 1.7 ± 0.1 msE
st

. t
im

es
ca

le
 (

m
s)

 

Area A

Area B

a.
u.

a.
u.

Time 250 ms
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within-area latent variables (that is, latent variables that were 
selected via cross-validation) were identified consistently across 
datasets (Fig. 5a: single-trial latent time courses from a representa-
tive dataset; Fig. 6a, top, dimensionalities across all datasets; median 
dimensionality across areas, 3; within V1, 14; within V2, 2).

We further sought to characterize the strength (in addition to 
the dimensionality) of across- versus within-area activity in each 
area. We therefore considered the latent variables in V1 and in V2 
separately, and computed the fraction of shared variance that each 
latent variable explained in its corresponding area (in Fig. 5, the 
amplitude of each latent time course is scaled by this value). Across-
area variables explained only a portion of the shared variance in 
V1 and in V2 (Fig. 6b, top; median across-area strengths, 34% in 
V1; 76% in V2). Interestingly, across-area activity explained more 
of the shared variance in V2 than in V1 (Fig. 6b, top, points above 
the diagonal). This observation could not be fully attributed to dif-
ferences in recorded population size or in the total dimensionality 
of each area (Supplementary Fig. 9). This difference in across-area 
strength might be a consequence of the cortical layers from which 
we recorded: much of the activity in the middle layers of V2 is prob-
ably driven by V1. The superficial layers of V1, on the other hand, 
receive input from other sources that do not also project to the mid-
dle layers of V2.

Collectively, these observations (Fig. 6a,b, top) are consistent 
with the presence of a communication subspace between V1 and 
V236, through which only a subset of population activity patterns 
is shared between the two areas. Our results further suggest that 
not only does there exist activity in V1 that is not shared with V2 
(as reported in ref. 36), but there also exists activity in V2 that is not 
shared with V1. By contrast, V1a and V1b do not interact selec-
tively. V1a–V1b ‘across-population’ activity was of higher dimen-
sionality than ‘within-population’ activity and V1–V2 across-area 
activity (Fig. 6a, bottom; median dimensionality across populations, 
11; within V1a, 2; within V1b, 1), and accounted for nearly all of the 
shared variance in V1a and in V1b (Fig. 6b, bottom; median across-
population strengths, 96% in V1a, 98% in V1b; note also the small 
amplitudes of the within-population latent time courses in Fig. 5b).

DLAG’s latent variables enabled further qualitative characteriza-
tion of the moment-to-moment nature of within- and across-area 
activity on individual trials. For instance, stereotyped periodic sig-
nals, whose periods matched the period of the drifting grating pre-
sented, appeared strongly within V1 (Fig. 5a, top, ‘Across 3’, ‘Within 
1’ and ‘Within 2’) and only weakly in V2 (Fig. 5a, bottom, Across 
3). The prominence of this stimulus-related periodic structure in 

V1 relative to V2 is consistent with the stimulus response properties 
of neurons in each area48, evident in the neuronal PSTHs (Fig. 4b). 
Care should be taken, however, when interpreting these latent vari-
ables as across-area interactions (Discussion). By contrast, periodic 
signals were not evident in V1a or V1b within-population variables, 
but were evident in the activity shared between V1a and V1b (Fig. 
5b, ‘Across 1’ and ‘Across 2’). Other latent variables, particularly 
within V2, exhibited additional trial-to-trial variability whose con-
nection to the presented stimulus is less apparent (for example, Fig. 
5a, bottom, Within 1 and Within 2). Latent-variable time courses, as 
well as estimated across- and within-area subspaces, were also sen-
sitive to the orientation of presented stimuli in a manner consistent 
with the tuning of neurons in V1 and V2 (Supplementary Fig. 10). 
DLAG also detected differences in the type of stimulus presented 
(oriented gratings versus naturalistic textures) when we used it to 
study V1–V4 interactions in an awake animal (Supplementary Fig. 
11).

We next used DLAG to study the bidirectional nature of interac-
tions between V1 and V2. Note that this task may not be straightfor-
ward with a static dimensionality reduction method such as CCA 
(Supplementary Figs. 12–14). Each of DLAG’s across-area latent 
variables is associated with a time delay that indicates a feedforward 
(positive delay: V1 to V2) or feedback (negative delay: V2 to V1) 
interaction. For example, the first representative V1–V2 across-
area variable (Fig. 5a, Across 1) was associated with a −23 ms delay, 
implying a feedback interaction. In contrast, the visually similar 
V1a–V1b across-population variable (Fig. 5b, Across 3) was associ-
ated with a 0 ms delay. A V1a–V1b delay at or near zero is expected, 
given that the V1a and V1b populations belong to the same area, 
and probably receive common inputs with similar latencies (in con-
trast to the populations in distinct areas V1 and V2).

We developed a statistical procedure to test whether such delays 
significantly deviate from zero. In brief, we assessed whether setting 
the delay to 0 ms resulted in a significant reduction in model per-
formance; if so, the delay was deemed significant (that is, ‘non-zero’; 
Methods). Indeed, the directionality of this latent variable (Across 3 
for V1a–V1b) was identified as statistically ‘ambiguous’ (that is, not 
significantly different from zero, indicated by the bidirectional grey 
arrow in Fig. 5b). In separate analyses, we also verified that V1–V2 
interactions are better described by DLAG models with time delays 
than without time delays (Supplementary Fig. 15).

Delays across all datasets reflected bidirectional interactions 
between V1 and V2 (Fig. 6c, top). Notably, the delays between V1 
and V2 exhibited a striking asymmetry. The interactions across 
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these areas were predominantly directed from V2 to V1 (Fig. 6c, 
top; median over non-zero delays, −8 ms; median over all delays, 
−5 ms). Among the across-area latent variables with statistically 
significant delays, 76% were associated with a negative delay. This 
asymmetry remained even when we subsampled the V1 popu-
lation to match V2 in size, and reapplied DLAG (Supplementary  
Fig. 9). Similarly to the strength of across-area activity observed in 

V1 and in V2 (Fig. 6b, top), the magnitudes of the delays might 
also reflect the cortical layers from which we recorded. The positive 
delays tended to be short (Fig. 6c, top; median across significant 
positive delays, +7 ms), consistent with the fact that the superfi-
cial layers of V1 directly project to the middle layers of V224,26. The 
negative delays tended to be longer (Fig. 6c, top; median across sig-
nificant negative delays, −11 ms), consistent with a multisynaptic  
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. Across-area 
variables are paired vertically; vertical arrows point in the direction of the identified signal flow, as determined by the sign of the delay next to each arrow. 
All delays for the displayed dataset were deemed significantly different from zero (Methods). For visualization purposes, latent variables have been scaled 
and ordered by the fraction of shared variance they explain (across- and within-area variables are sorted separately; across-area variables are sorted 
according to shared variance explained in V2). All across-area variables and within-V2 variables uncovered by DLAG are shown here. The top 2 of 14 
within-V1 variables are displayed, which explain 46% of V1's within-area shared variance. b, V1a–V1b time courses. Conventions are the same as in a. Here, 
the delay for the third across-population variable (Across 3) was deemed to have an ambiguous sign, indicated by the bidirectional grey arrow. All other 
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path from the middle layers of V2 back to the superficial layers of 
V1. We also found that the strongest across-area interactions in 
V1 were nominally feedforward (V1 to V2), while the strongest 
across-area interactions in V2 were nominally feedback (V2 to V1)  
(Supplementary Fig. 16).

By contrast, V1a–V1b interactions were symmetric (Fig. 6c, bot-
tom; median over non-zero delays, −2 ms; median over all delays, 
0 ms; neither median significantly different from zero; 54% of non-
zero delays were negative; see also Supplementary Fig. 16). This 
centring of the delay distribution around zero is expected, given 
that the neurons in V1a and V1b were randomly chosen and belong 
to the same area. Still, the magnitudes of V1a–V1b delays were not 
universally zero. These non-zero delays probably reflect aggregate 
differences in the stimulus response properties of the randomly 
chosen V1a and V1b subpopulations. For example, inspection 
of PSTHs (Fig. 4b) suggests that the phase of trial-averaged peri-
odic structure can vary by tens of milliseconds between individual  
V1 neurons.

Finally, we examined the timescales of neural activity identi-
fied by DLAG within V1 and V2. Within-V2 GP timescales were 
longer than within-V1 GP timescales (Fig. 6d, top; median within 
V1, 24 ms; within V2, 74 ms). Within-V1a and within-V1b GP tim-
escales, on the other hand, were nearly the same (Fig. 6d, bottom; 
median within V1a, 20 ms; within V1b, 23 ms). These observations 

are consistent with previous evidence that timescales increase for 
areas higher up the cortical hierarchy49–51.

Discussion
By leveraging the correlated activity across two neuronal popula-
tions, DLAG can disentangle concurrent signals relayed in each 
direction and characterize how those signals evolve over time within 
and across trials. Although we applied DLAG to the spiking activity 
of populations of neurons in distinct brain areas, DLAG is appli-
cable to any high-dimensional time-series data, including other 
neural recording modalities (for example, calcium imaging, subject 
to the temporal resolution inherent to the recording technology). It 
can also be used to study the interaction of two populations of neu-
rons in different cortical layers or of different cell types. DLAG can 
even be used to study the relationship between a neuronal popula-
tion and a dynamic stimulus or behavioural variables.

