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Abstract

Dimensionality reduction has been applied in various brain areas to study the activity of pop-

ulations of neurons. To interpret the outputs of dimensionality reduction, it is important to

first understand its outputs for brain areas for which the relationship between the stimulus

and neural response is well characterized. Here, we applied principal component analysis

(PCA) to trial-averaged neural responses in macaque primary visual cortex (V1) to study

two fundamental, population-level questions. First, we characterized how neural complexity

relates to stimulus complexity, where complexity is measured using relative comparisons of

dimensionality. Second, we assessed the extent to which responses to different stimuli

occupy similar dimensions of the population activity space using a novel statistical method.

For comparison, we performed the same dimensionality reduction analyses on the activity

of a recently-proposed V1 receptive field model and a deep convolutional neural network.

Our results show that the dimensionality of the population response changes systematically

with alterations in the properties and complexity of the visual stimulus.

Author Summary

A central goal in systems neuroscience is to understand how large populations of neurons

work together to enable us to sense, to reason, and to act. To go beyond single-neuron

and pairwise analyses, recent studies have applied dimensionality reduction methods to

neural population activity to reveal tantalizing evidence of neural mechanisms underlying

a wide range of brain functions. To aid in interpreting the outputs of dimensionality

reduction, it is important to vary the inputs to a brain area and ask whether the outputs of

dimensionality reduction change in a sensible manner, which has not yet been shown. In

this study, we recorded the activity of tens of neurons in the primary visual cortex (V1) of
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macaque monkeys while presenting different visual stimuli. We found that the

dimensionality of the population activity grows with stimulus complexity, and that the

population responses to different stimuli occupy similar dimensions of the population fir-

ing rate space, in accordance with the visual stimuli themselves. For comparison, we

applied the same analysis methods to the activity of a recently-proposed V1 receptive field

model and a deep convolutional neural network. Overall, we found dimensionality reduc-

tion to yield interpretable results, providing encouragement for the use of dimensionality

reduction in other brain areas.

Introduction

Dimensionality reduction has been applied to neural population activity to study decision

making [1, 2], motor control [3–5], olfaction [6], working memory [7, 8], visual attention [9],

audition [10], rule learning [11], speech [12], and more (for a review, see [13]). In many cases,

dimensionality reduction is applied in brain areas for which the relationship between neural

activity and external variables, such as the sensory stimulus or behavior, is not well character-

ized. This is indeed the setting in which dimensionality reduction may be most beneficial

because it allows one to relate the activity of a neuron to the activity of other recorded neurons,

without needing to assume a moment-by-moment relationship with external variables. How-

ever, it is also the setting in which the outputs of dimensionality reduction can be the most dif-

ficult to interpret.

To aid in interpreting the outputs of dimensionality reduction in such settings, it is impor-

tant to vary the inputs to a brain area and ask whether the outputs of dimensionality reduction

change in a sensible way. This is most readily done for a brain area close to the sensory periph-

ery, such as the primary visual cortex (V1). Here, we apply dimensionality reduction to V1 and

ask two fundamental, population-level questions. First, how is neural complexity related to

stimulus or task complexity? Previous studies have used dimensionality reduction to analyze

population activity in a reduced space (e.g., [1–13]). Implicit in these studies is the appropriate

dimensionality of the reduced space, which is a measure of neural complexity. It is currently

unknown how neural complexity scales with stimulus or task complexity for a given popula-

tion of neurons [14]. Second, how does a neural circuit flexibly encode (or “multiplex”) the

representation of the vast number of stimuli encountered in the natural world? Recent studies

suggest that it may be possible to take advantage of the multi-dimensional properties of the

population activity space [2, 7, 15–17]. In particular, the population activity representing dif-

ferent stimuli might occupy similar dimensions of the population activity space [10]. It is cur-

rently unknown how the similarity of the dimensions being occupied by the population

activity changes with the similarity of the stimuli.

The concept of dimensionality is illustrated in Fig 1. Consider a high-dimensional space

(termed the population firing rate space) in which each axis represents the firing rate of a

recorded neuron (Fig 1A). The goal of dimensionality reduction is to identify i) how many

dimensions are occupied by the neural population activity, i.e., the dimensionality of the popu-

lation activity, and ii) how these dimensions are oriented within the population firing rate

space. In this three-neuron example, the population activity is two-dimensional, where the

dimensions are defined by the orthogonal basis patterns (Fig 1A, basis patterns 1 and 2).

Equivalently, we can think of dimensionality reduction in terms of decomposing the popula-

tion activity into a weighted sum of basis patterns and a mean offset (Fig 1B). A basis pattern

describes a characteristic way in which activity of the neurons covaries. Each basis pattern is
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fixed and is weighted by a time-varying latent variable, which represents the contribution of

the basis pattern at each point in time.

We can compare the outputs of dimensionality reduction for two different stimuli (Fig 1B
and 1C). The population activity for stimulus 1 is two-dimensional because it can be described

by two basis patterns (Fig 1B), whereas that for stimulus 2 is three-dimensional (Fig 1C). Thus,

the population response to stimulus 2 would be deemed more complex than the population

response to stimulus 1. In addition, we can ask whether the population responses to different

stimuli occupy similar dimensions within the population firing rate space. This is assessed by

comparing the basis patterns across stimuli. In this example, there is one basis pattern that is

shared by both stimuli (red), one basis pattern that is similar between stimuli (green), and one

basis pattern (black) that is employed only by stimulus 2.