Recently, feedforward and feedback signalling was studied in the 
same V1–V2 recordings as analysed here41. CCA was used in a sliding 
window scheme to identify trial epochs dominated by either feed-
forward or feedback signalling. V1–V2 (and V1–V4) interactions 
were found to involve distinct population activity patterns during 
feedforward- versus feedback-dominated trial epochs. This statisti-
cal approach, however, could not be used to study the concurrent 
nature of feedforward and feedback signalling (see Supplementary 
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Figs. 13 and 14 for further discussion). In this Article, we have pro-
vided a complementary view of V1–V2 interactions, using DLAG to 
identify concurrent, distinct feedforward and feedback activity pat-
terns that characterize the stimulus presentation period as a whole. 
Future work could characterize how the activity patterns uncovered 
by DLAG and their associated time delays might change during the 
course of a trial (see more below).

DLAG identified V1–V2 interactions in both directions, whose 
strengths and associated time delays appear to reflect the cortical 
layers from which we recorded. DLAG might have been expected 
to identify at least as many feedforward (V1 to V2) interactions as 
feedback (V2 to V1). Generally, feedback intercortical connections 
equal feedforward connections in number; moreover, specific to 
our recording arrangement, feedback connections do not originate 
in the input layers of V246,47. Surprisingly, DLAG revealed a marked 
asymmetry, such that a majority of across-area latent variables were 
associated with a feedback interaction. This apparent disparity pres-
ents an opportunity for future study.

DLAG has commonalities with several other methods. For 
instance, static dimensionality reduction methods such as CCA, 
sparse structured CCA and their probabilistic variants52 identify 
across- and/or within-area latent variables, but do not characterize 
inter-areal interactions over time or the directionality of signal flow 
(but see ref. 41, discussed above). Multivariate time-series methods 
such as Granger causal modelling53–55, generalized linear models37,56,57 
or recurrent neural networks58 characterize the directionality of signal 
flow, but not in a low-dimensional manner. Time-series methods that 
provide a low-dimensional description of across-area activity do not 
provide a low-dimensional description of within-area activity, should 
low-dimensional within-area activity be of scientific interest59,60; or, 
they do not characterize time delays between areas61. In contrast with 
all of these methods, DLAG jointly reduces dimensionality and char-
acterizes the directionality of signal flow by estimating across- and 
within-area latent variables with time delays and timescales.

DLAG offers unique advantages when characterizing the tem-
poral structure of activity within and across areas. Applied to V1 
and V2, DLAG uncovered latent variables with diverse temporal 
profiles and timescales. The ability to capture diverse dynamical 
motifs stems from DLAG’s definition via GPs44: beyond temporal 
smoothness, DLAG makes no additional assumptions about the 
form of dynamics within or across areas. In contrast, multiarea 
methods proposed by refs. 62 and 63, for instance, describe interac-
tions between areas according to a parametric dynamical model. 
GPs provide DLAG with another advantage: the ability to discover 
wide-ranging delays with high precision45. Existing multiarea meth-
ods (nearly all of which, above, are defined in discrete time) are 
limited to delays restricted to be integer multiples of the sampling 
period or spike count bin width of neural activity.

With the conceptual and statistical advantages described above, 
DLAG is a powerful tool for exploratory data analysis. For example, 
after performing a new experiment, one can use DLAG to gener-
ate data-driven hypotheses about plausible dynamical motifs within 
and across areas. Then, one can test these hypotheses using a 
dynamical system-based approach—for example, data-constrained 
recurrent networks58,62,63.

The population activity patterns represented by DLAG’s across-
area variables might be interpreted as distinct ‘channels’ through 
which two areas communicate41. As with any statistical method, 
however, interpretation of the features extracted by DLAG is sub-
ject to ambiguities, particularly when not all relevant brain areas 
and neurons are recorded32,64. An across-area latent variable, for 
instance, could reflect an interaction between areas A and B that is 
either direct or indirect, mediated by a third (unobserved) area C. 
Similarly, a within-area latent variable could reflect activity internal 
to one area, or it could reflect inputs sent from unrecorded neurons 
to one area but not the other.

The sign and magnitude of DLAG’s time delays can, however, 
narrow the set of hypotheses consistent with the data. We might 
reasonably suspect, for example, that short positive (V1 to V2) 
delays identified by DLAG reflect direct interactions from the out-
put layers of V1 to the input layers of V2 (the layers from which we 
recorded)24,26. Larger negative (V2 to V1) delays might instead indi-
cate indirect interactions, given that the path from the input layers 
of V2 to the output layers of V1 involves multiple synapses. Some 
across-area latent variables were associated with delays statistically 
indistinguishable from zero (that is, ambiguous), and could indicate 
either tight recurrent interactions or common input from an unob-
served source. Future experimental interventions could further dis-
ambiguate these cases.

A phenomenon widely recognized by cross-correlation stud-
ies21–26 is the presence of correlations across areas due simply to 
common stimulus drive, rather than an inter-areal interaction. For 
DLAG, these stimulus-driven effects can appear as an across-area 
variable. The stereotyped periodic signals evident in V1–V2 across-
area latent variables (Fig. 5a; Across 3) are a probable example. If 
desired, one could control for these effects with straightforward pre-
processing steps, such as the subtraction of PSTHs from single-trial 
responses, thereby emphasizing trial-to-trial fluctuations correlated 
across areas36.

Assumptions explicit in the DLAG model definition warrant 
additional care when interpreting estimated delays. First, DLAG 
treats time delays as constant parameters. However, the direction 
of interaction associated with a dimension of population activ-
ity might not be constant across different trial epochs or different 
experimental (for example, stimulus) conditions. Thus, we interpret 
a delay as a summary of this direction of interaction throughout 
the course of an experiment. Similarly, neurons within the same 
area can respond to a common input with different latencies (evi-
dent in, for example, Fig. 4b). An estimated delay hence also rep-
resents a summary across neurons45. Second, DLAG assumes that 
each dimension of population activity is associated with one delay, 
or direction. If a set of interactions were to occur concurrently in 
both directions but evolve along the same dimension, then teas-
ing apart directionality might be difficult—albeit for any statistical 
method, not just DLAG. Third, DLAG assumes that signals are lin-
early transformed across areas. DLAG therefore does not take into 
account nonlinear transformations of signals. We believe that there 
are many experimental scenarios for which the assumption of a lin-
ear transformation or direct signal transmission is appropriate (for 
example, ref. 14; Supplementary Fig. 7). Nonetheless, in practice, this 
assumption should be evaluated on a case-by-case basis.

Solutions to these interpretational challenges might be well 
within reach, if not already available through DLAG’s existing 
machinery. For example, one could fit DLAG to subsets of trials, 
to subsets of neurons or to separate trial epochs to understand how 
DLAG’s estimates depend on these elements of the neural record-
ings. We have already employed some of these strategies here (Fig. 
6 and Supplementary Figs. 9 and 11), and could continue to build 
upon this foundation.

Methods
Mathematical notation. To disambiguate each variable or parameter in the DLAG 
model, we need to keep track of up to four labels that indicate their associated 
(1) subpopulation (for example, brain area), (2) neuron or latent variable index, 
(3) time point or (4) designation as within- or across-area. We indicate the !rst 
three labels via subscripts, where subpopulations (areas) are indexed by i = 1, 2, 
neurons or latent variables are indexed by j (we will indicate the upper bound 
as appropriate) and time is indexed by t = 1, …, T. For example, we de!ne the 
observed activity of neuron j (out of qi) in area i at time t as y

i,j,t

∈ R. To indicate 
a collection of all variables along a particular index, we replace that index with 
a colon. Hence we represent the simultaneous activity of the population of qi 
neurons observed in area i at time t as the vector y

i,:,t ∈ R
q

i. For concision, where 
a particular index is either not applicable or not immediately relevant, we omit it. 
"e identities of the remaining indices should be clear from context. For example, 
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throughout this work we consider only the activity of a full population, and not 
of single neurons, so we rewrite yi,:,t as yi,t. Finally, we indicate a latent variable’s 
or parameter’s designation as within- or across-area via a superscript, where ‘w’ 
indicates within-area, and ‘a’ indicates across-area. For example, we de!ne across-
area latent variable j (out of pa) in area i at time t as xa

i,j,t

∈ R, and the collection 
of all pa latent variables as the vector xa

i,:,t
∈ R

p

a. We similarly de!ne within-area 
latent variable j (out of pw

i

) in area i at time t as xw
i,j,t

∈ R, and the collection of all 
p

w

i

 latent variables as the vector xw
i,:,t

∈ R
p

w

i .
It is conceptually helpful to understand the above notation for observed (y) 

and latent (x) variables as taking cross-sections of matrices. For example, observed 
activity in area i can be grouped into the matrix Y

i

= [y
i,1

· · · y
i,T

] ∈ R
q

i

×T. Then, 
each yi,t is a column of Yi. Similarly, across-area latent variables in area i can be 
grouped into the matrix Xa

i

= [xa
i,:,1

· · · x
a

i,:,T
] ∈ R

p

a

×T . Each xa
i,:,t

 is a column of 
X

a

i

. Similarly, we represent a row of Xa

i

 (that is, the values of a single latent variable 
j at all time points) as xa

i,j,:
∈ R

T . Within-area latent variables can be understood 
analogously from the matrix Xw

i

= [xw
i,:,1

· · · x
w

i,:,T
] ∈ R

p

w

i

×T . Finally, we note  
that there is a separate set of observed and latent variables (Yi, Xa

i

,Xw

i

) for each 
trial, while there is a single set of DLAG model parameters shared across trials.  
For concision, we index trial number only as needed, and omit the trial  
index otherwise.

We will explicitly define all other variables and parameters as they appear, but 
for reference we list common variables and parameters below.

Observed neural activity. 
•	 qi — number of neurons observed in area i
•	 Yi — qi × T matrix of observed activity in area i
•	 yi,t — qi × 1 vector of observed activity in area i at time t; the tth column of Yi

Latent variables. 
•	 p

a — number of across-area variables (same for both areas)
•	 X

a

i

 — pa × T matrix of across-area variables in area i
•	 x

a

i,:,t
 — pa × 1 vector of across-area variables in area i at time t; the tth column 

of Xa

i

•	 x

a

i,j,:
 — T × 1 vector of values of across-area variable j in area i over time; the jth 

row of Xa

i

•	 p

w

i

 — number of within-area variables in area i
•	 X

w

i

 — pw
i

 × T matrix of within-area variables in area i
•	 x

w

i,:,t
 — pw

i

  × 1 vector of within-area variables in area i at time t; the tth column 
of Xw

i

•	 x

w

i,j,:
 — T × 1 vector of values of within-area variable j in area i over time; the 

jth row of Xw

i

Model parameters. 
•	 C

a

i

 — qi × pa across-area loading matrix for area i
•	 C

w

i

 — qi × pw
i

 within-area loading matrix for area i
•	 di — qi × 1 mean parameter for area i
•	 Ri — qi × qi observation noise covariance matrix for area i
•	 Di,j — time delay parameter between area i and across-area variable j
•	 Dj — relative time delay associated with across-area variable j; Dj = D2,j − D1,j
•	 τ

a

j

 — GP timescale for across-area variable j
•	 σ

a

j

 — GP noise parameter for across-area variable j
•	 τ

w

i,j

 — GP timescale for within-area variable j in area i
•	 σ

w

i,j

 — GP noise parameter for within-area variable j in area i

GP covariances. 
•	 K

a

i

1

,i

2

,j

 — T × T covariance matrix for across-area variable j, between areas i1 
and i2

•	 k

a

i

1

,i

2

,j

 — covariance function for across-area variable j, between areas i1 and i2

•	 K

w

i,j

 — T × T covariance matrix for within-area variable j in area i
•	 k

w

i,j

 — covariance function for within-area variable j in area i

DLAG observation model. For area i at time t, we define a linear–Gaussian 
relationship between observed activity, yi,t, and latent variables, xa

i,:,t
and x

w

i,:,t
 (ref. 43):

y

i,t

= C

a

i

x

a

i,:,t
+ C

w

i

x

w

i,:,t
+ d

i

+ ε

i

(1)

ε

i

∼ N (0, R
i

) (2)

where Ca

i

∈ R
q

i

×p

a, Cw

i

∈ R
q

i

×p

w

i , d
i

∈ R
q

i and R
i

∈ S
q

i

×q

i (Sqi×q

i is the set of 
qi × qi symmetric matrices) are model parameters to be estimated from data. The 
relationship between observed and latent variables is illustrated graphically in 

Supplementary Fig. 1a. The loading matrices Ca

i

 and Cw

i

 linearly combine latent 
variables and map them to observed neural activity. The parameter di can be 
thought of as the mean firing rate of each neuron. εi is a zero-mean Gaussian 
random variable, where we constrain the covariance matrix Ri to be diagonal, as 
in factor analysis (FA) and GPFA44, to capture variance that is independent to each 
neuron. This constraint encourages the latent variables to explain as much of the 
shared variance among neurons as possible.

As we will describe, at time point t, across-area variables xa
1,:,t

and x

a

2,:,t
 in area 

1 and area 2, respectively, are coupled with each other, and thus each area has the 
same number of across-area variables, pa. Within-area variables are not coupled 
across areas, on the other hand, and thus each area i may have a different number 
of within-area variables, pw

i

. Because we seek a low-dimensional description of 
neural activity in each area, the combined number of across- and within-area 
variables is less than the number of neurons, that is, pa + pw

i

 < qi, where pa and pw
i

 
are determined by the data (see below).

The parameters Cw

i

 and Ca

i

 have an intuitive geometric interpretation (Fig. 2,  
right column). Each element of yi,t can be represented as an axis in a high-
dimensional population activity space. Then the columns of Ca

i

, the across-area 
loading matrix for area i, define a subspace in this population activity space, 
where each dimension corresponds to a distinct across-area latent variable. This 
across-area subspace represents patterns of population activity that is correlated 
across areas. Analogously, the columns of Cw

i

 define a within-area subspace, which 
represents patterns of population activity that is shared only among neurons  
within area i. Additionally, as we will discuss below, since the jth pair of across- 
area variables (xa

1,j,:
, x

a

2,j,:
) is associated with a direction of population signal flow 

(Fig. 2, centre column), so too are the corresponding columns in Ca

1

and C

a

2

.  
The across-area subspace can thus be partitioned further on the basis of the 
nominal directionality of activity patterns (area 1 to area 2, or area 2 to area 1). 
Finally, note that the columns of Ca

i

 are linearly independent but not, in general, 
orthogonal. Likewise, the columns of Cw

i

 are linearly independent but not, in 
general, orthogonal. The across- and within-area subspaces in area i (spanned 
by the columns of Ca

i

 and by the columns of Cw

i

, respectively) are also linearly 
independent but not, in general, orthogonal. The ordering of the columns of each 
loading matrix, and of the corresponding latent variables, is arbitrary.

DLAG state model. We seek to extract smooth, single-trial latent time courses, 
where the degree of smoothing is determined by the neural activity (as described 
below). The time course of each within-area and across-area latent variable is 
described by a GP65.

Within-area latent variables. For each within-area variable j = 1, …, pw
i

 in brain  
area i, we define a separate GP as follows44:

x

w

i,j,:
∼ N (0, Kw

i,j

) (3)

where Kw

i,j

∈ S
T×T  is the covariance matrix for within-area variable j of area i. 

DLAG is compatible with any valid form of GP covariance, but for the present work 
we choose the commonly used squared exponential function. Then, element (t1, t2) 
of Kw

i,j

, the covariance between samples of the within-area variable at times t1 and t2, 
can be computed according to

k

w

i,j

(t
1

, t

2

) =
(

1 − (σ

w

i,j

)2
)

exp

(

−
(Δt)2

2(τ

w

i,j

)2

)

+ (σ

w

i,j

)2 · δ

Δt

(4)

Δt = t

2

− t

1

(5)

where the characteristic timescale, τw
i,j

∈ R
>0

, and GP noise variance, 
(σ

w

i,j

)2 ∈ (0, 1), are model parameters. δΔt is the Kronecker delta, which is 1 for 
Δt = 0 (equivalently, t1 = t2) and 0 otherwise.

Notice that kw
i,j

 is stationary: the squared exponential function depends only 
on the time difference (t2 − t1) (Supplementary Fig. 1b). This stationarity gives the 
covariance matrix Kw

i,j

 a characteristic banded structure (Supplementary Fig. 1c). 
The characteristic timescale, τw

i,j

, dictates the width of kw
i,j

(t1, t2), or equivalently 
how rapidly the latent variable changes over time. The τw

i,j

 parameters are estimated 
from the neural activity, together with the other DLAG parameters (see below). We 
follow the same conventions as in ref. 44, and fix (σ

w

i,j

)2 to a small value (10−3). Note 
also that, under this definition, the process is normalized so that kw

i,j

(t1, t2) = 1 for 
t1 = t2. Thus, the prior distribution of within-area latent variables xw

i,:,t
 in area i at 

each time t follows the standard normal distribution, N (0, I). This normalization 
removes model redundancy in the scaling of Xw

i

and C

w

i

.
Beyond describing within-area interactions, within-area variables are critical 

to the interpretability of across-area variables. As we will define below, across-area 
variables describe the activity of neurons in both areas. Within-area variables 
could, in principle, be formulated as a special case of across-area variables, 
where the loading coefficients to one area (the appropriate columns of Ca

1

 or Ca

2

 
in equation (1)) are identically zero. If the model does not allow for within-area 
variables, then across-area variables must explain within-area activity in addition 
to across-area activity. Across-area variables could thus reflect a mixture of  
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within- and across-area activity in this case, obfuscating their interpretation as 
representing population activity patterns that are correlated across areas. The 
presence of within-area variables allows the across-area variables to isolate activity 
that is truly correlated across areas. This statistical phenomenon applies to other 
statistical models, and is not specific to DLAG32,62. See Supplementary Discussion 
for further mathematical discussion.