In this work, we characterize how neural complexity varies with stimulus complexity in

macaque V1 by applying principal components analysis (PCA) to the trial-averaged neural

responses to different classes of visual stimuli, including sinusoidal gratings, a natural movie,

and white noise. In addition, we develop a new method (termed the pattern aggregation

method) to measure how the basis patterns extracted from the population responses to each

stimulus relate to each other. This method allows one to characterize how the similarity of the

dimensions being occupied by the population activity changes with the similarity of the sti-

muli. A key advantage of studying these questions in V1 is that there are well-established

receptive field (RF) models. By applying the same dimensionality reduction methods to the

outputs of an RF model, we can more deeply understand the relationship between the outputs

of dimensionality reduction and known properties of V1 neurons. The results described in

this work show that the outputs of dimensionality reduction, when applied to V1 population

activity, are sensible, and thus may be fruitfully applied to other brain areas.

Fig 1. Conceptual illustration of dimensionality and basis patterns. A: The activity of three neurons can

be plotted in a 3-d population firing rate space, where each axis represents the firing rate of one neuron. The

population activity evolves over time (blue trace), and occupies a 2-d plane (blue shade). The basis patterns

are orthogonal axes that define this 2-d plane. B: The activity of three neurons can also be represented as

time-varying firing rates or peri-stimulus time histograms, PSTHs. The activity can be decomposed into a

weighted sum of basis patterns (red and green) and a mean offset (gray). Each basis pattern is weighted by a

time-varying latent variable. Note that basis patterns are mutually orthogonal, by definition. C: The activity of

the same three neurons as in B, but for a different stimulus. Same conventions as in B.

doi:10.1371/journal.pcbi.1005185.g001
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Results

Dimensionality of population responses to gratings

We first investigated how changing the complexity of the visual stimulus changes the

dimensionality of trial-averaged population responses using drifting sinusoidal gratings. To

change the stimulus complexity, we included different numbers of consecutive grating orienta-

tions in the analysis (ranging from 1 to 12 orientations). For example, the least complex stimu-

lus included a single orientation, and more complex stimuli included two or five consecutive

orientations (Fig 2A).

We asked how quickly the dimensionality of the population activity grows as the number of

orientations increases. At one extreme, it may be that the population response to each orienta-

tion uses an entirely different set of basis patterns (i.e., dimensions). In this case, the

dimensionality for two orientations would be two times the dimensionality for one orienta-

tion. At the other extreme, it may be that the population response to each orientation resides

in the same set of dimensions. In other words, the population response is formed using the

same basis patterns, but linearly combined using different weights for different orientations.

In this case, the dimensionality for two orientations would be the same as the dimensionality

for one orientation.

We first computed the basis patterns of each orientation individually by applying PCA to

the trial-averaged population response (taken in 20 ms bins), and identifying the patterns

explaining the greatest variance in the population response (up to a chosen cumulative vari-

ance threshold, e.g., 90%). To assess the dimensionality of the population response to multiple

orientations, we developed the pattern aggregation method (see Methods), which first aggre-

gates the basis patterns for different orientations as column vectors in a matrix, and then com-

putes the number of linearly independent columns of the aggregated matrix (i.e., the effective

rank). This value is the dimensionality for multiple orientations. Using a 90% variance thresh-

old, we found that the dimensionality for two orientations was 1.62 times the dimensionality

for one orientation (Fig 2B, ‘90%’ curve), and significantly smaller than what would be

expected had the basis patterns been randomly chosen (Fig 2B, ‘chance 90%’ curve, p< 10−5).

In other words, for consecutive orientations separated by 30˚, the population responses share

about half of their basis patterns. As more orientations were included, the dimensionality of

population responses remained lower than expected by chance (Fig 2B), indicating that popu-

lation responses to oriented gratings separated by angles larger than 30˚ also tend to use simi-

lar basis patterns. Similar trends were found using different variance thresholds (Fig 2B, ‘70%’,

‘80%’ curves), so we use a 90% threshold in the rest of this work.

The pattern aggregation method requires a choice for the rank threshold t to determine

how different basis patterns need to be before they define separate dimensions. We repeated

the above analysis for different choices of t and a fixed variance threshold of 90% (Fig 2C). We

found that the dimensionality trends are similar for rank thresholds t near 0.5, so we use

t = 0.5 in the rest of this work. Because the absolute dimensionality depends on the variance

and rank thresholds, we make no claims about absolute dimensionality. Rather, we focus on

relative comparisons of dimensionality for fixed variance and rank thresholds.