Across-area latent variables. We next describe across-area temporal structure. 
Across-area variables are different from within-area variables in two respects: 
(1) across-area variables are defined in pairs, where the elements of each pair 
correspond to the two areas, and (2) the elements of each pair are time delayed 
relative to each other (Fig. 2, centre column). Thus in contrast to our definition 
of within-area variables, in which we considered each area separately, we now 
consider across-area variables in both areas together: xa

1,j,:
∈ R

T  and xa
2,j,:

∈ R
T , 

the jth rows of Xa

1

and X

a

2

, respectively, for the jth across-area variable.
The across-area latent variables of area 1 (xa

1,j,:
) and area 2 (xa

2,j,:
) belong to the 

same GP (Supplementary Fig. 1d). The xa
1,j,:

 are values of the GP sampled on a time 
grid. The xa

2,j,:
 are values of the same GP, also sampled on a time grid, but offset 

from the time grid of area 1 by a time delay. We define the GP for each across-area 
variable j = 1, …, pa as follows:

[

x

a

1,j,:

x

a

2,j,:

]

∼ N

(

0,

[

K

a

1,1,j

K

a

1,2,j

K

a

2,1,j

K

a

2,2,j

])

(6)

where Ka

1,1,j

= K

a

2,2,j

 describe the autocovariance of each across-area variable, 
and Ka

1,2,j

= K

a!

2,1,j

 describe the cross-covariance that couples the two areas 
(Supplementary Fig. 1e).

To express the auto- and cross-covariance functions, we introduce additional 
notation. Specifically, we indicate brain areas with two subscripts, i1 = 1, 2 and 
i2 = 1, 2. Then, we define Ka

i

1

,i

2

,j

∈ R
T×T  to be either the auto- or cross-covariance 

matrix between across-area variable xa
i

1

,j,:
 in area i1 and across-area variable 

x

a

i

2

,j,:
 in area i2. We again choose to use the squared exponential function for GP 

covariances. Therefore, element (t1, t2) of each Ka

i

1

,i

2

,j

 can be computed as follows45:

k

a

i

1

,i

2

,j

(t
1

, t

2

) =
(

1 − (σ

a

j

)2
)

exp

(

−
(Δt)2

2(τ

a

j

)2

)

+ (σ

a

j

)2 · δ

Δt

(7)

Δt =
(

t

2

− D

i

2

,j

)

−
(

t

1

− D

i

1

,j

)

(8)

where the characteristic timescale, τa
j

∈ R
>0

, and the GP noise variance, 
(σ

a

j

)2 ∈ (0, 1), are model parameters. δΔt is the Kronecker delta, which is 1 for 
Δt = 0 and 0 otherwise.

We also introduce two new parameters: the time delay to area i1, Di

1

,j

∈ R,  
and the time delay to area i2, Di

2

,j

∈ R. Notice that, when computing the 
autocovariance for area i (that is, i1 = i2 = i), the time delay parameters D

i

1

,j

 and D
i

2

,j

 
are equal, and so Δt (equation (8)) reduces simply to the time difference (t2 − t1), 
as in the within-area case (equation (5)). Time delays are therefore only relevant 
when computing the cross-covariance between area 1 and area 2. The time delay 
to area 1, D1,j, and the time delay to area 2, D2,j, by themselves have no physically 
meaningful interpretation. Their difference Dj = D2,j − D1,j, however, represents 
a well defined, continuous-valued time delay from area 1 to area 2. The sign of 
the relative time delay Dj indicates the directionality of the lead–lag relationship 
between areas captured by latent variable j (positive, area 1 leads area 2; negative, 
area 2 leads area 1), which we interpret as a description of inter-areal signal flow.

Both the characteristic timescales τj
a and relative delays Dj are estimated from 

the neural activity, together with the other DLAG parameters (Supplementary 
Note). More specifically, to ensure identifiability of time delay parameters, we 
designate area 1 as the reference area, and fix the delays for area 1 at 0, that is, 
D1,j = 0 for all across-area variables j = 1, …, pa. Then, each relative time delay Dj is 
simply D2,j. Note that Dj need not be an integer multiple of the sampling period or 
spike count bin width of the neural activity. As in the within-area case, the across-
area GP noise variance, (σj

a)2, is set to a small value (10−3). Furthermore, the across-
area GP is also normalized so that ka

i

1

,i

2

,j

(t
1

, t

2

) = 1 if Δt = 0, thereby removing 
model redundancy in the scaling of Xa

i

and C

a

i

.

DLAG special cases. Finally, we consider some special cases of the DLAG model 
that illustrate its relationship to other dimensionality reduction methods. First, by 
fixing all time delays to zero (Dj = 0), and by removing within-area latent variables 
( pw

1

= p

w

2

= 0), DLAG becomes equivalent to GPFA44 applied to the two areas 
jointly. By removing instead the across-area latent variables ( pa = 0), and keeping 
the within-area latent variables intact, DLAG becomes equivalent to GPFA applied 
to each area independently. Finally, by removing temporal smoothing (that is, 
in the limit as all GP noise parameters σa

j

, σw

i,j

 approach 1), while retaining both 
within- and across-area latent variables, DLAG becomes similar to probabilistic 
CCA42,43. Whereas probabilistic CCA describes within-area activity via observation 

noise covariance matrices (Ri; see equation (47) of Supplementary Note), this 
special-case DLAG model would describe within-area activity via low-dimensional 
latent variables.

Selecting the numbers of within- and across-area latent variables. DLAG 
has three hyperparameters: pa, the number of across-area latent variables; and 
p

w

1

and p

w

2

, the number of within-area latent variables for each area. Model 
selection therefore poses a scaling challenge. Grid search over even a small range 
of within- and across-area dimensionalities can result in a large number of models 
that need to be fitted and validated. For example, considering just 10 possibilities 
for each type of latent variable would result in 1,000 candidate models. Thus, 
exhaustive search for the optimal DLAG model is impractical.

We therefore developed a streamlined cross-validation procedure that improves 
scalability. In brief, our model selection procedure occurs in two stages. First, 
we consider each area separately, and—using FA—we find the number of latent 
variables needed to explain the shared variance among neurons within each 
area. We reasoned that, while there is not a direct correspondence between the 
optimal number of latent variables in DLAG and FA models (because of temporal 
smoothing and other differences in model structure), it is unlikely that the total 
number of within- and across-area latent variables extracted by DLAG will exceed 
the FA dimensionality for an area (such a case would imply that there exists a 
neuron in, for example, area A that covaries with one or more neurons in area B, 
but no other neurons in area A). Hence we believe this approach to be reasonable 
given the computational benefits. We then use the FA dimensionality in each area 
to reduce the space of DLAG model candidates to a practical size.

In greater detail, we first applied FA to each area independently, and identified 
the optimal FA dimensionality through K-fold cross-validation (here we chose 
K = 4). We randomly split all trials into K equally sized partitions. For the kth 
cross-validation fold (k = 1, …, K), we held out the kth partition of trials and fitted 
FA model parameters to the trials in the remaining K − 1 partitions. Using the 
fitted parameters, we evaluated the data log likelihood on the held-out trials. 
We repeated this procedure for each of the K folds and summed the held-out 
data log likelihoods computed for each fold. We refer to this value as the cross-
validated data (log) likelihood. The FA model with the highest cross-validated data 
likelihood was taken as ‘optimal’.

We then used the optimal FA dimensionalities ( pFA
i

, i = 1, 2) to constrain 
the space of DLAG model candidates. In particular, we consider only DLAG 
models that satisfy pa +  pw

i

= p

FA

i

, for i = 1, 2; and pa ≤ min( pFA
1

, p

FA

2

). In words, 
we consider only DLAG models such that the number of within- and across-
area latent variables in each area sum to that area’s optimal FA dimensionality. 
Furthermore, the number of across-area latent variables is limited by the area with 
the smallest optimal FA dimensionality. Not only does this streamlined cross-
validation approach provide an upper limit on the possible number of within- and 
across-area latent variables, it also effectively collapses the DLAG hyperparameter 
space from three free hyperparameters to one (across-area dimensionality, pa), 
markedly improving scalability.

Among the model candidates within this constrained search range, we selected 
models that exhibited the largest cross-validated data likelihood, using the same 
K-fold cross-validation scheme as for FA. For each of the K folds, we evaluated (the 
log of) equation (31) of Supplementary Note on held-out trials using DLAG model 
parameters fitted to all remaining trials. We then took the cross-validated data 
log likelihood to be the sum (across the K folds) of held-out data log likelihoods. 
To further reduce runtime, we limited the number of expectation-maximization 
iterations during cross-validation to 1,000. The optimal DLAG model was then 
refitted to full convergence, where the data log likelihood improved from one 
iteration to the next by less than a preset tolerance (here we used 10−8).

We also note that throughout this work we explicitly considered model 
candidates for which across-area dimensionality was zero ( pa = 0): the two areas 
are independent, and any correlations between neurons are purely within-area. 
Similarly, we explicitly considered model candidates for which within-area 
dimensionalities were zero ( pw

1

= 0 or p

w

2

= 0): all variance shared among neurons 
in one area is attributed to their interactions with neurons in the other area. The 
case where all dimensionalities are zero ( pa =  pw

1

= p

w

2

= 0) is equivalent to fitting 
a multivariate Gaussian distribution to the data with diagonal covariance (that is, 
all neurons are treated as independent). We similarly considered zero-dimensional 
FA models ( pFA

1

= 0 or p

FA

2

= 0) during the first stage of our model selection 
procedure, equivalent to fitting a multivariate Gaussian distribution with diagonal 
covariance to observations in the respective area. The inclusion of these zero-
dimensionality model candidates protects against the identification of spurious 
interactions across or within areas.