We observed a change in the rate of increase of dimensionality after six orientations (Fig

2B, black curve). Because consecutive orientations were separated by 30˚, the first and seventh

orientations were 180˚ apart and differed only in their drift direction. Thus, the seventh to

twelfth orientations were identical to the first to sixth orientations respectively, but drifted in

opposite directions. A small proportion of V1 neurons are direction selective [18, 19], so the

change in slope of the dimensionality curve might be due to the population activity using simi-

lar basis patterns for opposite drift directions.
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To test this possibility, we performed two analyses. First, we assessed the direction selectivity

of each neuron (direction index = 1 − null response / preferred response), and found that 16 of

183 neurons had a direction index greater than 0.5, consistent with [19]. If none of the neurons

encoded direction selectivity, we would expect the dimensionality curve to be flat beyond 6 ori-

entations in Fig 2B. The increase in dimensionality after 6 orientations is consistent with the

finding that at least some neurons show direction selectivity. A potential concern is that the

increase in dimensionality beyond 6 orientations arises from the fact that a larger number of

patterns are being aggregated for a larger number of orientations. To address this, we per-

formed a control analysis which equalized the number of patterns being aggregated across

Fig 2. Dimensionality of population responses to individual gratings. A: The complexity of the stimulus

was varied by combining a different number of consecutive orientations. The least complex stimulus consisted

of a single orientation, and more complex stimuli included two or five orientations. B: Dimensionality of

population activity versus number of orientations. Bottom three curves correspond to the number of

dimensions needed to explain 70%, 80%, and 90% of the variance. Top gray curve corresponds to the

number of dimensions expected by chance for the 90% variance threshold. Error bars represent the standard

error across monkeys and all possible combinations of consecutive orientations. C: Varying the rank threshold

for a fixed variance threshold (90%). Same data as in B. Each curve represents the dimensionality of the

population response as the number of consecutive orientations varies, for a particular rank threshold t. Error

bars are computed as in B. D: Dimensionality of population activity versus angle offset between two

orientations (bottom black curve). Chance dimensionality (top gray curve) and error bars are computed as in

B. E: Basis patterns describing the largest percentage of variance for the population responses to three

example orientations (90˚ apart) for one monkey. Each pattern is a unit vector with a norm of 1. Percentages

denote the percent variance explained by each pattern.

doi:10.1371/journal.pcbi.1005185.g002
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different numbers of conditions by including patterns from many subsamples of the data. We

found that the dimensionalities for 7 or more orientations were significantly greater than the

dimensionality for 6 orientations (p< 0.001), following the same trend shown in Fig 2B.

Second, we assessed how the dimensionality of the population activity for two orientations

varies with the angular offset between the orientations (Fig 2D). This indicates how the similar-

ity of the dimensions being occupied by the population activity changes with the similarity of

the stimuli. We found that the dimensionality increases with angular offset up to 90˚, indicat-

ing that the population activity differs the most for two orientations with 90˚ offset. Then, the

dimensionality decreases as the angular offset increases, reaching a minimum at a 180˚ offset,

where gratings drift in opposite directions. Thus, the population activity uses more similar

basis patterns for gratings drifting in opposite directions (180˚ offset) than to gratings of differ-

ent orientations (angular offsets other than 180˚). The dimensionality for 180˚ offset was

higher than that for 0˚ offset (p< 10−5), indicating that the population activity does not use

identical basis patterns for opposite drift directions. Because these dimensionalities were com-

puted differently (the pattern aggregation method for 180˚ offset and a variance threshold for

0˚ offset), we aggregated an equal number of patterns (identified over many subsampled runs)

for 0˚ offset as that for 180˚ offset, and still found a higher dimensionality for 180˚ offset than

for 0˚ offset (p< 10−5).

This result, combined with the change in slope of the dimensionality curve (Fig 2B), indi-

cates that the population activity tends to use similar (but not identical) basis patterns for

opposite drift directions. Taken together, the analyses in Fig 2B and 2D characterize how the

outputs of dimensionality reduction vary with the sensory input (in this case, drifting sinusoi-

dal gratings) to V1.

We also visualized the basis patterns describing the largest percentage of variance for three

different orientations (Fig 2E). These basis patterns extracted from the trial-averaged popula-

tion activity are akin to the hypothetical basis patterns shown in Fig 1 (red, green, black). For a

given basis pattern, the absolute height of each bar indicates the degree to which each neuron

contributes to that basis pattern. The following are two salient properties of the identified basis

patterns. First, most of the neurons in the recorded population contribute to each basis pattern

to some extent. Thus, the basis patterns capture changes in firing rates that are shared broadly

across the population, rather than reflecting the activity of only a small number of neurons.

Second, the basis patterns capture both positive and negative signal correlations between neu-

rons, where the signal is the phase of the grating at different time points. A basis pattern

describes positive signal correlation between a pair of neurons if the neurons have coefficients

of the same sign. Conversely, a basis pattern describes negative signal correlation for coeffi-

cients of opposite sign. We can relate these basis patterns to the results shown in Fig 2B–2D by

asking how similar are the linear combinations of each set of basis patterns across different

stimulus orientations. This is difficult to assess by eye, and so we rely on the quantifications

shown in Fig 2B–2D to determine how similar are the basis patterns across stimulus

orientations.

Dimensionality of population responses to different classes of visual

stimuli

We next sought to determine how the dimensionality of the trial-averaged population activity

varies with the complexity of the visual stimulus for a wider range of stimuli. We presented

three movie stimuli (Fig 3A): a sequence of sinusoidal gratings (‘gratings movie’), contiguous

natural scenes (‘natural movie’), and white noise (‘noise movie’). In contrast to Fig 2A where

the order of stimulus complexity is clear (i.e., a larger number of orientations is more
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complex), here we needed first to assess the relative complexity of the three movie stimuli. By

applying PCA to the pixel intensities, we found that 40 dimensions could explain nearly 100%

of the variance of the pixel intensities for the gratings movie (Fig 3B). For the natural movie,

the top few dimensions explained a large percentage of the variance due to global luminance

changes caused by zooming and panning the camera, and a large number of additional dimen-

sions were needed to explain the remaining variance. For the noise movie, each dimension

explained only a small percentage of the total variance. We summarized these cumulative per-

cent variance curves by finding the number of dimensions (gratings movie: 24, natural movie:

64, noise movie: 459) needed to explain 90% of the variance (Fig 3B, dashed line). Based on

these values, the gratings movie was least complex, followed by the natural movie, then the

noise movie. Similar results were obtained when first transforming the pixel intensities using a

V1 receptive field model, then applying PCA (see “Comparing to a V1 receptive field model”).

We further asked how much the pixel intensities varied for each movie stimulus, and found

that the noise movie had a smaller variance than the other two movie stimuli (Fig 3B, inset).

Together, this indicates that the distribution of pixel intensities for the gratings movie and nat-

ural movie is akin to an elongated ellipsoid (low dimensionality, high variance), whereas that

for the noise movie is akin to a small ball (high dimensionality, low variance).

Having measured the relative complexity of the movie stimuli, we then asked how the

dimensionality of the population responses to the movie stimuli varies with stimulus complex-

ity. We found that for a 90% variance threshold, the dimensionality of the trial-averaged popu-

lation responses (20 ms bins) was ordered in the same way as the stimulus complexity (Fig

3C); namely, the population responses to the gratings movie had the lowest dimensionality,

Fig 3. Dimensionality of movie stimuli and population responses to those movies. A: Example frames

of the movies for the gratings movie, natural movie, and noise movie. B: For each stimulus, cumulative

percent variance of the stimulus pixel intensities explained by different numbers of dimensions. Dashed line

corresponds to 90% of the variance explained. Inset: summed variance of the pixel intensities, normalized by

the maximum variance across movies. C: For each stimulus, cumulative percent variance of the population

activity explained by different numbers of dimensions. Dashed lines correspond to 90% of variance explained.

Left panel: monkey 1, 61 neurons. Right panel: monkey 2, 81 neurons. Insets: summed variance of each

neuron’s activity, normalized by the maximum variance across movies.

doi:10.1371/journal.pcbi.1005185.g003
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followed by the natural movie, then the noise movie. This ordering did not simply follow from

the ordering of the mean population firing rates for the different movies (monkey 1: 4.2, 6.4,

5.4 spikes/sec, monkey 2: 6.6, 8.2, 6.7 spikes/sec for gratings, natural, and noise movies, respec-

tively), and was consistent for a wide range of neuron counts for both monkeys (S1 Fig). We

also assessed how much the firing rates varied in response to each movie stimulus—that is, we

measured how much the mean firing rate (averaged across experimental trials) varies over

time. As with pixel intensities, we found that the population response to the noise movie had

the smallest variance, followed by the gratings movie, then the natural movie (Fig 3C, inset).

Overall, the dimensionality and variance ordering in the visual stimuli and the population

responses were similar, indicating that the population activity in V1 retains the complexity of

the ordering of the visual stimuli themselves.

Basis patterns of population responses

Having compared the dimensionality of the population activity across stimuli, we next asked

how the basis patterns of the population activity (corresponding to the dimensions being occu-

pied by the population activity) compare across stimuli. Previous studies have found that the

ability of a RF model to predict a neuron’s response can depend on the stimulus class on

which the model was trained [20–22], suggesting that the population activity might use some-

what distinct basis patterns for different stimulus classes. On the other hand, if basis patterns

are influenced by the shared underlying network structure [4, 10], then we would expect them

to be shared across responses to different stimuli.

We first asked whether there are qualitative differences in the coefficients of the basis pat-

terns for population responses to the stimulus movies (Fig 4A). As in Fig 2E, we found that

most of the basis patterns represented activity across a large number of neurons and described

both positive and negative signal correlations. However, there were two notable exceptions.

First, the basis pattern describing the most variance for the population response to the gratings

and noise movies involved primarily two neurons (Fig 4A, right and left panels, pattern 1, neu-

ron indices 26 and 27). For these movies, the two neurons had the highest firing rate modula-

tion (maximum—minimum firing rate) across the recorded population. The weights for the

gratings movie appeared to be sparser than those for individual gratings (Fig 2E), likely because

the gratings movie contained different orientations that strongly co-modulated these similarly-

tuned neurons, whereas individual gratings with a single orientation co-modulated many neu-

rons together with phase. Second, the basis pattern describing the most variance for the popu-

lation response to the natural movie had coefficients of the same sign (Fig 4A, middle panel,

pattern 1). This is due to the entire population increasing or decreasing its firing rates together

in response to global luminance changes prevalent in natural movies. Other than the similarity

of the top basis pattern for the gratings and noise movies, it was difficult to determine by eye

whether the basis patterns were being shared across stimuli. Thus, we used the pattern aggrega-

tion method to quantitatively assess the similarity of the identified basis patterns.