Synthetic data generation. We generated synthetic datasets according to the 
DLAG generative model, so that we could leverage known ground truth to evaluate 
the accuracy of estimates and characterize DLAG’s performance over a range 
of simulated conditions. We started by randomly generating the set of model 
parameters, θ (see equation (19) of Supplementary Note), subject to constraints 
informed by experimental data. For all datasets, we chose the numbers of neurons 
in each area on the basis of our V1–V2 recordings (area A, q1 = 80; area B, q2 = 20). 
We set the combined total dimensionality in each area to representative values 
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(area A, pa + pw
1

 = 10; area B, pa + pw
2

 = 5), but varied the relative number of 
within- and across-area latent variables across datasets. Generating 20 datasets at 
each of six configurations ( pa = 0, …,5; pw

1

 = 5, …,10; pw
2

 = 0, …,5) resulted in a 
total of 120 independent datasets. Importantly, among these datasets, we included 
datasets without across- or within-area structure (that is, datasets for which across- 
or within-area dimensionality was zero), to test if our framework could identify 
such cases.

To ensure that synthetic datasets exhibited realistic noise levels, we first 
evaluated the strength of latent variables relative to the strength of single-neuron 
variability exhibited in the V1–V2 recordings. Specifically, we computed the 
‘signal-to-noise’ ratio (where ‘signal’ is defined as the shared activity described 
by latent variables), tr(C

i

C

!

i

)/tr(Ri), for V1 and V2 using the parameters of the 
optimal DLAG models fitted to each V1–V2 dataset. Representative values were 
0.3 and 0.2 for V1 and V2, respectively. Then for each dataset, we generated our 
synthetic observation model parameters, Ci and Ri, as follows. We first drew the 
elements of Ci and a diagonal matrix Φ

i

∈ R
q

i

×q

i from the standard normal 
distribution N (0, 1). Then, we set Ri = ΦiΦ

T

i

 (so that Ri was a valid covariance 
matrix) and rescaled Ri such that area i exhibited the correct signal-to-noise ratio. 
The elements of the mean parameter d were also drawn from the standard normal 
distribution.

Finally, we drew all timescales ({τ

a

j

}p
a

j=1

, {τ

w

1,j

}p
w

1

j=1

, {τ

w

2,j

}p
w

2

j=1

) uniformly from 
U(τmin, τmax), with τmin = 10 ms and τmax = 150 ms. We drew all delays ({D

1

, …, D

p

a}) 
uniformly from U(Dmin, Dmax), with Dmin = −30 ms and Dmax = +30 ms. All GP noise 
variances ({(σ

a

j

)2}
p

a

j=1

, {(σ

w

1,j

)2}
p

w

1

j=1

, {(σ

w

2,j

)2}
p

w

2

j=1

) were fixed at 10−3. With all model 
parameters specified, we then generated N = 100 independent and identically 
distributed trials ( x̄

n

, ȳ

n

, n = 1, …, N) according to equations (26) and (27) of 
Supplementary Note. Each trial comprised T = 50 time points, corresponding to 
1,000 ms sequences sampled with a period of 20 ms, to mimic the 20 ms spike count 
time bins used to analyse the experimental data.

Synthetic data performance metrics. To quantify DLAG’s performance across 
all synthetic datasets, we employed a variety of metrics. We first consider the 
estimation of DLAG’s observation model parameters. To assess the accuracy of 
loading matrix estimation (Ca

i

, C

w

i

; reported in Fig. 3 and Supplementary Figs. 2 
and 7), we computed a normalized subspace error66:

e

sub

=
‖ (I − M̂

(

M̂

!

M̂

)

−1

M̂

!

)M‖
F

‖ M‖
F

(9)

where M is the appropriate ground truth parameter, M̂  is the corresponding 
estimate and ∥ ⋅ ∥F is the Frobenius norm. esub quantifies the magnitude of the 
projection of the column space of M onto the null space of M̂ . A value of 1 
indicates that the column space of M lies completely in the null space of M̂ , and 
therefore the estimate captures no component of the ground truth. A value of 0 
indicates that the column space of M̂  contains the full column space of M, and 
therefore the estimate captures all components of the ground truth. This metric 
offers two advantages: (1) it does not require that the columns of M and M̂  are 
ordered in any way (the ordering of DLAG latent variables is arbitrary) and (2) it 
does not require that M and M̂  have the same number of columns, so it can be used 
to compare the performance of models with different numbers of latent variables. 
We report the accuracy of loading matrix estimation as 1 − esub (Fig. 3). To assess 
the accuracy of estimating d and R (reported in Supplementary Figs. 2 and 7), we 
computed the normalized error

e

vec

=
‖ v − v̂‖

2

‖ v‖
2

(10)

where v is either d or diag(R), and v̂ is the corresponding estimate.
We next consider the estimation of DLAG’s state model parameters. Reporting 

the accuracy of delay and timescale estimates (Fig. 3 and Supplementary Figs. 
2, 3 and 7) required explicitly matching estimated latent variables to the ground 
truth. Given the large number of synthetic datasets presented here, we automated 
this matching process as follows. First, for each area i, we took the unordered 
across- and within-area latent-variable estimates, x̂a

i

 and x̂w
i

, and computed the 
pairwise correlation between each estimated latent variable and each ground truth 
latent variable, xa

i

and x

w

i

, across all time points and trials. We then reordered the 
estimated latent variables to match the ground truth latent variables with which 
they showed the highest magnitude of correlation. To report delay and timescale 
estimation performance, we computed the absolute error between ground truth 
and (matched) estimated parameters, to express the error in units of time (ms).

Finally, we consider the moment-by-moment estimation of latent variables. 
As with the loading matrix, delay and timescale estimates, quantifying the 
accuracy of latent-variable estimates requires care since the sign and ordering 
of latent variables is arbitrary and will not, in general, match between estimates 
and the ground truth. First, let x̃a

i

= [xa!
i,:,1

· · · x
a!

i,:,T
]
!

∈ R
p

a

T  be a collection 
of all (ground truth) across-area variables at all time points in area i. Similarly, 
let x̃w

i

= [xw!

i,:,1
· · · x

w!

i,:,T
]
!

∈ R
p

w

i

T  be a collection of all (ground truth) within-

area variables at all time points in area i. Finally, define ˜Ca

i

∈ R
q

i

T×p

a

T and 
˜

C

w

i

∈ R
q

i

T×p

w

i

T  to be block diagonal matrices comprising T copies of the (ground 
truth) matrices Ca

i

 and Cw

i

, respectively; and define ˜d
i

∈ R
q

i

T  by vertically 
concatenating T copies of (the ground truth) di. We’ll denote the estimates of each 
of these values by ˆ̃xa

i

, ˆ̃xw
i

, ˆ̃C
a

i

, ˆ̃C
w

i

 and ˆ̃d
i

. The estimates ˆ̃xa
i

 and ˆ̃xw
i

 are posterior 
means, computed according to equation (30) of Supplementary Note.

Then, to separate the accuracy of across-area variable estimation from 
the accuracy of within-area variable estimation (as reported in Fig. 3 and 
Supplementary Fig. 2), we estimated denoised (smoothed) observations, using only 
across-area or only within-area latent-variable estimates:

ˆ̃
y

∗

i

=
ˆ̃
C

∗

i

ˆ̃
x

∗

i

+
ˆ̃
d

i

(11)

where ˆ̃y∗
i

= [ŷ∗"

i,1

· · · ŷ
∗"

i,T

]
"

∈ R
q

i

T . Here, the asterisk is used to indicate 
either 'a' or 'w' as a superscript, where observations have been denoised 
using only across- or within-area variable estimates, respectively. We then 
collect the denoised sequences on all N trials, ˆ̃y∗

i,n

, n = 1, …, N, into the matrix 
Ŷ

∗

i

= [ˆ̃y
∗

i,1

· · · ˆ̃y
∗

i,N

] ∈ R
q

i

T×N . Analogously, define Y∗

i

∈ R
q

i

T×N  to be the set of 
ground truth sequences generated before adding noise (that is, the noise term εi, 
defined in equation (2)).

We then computed the R2 value between estimated and (noiseless) ground 
truth sequences:

R

2 = 1 −
‖ Y

∗

i

− Ŷ

∗

i

‖
2

F

‖ Y

∗

i

− Ȳ

∗

i

‖
2

F

(12)

where Ȳ∗

i

= [ȳ∗
i

· · · ȳ
∗

i

] ∈ R
q

i

T×N  is constructed by horizontally concatenating N 
copies of the sample mean for each neuron in the ground truth Y∗

i

, taken over all 
time points and trials ( ȳ∗

i

∈ R
q

i

T). Note that, in the multivariate case, R2 ∈ (−∞, 1], 
where a negative value implies that estimates predict the ground truth less 
accurately than simply the sample mean.

Visual stimuli and neural recordings. Animal procedures and recording details 
have been described in previous work26,67. Briefly, animals (Macaca fascicularis, 
young adult males) were anaesthetized with ketamine (10 mg kg−1) and maintained 
on isoflurane (1–2%) during surgery. Recordings were performed under sufentanil 
(typically 6–18 μg kg−1 h−1) anaesthesia. Vecuronium bromide (150 μg kg−1 h−1) 
was used to prevent eye movements. The duration of each experiment (which 
comprised multiple recording sessions) varied from 5 to 7 d. All procedures were 
approved by the Institutional Animal Care and Use Committee of the Albert 
Einstein College of Medicine.