Assessing similarity of basis patterns

As a baseline, we assessed the extent to which the visual stimuli themselves reside in the same

dimensions in pixel space. We compared the dimensionalities of the individual movies (Fig 4B,

teal dots, consistent with Fig 3B) to those of combinations of movies (Fig 4B, orange and purple

dots). If the stimuli reside in overlapping dimensions, then the resulting dimensionality would

be the maximum of the dimensionalities for the individual movies. However, if the stimuli reside

in completely non-overlapping (i.e., orthogonal) dimensions, then the resulting dimensionality

would be the sum of the dimensionalities for the individual movies. To measure the extent of
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Fig 4. Similarity of basis patterns across stimuli. A: Basis patterns describing the largest percentage of

variance for the population responses to the gratings, natural, and noise movies for monkey 2. Each pattern is

a unit vector with a norm of 1. Percentages denote percent variance explained by each pattern. B:

Dimensionality of visual stimuli for individual movies (teal dots), and combinations of two (orange dots) or

three (purple dots) movies. The teal dots correspond to where the curves intersect the dashed lines in Fig 3B.

Black brackets denote the range of possible dimensionalities (bottom of the black bracket corresponds to

overlapping patterns; top of the black bracket corresponds to orthogonal patterns). Gray dots indicate

dimensionalities expected by chance, and error bars represent the standard deviation of 100 random

samples. The similarity index s indicates if patterns overlap more than expected by chance (s > 0) or are

closer to orthogonal than expected by chance (s < 0). C: Dimensionality of population activity, for individual

and combinations of movies. Same conventions as in B. Error bars represent standard deviations of the

subsampled estimates. D: Venn diagram that summarizes the similarity of basis patterns across stimuli. The

size of each ellipse indicates the number of basis patterns, and the overlap indicates the extent to which basis

patterns are shared by different stimuli.

doi:10.1371/journal.pcbi.1005185.g004
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overlap, we computed a similarity index s, for which s> 0 indicates that the patterns are more

similar (i.e., more overlapping) than expected by chance and s< 0 indicates that the patterns are

less similar (i.e., closer to orthogonal) than expected by chance (see Methods). There are two

main observations. First, the dimensions occupied by the gratings movie overlap with those for

the natural movie. To see this, note that the dimensionality for the gratings and natural movies

together (80 dimensions) was less than the sum of the individual dimensionalities for the two

movies (Fig 4B, gray, 88 dimensions). To ensure that the overlap in patterns was meaningful, we

confirmed that the aggregated dimensionality of 80 was less than the dimensionality (88 dimen-

sions) that would be expected by combining randomly-chosen dimensions (s = 0.33, p< 10−5).

Second, the dimensions occupied by the noise movie include many of the dimensions for the

other two stimuli. This is indicated by the fact that the dimensionality corresponding to any

combination of stimuli that included the noise movie (gratings + noise: 472, natural + noise:

495, and gratings + natural + noise: 500 dimensions) was less than the dimensionality that

would be expected by chance (s> 0.4, p< 10−5 for all cases). Note that, in all cases, the chance

dimensionality was near the maximum dimensionality (indicating orthogonality between the

two sets of randomly-chosen patterns) because the dimensionality of the pixel space (1,600

dimensions) was much larger than the dimensionalities of the individual movies.

We used the same approach to analyze the population responses as we did the visual sti-

muli. We compared the dimensionality of the population responses to individual movies (Fig

4C, teal dots, consistent with Fig 3C) to that of population responses to combinations of mov-

ies (Fig 4C, orange and purple dots). We found that the relationship of the basis patterns

employed by the population activity across stimuli (Fig 4C) was similar to the relationship

between the stimuli themselves (Fig 4B). First, the dimensions occupied by the population

responses to the gratings movie are overlapping with those for the natural movie. This is indi-

cated by the fact that the aggregated dimensionality for the population responses to the grat-

ings and natural movies (monkey 1: 25, monkey 2: 38) was less than the dimensionality if the

patterns were orthogonal (top of the black brackets) and the dimensionality expected by

chance (s> 0.39, p< 10−5). Second, the dimensions occupied by the population response to

the noise movie include most of the dimensions for the other two stimuli. This is indicated by

the fact that the dimensionality corresponding to any combination of stimuli that included the

noise movie was less than the dimensionality expected by chance (s> 0.32, p< 10−5 in all

cases), and close to entirely overlapping.

The chance dimensionality in Fig 4C is computed by assuming that any population activity

pattern within the N-dimensional population firing rate space can be achieved (where N = 61

for monkey 1 and N = 81 for monkey 2). Previous studies indicate that the population activity

may only be able to occupy a subset of dimensions due to underlying network constraints [4,

10]. Although we had no way of identifying exactly how many dimensions could have been

occupied by the population of recorded neurons, we computed a lower bound by determining

M, the largest value of dimensionality observed in response to any combination of stimuli (Fig

4C, M = 39 for monkey 1 and M = 52 for monkey 2). If the chance level is computed instead by

drawing random patterns from this M-dimensional space, we still find that the population

activity tends to occupy more similar dimensions than expected by chance for all pairs of mov-

ies (p< 0.05). This is a conservative assessment because larger values of M would only make

the comparison more statistically significant. We note that even if the population responses to

different stimuli occupy similar dimensions, this does not imply that the responses occupy the

same regions of the subspace defined by those dimensions. In other words, the activity may

covary along the same dimensions but be centered at different locations in the population

activity space. We found that the population responses to the three movies indeed were cen-

tered in different locations of the population activity space (S2 Fig).
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Our analysis of the similarity of basis patterns for the population activity is summarized by

the schematic in Fig 4D, where the size of each ellipse represents the dimensionality (i.e., num-

ber of basis patterns) of the population response to the corresponding stimulus and the overlap

between ellipses represents the extent to which the population responses share basis patterns.

We found that the basis patterns for the gratings movie were overlapping with those of the nat-

ural movie, and that the basis patterns for the noise movie largely contain the basis patterns for

the other two stimuli. However, there were a small number of basis patterns that were unique

to each stimulus, shown by the small areas of non-overlap among the ellipses. Overall, this sug-

gests that a neural circuit is capable of expressing a limited repertoire of basis patterns, and

that a subset of those basis patterns is employed for any given stimulus.

Time-resolved dimensionality of population responses to movie stimuli

In the preceding sections, the analyses of the movie stimuli and the corresponding neural

activity used the entire 30-second movie (i.e., 750 time points) together. Here, we consider

time-resolved measurements of dimensionality using one second windows, each comprising

25 time points. This allows us to assess how dimensionality changes over time, and compare

the basis patterns employed by the trial-averaged population activity during different parts of

the 30-second movies.

For the visual stimuli (Fig 5A, left panel) and the population responses (Fig 5A, center and

right panels), we found that the dimensionality corresponding to the noise movie was higher

than the dimensionality corresponding to the gratings and natural movies in each one-second

window, consistent with the results of analyzing each 30-second movie in its entirety (Fig 3).

However, the dimensionality of the natural movie was not greater than that of the gratings

movie (cf. colored triangles in Fig 5A, which indicate average dimensionality over time), in

contrast to Fig 3. We hypothesized that this was due to temporal correlations in the natural

movie, in which frames within a one-second window tend to be self-similar. In contrast, for

the gratings and noise movies, there are at least three different grating orientations and 25 dif-

ferent frames of white noise within each one-second window.

To reconcile the results for short and long time windows, we performed three analyses.

First, we tested the hypothesis that temporal correlations in the natural movie result in lower

dimensionalities (relative to the other movies) for short time windows. To break the temporal

correlations, we shuffled the time points (20 ms resolution) across each 30 second period and

performed the same analysis as in Fig 5A. We found that, in a one-second window, the mean

dimensionality corresponding to the natural movie was higher than that corresponding to the

gratings movie for the shuffled data. This was true for the visual stimuli (p< 0.01) and for the

population responses (monkey 1: p< 10−3, monkey 2: p< 0.05). This indicates that the range

of basis patterns expressed by the population responses to the natural movie within a short

time window is limited by the temporal correlations in the natural movie itself.

Second, we asked how the dimensionality grows when increasing the window size progres-

sively from one second to 30 seconds, where each window starts at the beginning of the movie

(Fig 5B). If the dimensionality increases with window size, this would indicate that new pat-

terns (of pixels or of population activity) are being used throughout the duration of the movie.

However, if the dimensionality plateaus, then the patterns are being reused and no new pat-

terns are being expressed. The leftmost points on these curves (one-second window) corre-

spond to the leftmost points on the corresponding curves in Fig 5A. The rightmost points on

these curves (30-second window) correspond to the dimensionalities shown in Fig 3. Although

the dimensionality corresponding to the natural movie (green) is lower than that correspond-

ing to the gratings movie (blue) for short time windows, the dimensionality corresponding to
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the natural movie grows more quickly and surpasses the dimensionality corresponding to the

gratings movie for longer time windows. We found this to be true for both the visual stimuli

(Fig 5B, left panel) and the population responses (Fig 5B, center and right panels). This indi-

cates that the patterns for the natural movie tend to be self-similar within a short time window,

and new patterns are expressed over longer time windows. In contrast, the dimensionality cor-

responding to the gratings movie does not grow as quickly with window size. This is because

once a few different grating orientations are included, patterns corresponding to additional

grating orientations can be represented approximately as linear combinations of patterns cor-

responding to existing grating orientations (both for the visual stimuli and the population

responses), and therefore do not increase the dimensionality appreciably.