The data analysed here are those reported in refs. 36,41, and a subset of recording 
sessions reported in ref. 26. Activity in V1 output layers was recorded using a 
96-channel Utah array (400 μm interelectrode spacing, 1 mm length, inserted to 
a nominal depth of 600 μm). We recorded V2 activity using a set of electrodes/
tetrodes (interelectrode spacing 300 μm) whose depth could be controlled 
independently (Thomas Recording). These electrodes were lowered through 
V1 and the underlying white matter, and then into V2. Within V2, we targeted 
neurons in the input layers. We verified that the recordings were performed 
in the input layers using measurements of the depth in V2 cortex, histological 
confirmation (in a subset of recordings) and correlation measurements. For 
complete details see refs. 67 and 26. Voltage snippets that exceeded a user-defined 
threshold were digitized and sorted offline. The sampled neurons had spatial 
receptive fields within 2–4° of the fovea, in the lower visual field.

We measured responses evoked by drifting sinusoidal gratings (1–1.1 cycles per 
degree; drift rate 6.25 Hz; 2.6–4.95° in diameter; full contrast, defined as Michelson 
contrast, (Lmax − Lmin)/(Lmax + Lmin), where Lmin is 0 cd m−2 and Lmax is 80 cd m−2) at 
eight different orientations (22.5° steps), on a calibrated cathode-ray tube monitor 
placed 110 cm from the animal (1,024 × 768 pixel resolution at a 100 Hz refresh 
rate; Expo: http://sites.google.com/a/nyu.edu/expo). Each stimulus was presented 
400 times for 1.28 s. Each presentation was preceded by an interstimulus interval of 
1.5 s during which a grey screen was presented.

We recorded neuronal activity in three animals. In two of the animals, we 
recorded in two different but nearby locations in V2, providing distinct middle-
layer populations, yielding a total of five recording sessions. We treated responses 
to each of the eight stimuli in each session separately, yielding a total of 40 ‘datasets’.

Data preprocessing. We counted spikes in 20 ms time bins during the 1.28 s 
stimulus presentation period (64 bins per trial). For all analyses corresponding to 
each recording session, we excluded neurons that fired fewer than 0.5 spikes s−1, on 
average, across all trials and all grating orientations. Because we were interested 
in V1–V2 interactions on timescales within a trial, we subtracted the mean across 
time bins within each trial from each neuron. This step removed activity that 
fluctuated on slow timescales from one stimulus presentation to the next68. We 
then applied DLAG to each dataset separately.

Intra-areal and subsampled population comparisons. To contrast with the 
V1–V2 results, we also used DLAG to characterize the interactions between two 

NATURE COMPUTATIONAL SCIENCE | VOL 2 | AUGUST 2022 | 512–525 | www.nature.com/natcomputsci522

http://sites.google.com/a/nyu.edu/expo
http://www.nature.com/natcomputsci


ARTICLESNATURE COMPUTATIONAL SCIENCE

V1 subpopulations. For each dataset, we randomly split V1 into two equally sized 
subpopulations (for datasets with an odd number of V1 neurons, we discarded one 
neuron at random). Each subpopulation was labelled arbitrarily as either ‘V1a’ or 
‘V1b’ (Fig. 4c). We then applied DLAG to dissect these V1a–V1b interactions in a 
manner identical to V1–V2 (Figs. 5 and 6).

We also sought to understand the extent to which the V1–V2 results were 
driven by disparities in population size between V1 and V2 (Supplementary Fig. 9). 
For each dataset, we therefore randomly subsampled the V1 population to match 
the size of the V2 population. We then applied DLAG to each subsampled dataset 
in the same manner as above.

Variance explained by DLAG latent variables. After fitting a DLAG model to 
each experimental dataset, we sought to compare the relative strengths of across- 
or within-area latent variables extracted from the same dataset (as in Fig. 5)  
and across different datasets (as in Fig. 6b). To quantify these comparisons, we 
computed the variance explained by each latent variable, as derived from fitted 
model parameters. From equation (1), the total variance in area i simplifies to

var

total

= tr

(

C

a

i

C

a!

i

+ C

w

i

C

w!

i

+ R

i

)

(13)

By inspection, the total variance decomposes into three separable components: 
tr(Ca

i

C

a!

i

), the variance due to across-area activity; tr(Cw

i

C

w!

i

), the variance due 
to within-area activity, and tr(Ri), the variance that is independent to each neuron. 
In fact, the across-area and within-area components can be decomposed further 
into contributions by individual latent variables. Let ca

i,j

∈ R
q

i be the jth column of 
C

a

i

, and cw
i,j

∈ R
q

i be the jth column of Cw

i

. Then, tr(Ca

i

C
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i

) =
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‖
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, and 
tr(Cw
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C
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) =
∑

p
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w

i,j

‖
2

2

.
Because we were interested in variance shared among neurons, rather than 

independent to each neuron, we focused on the variance components involving 
C

a

i

 and Cw

i

, rather than Ri. Furthermore, since the total variance of recorded 
neural activity may vary widely across animals, stimuli and recording sessions, we 
computed two normalized metrics to facilitate comparison of these shared variance 
components across datasets. First, let ci,j be the jth column of Ci, where Ci = [Ca

i

C

w

i

] is the same as in equation (22) of Supplementary Note. To visualize the relative 
strength of latent variables in each area (Fig. 5), we computed
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that is, the fraction of shared variance explained by latent variable j in area i. We 
then displayed latent time courses multiplied by the appropriate αi,j at each time 
point. Similarly, to quantify the strength of across-area activity (relative to within-
area activity) in each area (Fig. 6b), we computed

α
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i

=
tr
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(15)

that is, the fraction of shared variance explained by all across-area latent variables 
in area i.

Uncertainty of estimated delays. DLAG’s performance on the synthetic data 
presented here suggests that time delays are estimated with high accuracy and 
precision. For our neural recordings, however, where no ‘ground truth’ is accessible, 
we sought to assess the certainty with which fitted delay parameters were indeed 
positive or negative—indicating a particular direction of inter-areal signal flow. We 
therefore developed the following non-parametric bootstrap procedure.

First, consider a DLAG model that has been fitted to a particular dataset with 
N trials. We construct a bootstrap sample b = 1, …, B from this dataset by selecting 
N trials uniformly at random with replacement (here we used B = 1,000). Then, let 
ℓb be the data log likelihood of the DLAG model evaluated on bootstrap sample 
b, and let ℓb,j=0 be the data log likelihood of the same DLAG model evaluated on 
bootstrap sample b, but for which Dj, the delay for across-area latent variable j, has 
been set to zero (all other model parameters remain unaltered).

To compare the performance of this ‘zero-delay’ model with the performance 
of the original model, we define the following statistic:

Δ!
b,j=0

= !
b

− !
b,j=0

. (16)

If the zero-delay model performed at least as well as the original DLAG model 
(equivalently, Δℓb,j=0 ≤ 0) on 5% or more of the bootstrap samples, then we could 
not say, with sufficient certainty, that the delay for across-area variable j was strictly 
positive or strictly negative. Otherwise, we took the magnitude of the delay for 
across-area variable j to differ significantly from zero.

For each of our V1–V2 datasets, then, this procedure allowed us to label some 
delays as ambiguous, where the corresponding population signal could not be 
confidently categorized as flowing in one direction or the other (Fig. 6c). Finally, 
note that the concept of ambiguity defined here is distinct from the concept 

of a variable’s importance in describing observed neural activity: for example, 
an across-area variable with an ambiguous time delay between areas could, in 
principle, still explain a large portion of an area’s shared variance.

Across-area prediction. As described above, we selected the number of within- 
and across-area latent variables for DLAG models using cross-validated data log 
likelihood (from equation (31) of Supplementary Note). Cross-validated data log 
likelihood offers a principled performance metric, as it is precisely the (training) 
data log likelihood that a fitted DLAG model maximizes, and it fits within 
DLAG’s probabilistic framework. However, interpretation of the performance 
differences between models can be difficult given the scale of log likelihood values. 
Furthermore, log likelihood values can vary markedly from dataset to dataset, 
often by orders of magnitude. We therefore sought an alternative metric that 
facilitates more intuitive comparison between models/methods (Supplementary 
Figs. 12 and 15) and across datasets (Supplementary Fig. 11).

Towards this end, we developed a leave-group-out prediction procedure that 
measures a model’s ability to capture interactions across areas (similar to the 
leave-neuron-out prediction, or ‘co-smoothing’, procedures in refs. 44,69). Our goal, 
therefore, is to use a fitted model to predict the unobserved activity of held-out 
neurons in one area, given the observed activity of neurons in the other area. Let 
us first collect observed variables (for one trial) in a manner that highlights group 
structure. We define ỹ
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= [y!
1,1

· · · y
!

1,T

]
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∈ R
q
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T and ỹ
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T,  
obtained by vertically concatenating the observed neural activity y1,t and y2,t in 
areas 1 and 2, respectively, across all times t = 1, …, T.