Third, we directly measured the similarity of the patterns between different one-second

windows using the pattern aggregation method. Fig 5C shows the matrix of similarity indices

Fig 5. Time-resolved dimensionality of movie stimuli and population responses. A: Dimensionality versus time. Left panel: visual

stimuli. Center panel: monkey 1 (61 neurons). Right panel: monkey 2 (81 neurons). Error bars are standard deviations of subsampled

estimates. Triangles denote mean dimensionality across time for each movie. Curves were smoothed with a Gaussian kernel with a standard

deviation of 1.5 s. B: Dimensionality with growing time windows starting at the beginning of each movie. Left panel: visual stimuli. Inset:

zoomed portion of the bottom-left of the plot. Center panel: monkey 1. Right panel: monkey 2. Curves were smoothed as in A. Due to the

smoothing, the dimensionalities for the 1 second window do not exactly match the leftmost point in A, and those for the 30 second window do

not exactly match the dimensionalities in Fig 3. C: Similarity of the basis patterns employed by the population responses across time (monkey

1). Each element in the similarity matrix corresponds to the similarity index between the sets of patterns for a pair of time points. D: Mean

similarity index for visual stimuli and population responses. Error bars denote standard error over similarity indices.

doi:10.1371/journal.pcbi.1005185.g005
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for the population responses to each of the three movies (monkey 1). By averaging the values

of the off-diagonal similarity indices across the matrix, we found that the patterns correspond-

ing to the gratings movie tended to be more similar across time than those for the natural and

noise movies (Fig 5D). This was true for the visual stimuli (left panel), as well as for the popula-

tion responses (middle and right panels). This result indicates that new patterns tend to be

expressed (for both the visual stimuli and the population responses) as the movies play out

over time more for the natural and noise movies than for the gratings movie. This result also

supports the finding in Fig 5B that the dimensionality corresponding to the natural movie

grows more quickly than that corresponding to the gratings movie.

Taken together, these results indicate that the noise movie drives a large number of basis

patterns in the population activity in a short time window, relative to the gratings and natural

movies. As the movies play out over time, the noise and natural movies tend to drive new basis

patterns, whereas the grating movie tends to recruit the same patterns.

We also asked whether the second-by-second fluctuations of the dimensionality of the

visual stimulus during the 30-second movie (Fig 5A, left panel) were related to that of the pop-

ulation responses (Fig 5A, middle and right panels) and found weak correlations (mean across

movies ρ = 0.20). Although the dimensionality fluctuations were larger for the natural movie

than the other two movies (Fig 5A, left panel), these fluctuations were less salient in the popu-

lation activity (Fig 5A, middle and right panels). These two observations underscore that,

although there are similarities in the statistical properties of the visual stimuli and population

responses, there are also differences that remain to be understood.

Comparing to a V1 receptive field model

One of the key advantages of performing this study in V1 is that much is known about the

stimulus-response relationship of individual neurons, as described by the many RF models

that have been proposed in the literature [23]. Although the RF models do not capture every

aspect of V1 neuronal activity [20–22, 24], we can apply the same dimensionality reduction

methods to the activity generated by an RF model to help interpret the outputs of dimensional-

ity reduction. We consider it a strength that, in many cases (described below), the outputs of

dimensionality reduction applied to population activity show the same trends as when applied

to activity from an RF model. This similarity indicates that single-neuron properties are

reflected in population metrics, such as dimensionality. In cases where there are discrepancies

between the outputs of dimensionality reduction for population activity and RF models, our

results can provide guidance necessary to improve RF models.

Although a complete study of the many V1 RF models available is beyond the scope of this

work, here we focus on one recently-proposed model [25]. The model has four components: a

Gabor filter, whose output is half-rectified; an untuned suppressive filter, whose output is also

half-rectified; a normalization signal; and an exponentiating output nonlinearity. These com-

ponents are shared with many other models of V1 [23], and thus make it well-suited for study-

ing how dimensionality changes as the input image is transformed by each component. The

parameter values for 100 model neurons were drawn from parameter distributions reported in

[25], since we did not present the stimuli appropriate for fitting the model parameters to data.

For this reason, we only compare trends between the dimensionality of the outputs from the

model and that of population activity.

We first assessed the dimensionality of each component’s responses to the same individual

gratings as presented to the monkeys. We observed similar trends between the population activ-

ity (Fig 2B and 2D) and the activity of the RF model (Fig 6B and 6C). As expected, the model

captures key aspects of the population response to gratings, including direction selectivity.

Population Activity Patterns in Macaque V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005185 December 9, 2016 13 / 31



However, the last component of the model (“pointwise nonlinearity”) showed substantially

smaller dimensionalities than the other components (Fig 6B and 6C, rightmost panels). This

decrease in dimensionality is due to the exponential function exaggerating the anisotropy of the

distribution of the model activity. For example, if the distribution of the responses across

images resembles an ellipsoid in the 100-dimensional firing rate space, the exponential function

would expand the variances of the major axes considerably more than the variances of the

minor axes. The major axes would explain a greater proportion of the overall variance, resulting

in fewer dimensions. Because we selected the values of the exponents independently from other

model parameters, the discrepancy in dimensionality for the last component might not be pres-

ent in the original model in [25], whose parameters were fit together. Still, our results indicate

dimensionality can be sensitive to some nonlinear transformations.