To predict ỹ
2

 from ỹ
1

, we use the conditional distribution of ỹ
2

 given ỹ
1

,  
P(ỹ

2

|̃y
1

), which can be obtained from the joint distribution, P(ỹ
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2

). For a 
derivation and discussion of P(ỹ

1

, ỹ

2

), see Supplementary Discussion (equation 
(52)). From P(ỹ

2

|̃y
1

), we take predictions to be the expected value of activity in 
area 2 given activity in area 1:
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where ˜Ca
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T  are all block diagonal matrices comprising T 
copies of the loading matrices Ca
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 and observation noise covariance 
matrices R1 and R2, respectively. ˜d
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T  are constructed by 
vertically concatenating T copies of mean parameters d1 and d2, respectively. The 
GP covariance matrices ˜Kw
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are defined in equations (50) and (51) of Supplementary Discussion. We similarly 
predict ỹ

1

 from ỹ
2

 using E [̃y
1

|̃y
2

].
We next use equation (17) to define a cross-validated measure of a model’s 

across-area predictive performance. Assume that we are given the parameters 
of a DLAG model fit to training data (equation (19) of Supplementary Note). 
Then let ỹ

i,n

 be the activity of area i on trial n of a held-out validation set, 
and let ˆ̃y

i,n

 be its predicted value given by equation (17). Collect these values 
across all n = 1, …, N held-out validation set trials into the respective matrices 
Y

i

= [̃y
i,1

· · · ỹ
i,N

] ∈ R
q

i

T×N  and Ŷ
i
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] ∈ R
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T×N . We then define a 
leave-group-out R2 value as follows:
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where Ȳ
i

= [ȳ
i

· · · ȳ
i

] ∈ R
q

i

T×N  is constructed by horizontally concatenating N 
copies of the sample mean for each neuron in observations Yi, taken over all time 
points and trials ( ȳ

i

∈ R
q

i

T). In K-fold cross-validation, we evaluate R2

lgo

 on each of 
the K validation sets, and report the average value over all K.

In a typical multivariate regression setting, R2 is an asymmetric measure of 
predictive performance: prediction of ỹ

2

 from ỹ
1

 yields a different R2 value than 
does prediction of ỹ

1

 from ỹ
2

. In contrast, R2

lgo

 is a symmetric measure that 
aggregates predictions in both directions. Like R2, R2

lgo

 ∈ (−∞, 1], where a value 
of 1 implies perfect prediction of neural activity, and a negative value implies that 
estimates predict neural activity less accurately than simply the sample mean. R2

lgo

 
is normalized by the total variance of neural activity within each dataset, thereby 
facilitating comparison across datasets, in which the variance of neural activity 
could vary widely. This more intuitive comparison across datasets (compared 
with log likelihood) comes at the expense of a principled characterization of 
performance within DLAG’s probabilistic framework, and we emphasize that 
across-area prediction is not the objective that a fitted DLAG model is designed  
to maximize.

Statistics and reproducibility. All statistical analyses described here were carried 
out in MATLAB (MathWorks). To assess whether across-area strength was 
significantly greater in V2 than in V1, we performed a one-sided paired sign 
test (Fig. 6b). To assess whether V1–V2 time delays were significantly less than 
zero, we performed a one-sided one-sample sign test (Fig. 6c). To assess whether 
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within-V2 GP timescales were significantly longer than within-V1 GP timescales, 
we performed a one-sided Wilcoxon rank sum test (Fig. 6d). P values are reported 
in the caption of Fig. 6.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
V1–V2 data are available at the CRCNS data sharing website at https://doi.
org/10.6080/K0B27SHN (ref. 70). Naturalistic texture images are available on the 
Multiband Texture Database at http://multibandtexture.recherche.usherbrooke.
ca/original_brodatz.html and on the Salzburg Texture Image Database at https://
wavelab.at/sources/STex. Source Data for Figs. 3–6 are available for this Article.

Code availability
A MATLAB implementation of DLAG is available on GitHub at https://github.
com/egokcen/DLAG and on Zenodo at https://doi.org/10.5281/zenodo.6654831 
(ref. 71).

Received: 16 October 2021; Accepted: 21 June 2022;  
Published online: 18 August 2022

References
 1. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation 

in zebra!sh. Nature 485, 471–477 (2012).
 2. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 

349–359 (2017).
 3. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of 

neural activity. Nature 551, 232–236 (2017).
 4. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed 

coding of choice, action and engagement across the mouse brain. Nature 576, 
266–273 (2019).

 5. Kohn, A. et al. Principles of corticocortical communication: proposed 
schemes and design considerations. Trends Neurosci. 43, 725–737 (2020).

 6. Lamme, V. A., Supèr, H. & Spekreijse, H. Feedforward, horizontal,  
and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 
529–535 (1998).

 7. Angelucci, A. & Bresslo#, P. C. Contribution of feedforward, lateral and 
feedback connections to the classical receptive !eld center and extra- 
classical receptive !eld surround of primate V1 neurons. Prog. Brain Res. 154, 
93–120 (2006).

 8. Gilbert, C. D. & Li, W. Top-down in$uences on visual processing. Nat. Rev. 
Neurosci. 14, 350–363 (2013).

 9. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. 
Nature 503, 51–58 (2013).

 10. Miller, E. K., Lundqvist, M. & Bastos, A. M. Working Memory 2.0. Neuron 
100, 463–475 (2018).

 11. Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor 
control. Exp. Brain Res. 185, 359–381 (2008).

 12. Keemink, S. W. & Machens, C. K. Decoding and encoding (de)mixed 
population responses. Curr. Opin. Neurobiol. 58, 112–121 (2019).

 13. Schmolesky, M. T. et al. Signal timing across the macaque visual system.  
J. Neurophysiol. 79, 3272–3278 (1998).

 14. Hernández, A. et al. Decoding a perceptual decision process across cortex. 
Neuron 66, 300–314 (2010).

 15. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information $ow during 
$exible sensorimotor decisions. Science 348, 1352–1355 (2015).

 16. Supèr, H., Spekreijse, H. & Lamme, V. A. F. Two distinct modes of sensory 
processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 
304–310 (2001).

 17. Pooresmaeili, A., Poort, J. & Roelfsema, P. R. Simultaneous selection by 
object-based attention in visual and frontal cortex. Proc. Natl Acad. Sci. USA 
111, 6467–6472 (2014).

 18. Chen, M. et al. Incremental integration of global contours through interplay 
between visual cortical areas. Neuron 82, 682–694 (2014).

 19. Schwiedrzik, C. M. & Freiwald, W. A. High-level prediction signals  
in a low-level area of the macaque face-processing hierarchy. Neuron 96, 
89–97 (2017).

 20. Issa, E. B., Cadieu, C. F. & DiCarlo, J. J. Neural dynamics at successive stages 
of the ventral visual stream are consistent with hierarchical error signals. eLife 
7, e42870 (2018).

 21. Reid, R. C. & Alonso, J. M. Speci!city of monosynaptic connections from 
thalamus to visual cortex. Nature 378, 281–284 (1995).

 22. Roe, A. W. & Ts’o, D. Y. Speci!city of color connectivity between primate V1 
and V2. J. Neurophysiol. 82, 2719–2730 (1999).

 23. Nowak, L. G., Munk, M., James, A. C., Girard, P. & Bullier, J. Cross-
correlation study of the temporal interactions between areas V1 and V2 of 
the macaque monkey. J. Neurophysiol. 81, 1057–1074 (1999).

 24. Jia, X., Tanabe, S. & Kohn, A. Gamma and the coordination of spiking 
activity in early visual cortex. Neuron 77, 762–774 (2013).

 25. Oemisch, M., Westendor#, S., Everling, S. & Womelsdorf, T. Interareal 
spike-train correlations of anterior cingulate and dorsal prefrontal cortex 
during attention shi%s. J. Neurosci. 35, 13076–13089 (2015).

 26. Zandvakili, A. & Kohn, A. Coordinated neuronal activity enhances 
corticocortical communication. Neuron 87, 827–839 (2015).

 27. Campo, A. T. et al. Feed-forward information and zero-lag synchronization in 
the sensory thalamocortical circuit are modulated during stimulus perception. 
Proc. Natl Acad. Sci. USA 116, 7513–7522 (2019).

 28. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. High-frequency, 
long-range coupling between prefrontal and visual cortex during attention. 
Science 324, 1207–1210 (2009).

 29. Salazar, R. F., Dotson, N. M., Bressler, S. L. & Gray, C. M. Content-speci!c 
fronto-parietal synchronization during visual working memory. Science 338, 
1097–1100 (2012).

 30. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback 
and feedforward processing in monkey visual cortex. Proc. Natl Acad. Sci. 
USA 111, 14332–14341 (2014).

 31. Bastos, A. M., Vezoli, J. & Fries, P. Communication through  
coherence with inter-areal delays. Curr. Opin. Neurobiol. 31,  
173–180 (2015).

 32. Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A. & Yu, B. M. Statistical 
methods for dissecting interactions between brain areas. Curr. Opin. 
Neurobiol. 65, 59–69 (2020).

 33. Kang, B. & Druckmann, S. Approaches to inferring multi-regional 
interactions from simultaneous population recordings. Curr. Opin. Neurobiol. 
65, 108–119 (2020).

 34. Keeley, S. L., Zoltowski, D. M., Aoi, M. C. & Pillow, J. W. Modeling statistical 
dependencies in multi-region spike train data. Curr. Opin. Neurobiol. 65, 
194–202 (2020).

 35. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical 
activity in the null space: permitting preparation without movement. Nat. 
Neurosci. 17, 440–448 (2014).

 36. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A.  
Cortical areas interact through a communication subspace. Neuron 102, 
249–259 (2019).

 37. Perich, M. G., Gallego, J. A. & Miller, L. E. A neural population mechanism 
for rapid learning. Neuron 100, 964–976 (2018).

 38. Srinath, R., Ru#, D. A. & Cohen, M. R. Attention improves information $ow 
between neuronal populations without changing the communication 
subspace. Curr. Biol. 31, 5299–5313 (2021).

 39. Veuthey, T. L., Derosier, K., Kondapavulur, S. & Ganguly, K. Single-trial 
cross-area neural population dynamics during long-term skill learning. Nat. 
Commun. 11, 4057 (2020).

 40. Chen, G., Kang, B., Lindsey, J., Druckmann, S. & Li, N. Modularity and 
robustness of frontal cortical networks. Cell 184, 3717–3730 (2021).

 41. Semedo, J. D. et al. Feedforward and feedback interactions between visual 
cortical areas use di#erent population activity patterns. Nat. Commun. 13, 
1099 (2022).

 42. Bach, F. R. & Jordan, M. I. A Probabilistic Interpretation of Canonical 
Correlation Analysis Technical Report 688 (Department of Statistics, 
University of California, Berkeley, 2005).

 43. Archambeau, C. & Bach, F. Sparse probabilistic projections. Adv. Neural Inf. 
Process. Syst. 21, 73–80 (2008).

 44. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional 
single-trial analysis of neural population activity. J. Neurophysiol. 102, 
614–635 (2009).

 45. Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P. & Yu, B. 
M. Extracting low-dimensional latent structure from time series in the 
presence of delays. Neural Comput. 27, 1825–1856 (2015).

 46. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the 
primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

 47. Markov, N. T. et al. Cortical high-density counterstream architectures. Science 
342, 1238406 (2013).

 48. Smith, M. A., Kohn, A. & Movshon, J. A. Glass pattern responses in macaque 
V2 neurons. J. Vision 7, 5 (2007).

 49. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. 
Nat. Neurosci. 17, 1661–1663 (2014).

 50. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of 
population coding across cortex. Nature 548, 92–96 (2017).

 51. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals 
functional hierarchy. Nature 592, 86–92 (2021).

 52. Zhuang, X., Yang, Z. & Cordes, D. A technical review of canonical  
correlation analysis for neuroscience applications. Hum. Brain Mapp. 41, 
3807–3833 (2020).

 53. Kamiński, M., Ding, M., Truccolo, W. A. & Bressler, S. L. Evaluating causal 
relations in neural systems: Granger causality, directed transfer function and 
statistical assessment of signi!cance. Biol. Cybern. 85, 145–157 (2001).

NATURE COMPUTATIONAL SCIENCE | VOL 2 | AUGUST 2022 | 512–525 | www.nature.com/natcomputsci524

https://doi.org/10.6080/K0B27SHN
https://doi.org/10.6080/K0B27SHN
http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
https://wavelab.at/sources/STex
https://wavelab.at/sources/STex
https://github.com/egokcen/DLAG
https://github.com/egokcen/DLAG
https://doi.org/10.5281/zenodo.6654831
http://www.nature.com/natcomputsci


ARTICLESNATURE COMPUTATIONAL SCIENCE

 54. Quinn, C. J., Coleman, T. P., Kiyavash, N. & Hatsopoulos, N. G. Estimating 
the directed information to infer causal relationships in ensemble neural 
spike train recordings. J. Comput. Neurosci. 30, 17–44 (2011).

 55. Kim, S., Putrino, D., Ghosh, S. & Brown, E. N. A Granger causality measure 
for point process models of ensemble neural spiking activity. PLoS Comput. 
Biol. 7, e1001110 (2011).

 56. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a 
complete neuronal population. Nature 454, 995–999 (2008).

 57. Truccolo, W., Hochberg, L. R. & Donoghue, J. P. Collective dynamics in 
human and monkey sensorimotor cortex: predicting single neuron spikes. 
Nat. Neurosci. 13, 105–111 (2010).

 58. Perich, M. G. et al. Inferring brain-wide interactions using data-constrained 
recurrent neural network models. Preprint at https://doi.
org/10.1101/2020.12.18.423348 (2021).

 59. Rodu, J., Klein, N., Brincat, S. L., Miller, E. K. & Kass, R. E. Detecting 
multivariate cross-correlation between brain regions. J. Neurophysiol. 120, 
1962–1972 (2018).

 60. Bong, H. et al. Latent dynamic factor analysis of high-dimensional neural 
recordings. Adv. Neural Inf. Process. Syst. 33, 16446–16456 (2020).

 61. Keeley, S., Aoi, M., Yu, Y., Smith, S. & Pillow, J. W. Identifying  
signal and noise structure in neural population activity with  
Gaussian process factor models. Adv. Neural Inf. Process. Syst. 33, 
13795–13805 (2020).

 62. Semedo, J., Zandvakili, A., Kohn, A., Machens, C. K. & Yu, B. M. Extracting 
latent structure from multiple interacting neural populations. Adv. Neural Inf. 
Process. Syst. 27, 2942–2950 (2014).

 63. Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L. & Linderman, S. 
Recurrent switching dynamical systems models for multiple interacting 
neural populations. Adv. Neural Inf. Process. Syst. 33, 14867–14878 (2020).

 64. Reid, A. T. et al. Advancing functional connectivity research from association 
to causation. Nat. Neurosci. 22, 1751–1760 (2019).

 65. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine 
Learning (MIT Press, 2006).

 66. Golub, G. H. & Van Loan, C. F. Matrix Computations 4th edn (Johns Hopkins 
Univ. Press, 2013).

 67. Smith, M. A. & Kohn, A. Spatial and temporal scales of neuronal correlation 
in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

 68. Cowley, B. R. et al. Slow dri% of neural activity as a signature of impulsivity 
in macaque visual and prefrontal cortex. Neuron 108, 551–567 (2020).

 69. Pei, F. et al. Neural Latents Benchmark ’21: evaluating latent variable models 
of neural population activity. Preprint at https://doi.org/10.48550/arXiv. 
2109.04463 (2022).

 70. Zandvakili, A. & Kohn, A. Simultaneous V1–V2 neuronal population 
recordings in anesthetized macaque monkeys. CRCNS https://doi.org/10.6080/
K0B27SHN (2019).

 71. Gokcen, E. egokcen/DLAG: v1.0.0. Zenodo https://doi.org/10.5281/zenodo. 
6654831 (2022).

Acknowledgements
This work was supported by the Dowd Fellowship (E.G.), Simons Collaboration on the 
Global Brain 542999 (A.K.), 543009 (C.K.M.), 543065 (B.M.Y.), 364994 (A.K., B.M.Y.), 
NIH R01 EY028626 (A.K.), NIH U01 NS094288 (C.K.M.), NIH R01 HD071686 (B.M.Y.), 
NIH CRCNS R01 NS105318 (B.M.Y.), NSF NCS BCS 1533672 and 1734916 (B.M.Y.), 
NIH CRCNS R01 MH118929 (B.M.Y.) and NIH R01 EB026953 (B.M.Y.).

Author contributions
E.G., A.I.J., J.D.S., A.K., C.K.M. and B.M.Y. designed the analyses. E.G. derived and 
implemented DLAG, and performed all analyses. A.I.J., A.Z. and A.K. designed and 
performed the experiments. E.G., A.I.J., A.K., C.K.M. and B.M.Y. wrote the manuscript. 
All authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s43588-022-00282-5.
Correspondence and requests for materials should be addressed to Byron M. Yu.
Peer review information Nature Computational Science thanks Matthew Kaufman, 
Stephen Keeley, Stefano Recanatesi and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, 
in collaboration with the Nature Computational Science team.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
Springer Nature or its licensor holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the terms of such 
publishing agreement and applicable law.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NATURE COMPUTATIONAL SCIENCE | VOL 2 | AUGUST 2022 | 512–525 | www.nature.com/natcomputsci 525

https://doi.org/10.1101/2020.12.18.423348
https://doi.org/10.1101/2020.12.18.423348
https://doi.org/10.48550/arXiv.2109.04463
https://doi.org/10.48550/arXiv.2109.04463
https://doi.org/10.6080/K0B27SHN
https://doi.org/10.6080/K0B27SHN
https://doi.org/10.5281/zenodo.6654831
https://doi.org/10.5281/zenodo.6654831
https://doi.org/10.1038/s43588-022-00282-5
http://www.nature.com/reprints
http://www.nature.com/natcomputsci

	Disentangling the flow of signals between populations of neurons
	Results
	Model overview. 
	Validation on realistic-scale synthetic data. 
	Dissecting bidirectional interactions between V1 and V2. 

	Discussion
	Methods
	Mathematical notation
	Observed neural activity
	Latent variables
	Model parameters
	GP covariances

	DLAG observation model
	DLAG state model
	Within-area latent variables
	Across-area latent variables
	DLAG special cases

	Selecting the numbers of within- and across-area latent variables
	Synthetic data generation
	Synthetic data performance metrics
	Visual stimuli and neural recordings
	Data preprocessing
	Intra-areal and subsampled population comparisons
	Variance explained by DLAG latent variables
	Uncertainty of estimated delays
	Across-area prediction
	Statistics and reproducibility
	Reporting summary

	Acknowledgements
	Fig. 1 Disentangling the flow of signals between populations of neurons.
	Fig. 2 DLAG conceptual illustration.
	Fig. 3 Estimates of within- and across-area time courses and their parameters in synthetic data.
	Fig. 4 Simultaneous population recordings in V1 and V2.
	Fig. 5 Representative DLAG time courses for inter- and intra-areal analyses (same dataset as shown in Fig.
	Fig. 6 Uncovering properties of V1–V2 interactions with DLAG.