Fig 6. Dimensionality of model responses to individual gratings and movies. A: Block diagram of the RF model. We considered the activity in

the model at four different components (R1, R2, R3, R4). B: Dimensionality of model activity versus number of orientations, computed in the same

manner as in Fig 2B. C: Dimensionality of model activity versus angle offset between two orientations, computed in the same manner as in Fig 2D. D:

Dimensionality and variance of model responses to movies, computed in the same manner as in Fig 3C. Results are based on 100 model neurons.

doi:10.1371/journal.pcbi.1005185.g006
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Next, we assessed the dimensionality of each component’s responses to the same movie sti-

muli as presented to the monkeys. The ordering of dimensionality for each component of the

model (Fig 6D) followed that of the population activity (Fig 3C). As for the individual gratings,

the pointwise nonlinearity substantially reduced the dimensionality of the model activity. A

discrepancy between the model and the population activity was the ordering of variance: each

component of the model exhibited greater variance for the gratings movie than for the natural

movie (Fig 6D, insets), but this was not the case for population activity (Fig 3C, insets). This

discrepancy stems from the oriented Gabor filters in the first component of the model. Because

the temporal frequency of these filters was matched to that of the drifting sinuosoid gratings,

the filters were modulated strongly by the gratings movie.

Dimensionality of model outputs to parametrically-varied stimuli

One advantage of working with an RF model is that we can assess the dimensionality of the

responses to images that were not shown to the monkeys. With the caveat that the RF model

might not capture aspects of the responses of real neurons, we assessed how the dimensionality

of each component’s outputs varies as we parametrically alter the visual stimuli.

We first considered varying the contrast of the natural movie images. Initially, one might

think that contrast would have no effect on dimensionality because each dimension in pixel

space is scaled equally. However, this is not the case for two reasons. First, before scaling, each

image was re-centered by subtracting out the image’s mean pixel intensity—not the mean

pixel intensity across all images. Thus, changing the contrast is not a simple scaling across all

images. The second reason is that there are nonlinearities in the model (e.g., the linear rectify-

ing functions), which can “warp” the scatter of data points (where each point corresponds to

an image), thereby changing the dimensionality. When we varied the contrast of the natural

movie images, we found that dimensionality decreased with decreasing contrast (different col-

ors in Fig 7A). This decrease in dimensionality occurs because, as contrast decreases, the mean

luminance dominates each image. At a contrast of 0%, the images lie along a line in pixel space

(i.e., the [1, 1, . . .,1] direction).

Next, we randomized the phases of each natural image by adding a random offset to each

phase value. The offsets were drawn from uniform distributions of varying extent. We con-

sidered small offsets drawn from the range [−45˚, 45˚] to large offsets drawn from the range

[−180˚, 180˚]. When the phases were completely random (i.e., a range of [−180˚, 180˚]), the

statistics of the images were akin to pink noise [26]. We observed that as the extent of the

Fig 7. Dimensionality of model responses to parametrically-altered versions of the images in the natural movie. A: Images were

generated by gradually decreasing contrast of the original images. B: Images were generated by adding a random offset to the phases of the

original images, which transformed the natural images to pink noise. Each random offset was drawn from a uniform distribution over the specified

range. C: Images were generated by raising the power spectrum of the same pink noise images generated in B to a fractional exponent. This

gradually transformed the pink noise images to white noise.

doi:10.1371/journal.pcbi.1005185.g007
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phase randomization increased, the dimensionality decreased (Fig 7B). Although randomiz-

ing the phases removed higher-order spatial correlations (e.g., edges and textures), it did not

remove the spatial correlations brought about by the low frequencies of the power spectrum,

which are strongly represented in natural images [27]. Only a small number of dimensions

are needed to capture these low-frequency spatial correlations, because most of the pixels

inside the region covered by the RFs of the model’s filters have pixel intensities that co-vary

strongly.

Finally, to remove these low-frequency spatial correlations, we gradually transformed each

phase-randomized image (i.e., pink noise image) to a white noise image by raising the power

spectrum of the pink noise images to a fractional exponent. As the power spectrum of the pink

noise images became more similar to white noise, the dimensionality increased (Fig 7C, black

to red). This increase is not because the model neurons were more responsive to white noise

images than pink noise images. Instead, the outputs of the model expressed more activity pat-

terns for the white noise images due to the uncorrelated pixel intensities. This is consistent

with the dimensionality trends of the population activity, where we observed that the popula-

tion response to white noise had the highest dimensionality of the three movies but the lowest

amount of variance (Fig 3C).

Based on these results, the model predicts that lowering contrast and randomizing the

phases of a set of natural images will decrease the dimensionality of the population response.

We also observed that for all manipulations of the visual stimuli, the outputs of the last compo-

nent of the model (pointwise nonlinearity) showed substantially lower dimensionality than

outputs at other model components, consistent with the results in Fig 6. This suggests that cer-

tain nonlinearities (e.g., pointwise exponentiation) affect dimensionality more than others

(e.g., divisive normalization).

Dimensionality in different layers of a deep neural network

To build intuition about how the dimensionality of population activity might change at differ-

ent stages of visual processing, we examined a deep convolutional neural network that was pre-

viously trained with over 1 million natural images and showed high accuracy on a well-known

image recognition challenge [28]. The deep network takes an image as input, processes the

image through layers of filtering and nonlinear operations, including convolution, pooling,

and normalization (Fig 8A). The earlier layers capture low-level image statistics, such as ori-

ented edges, while the deeper layers capture high-level image statistics, such as features that

distinguish a car from a building [28]. This hierarchical processing resembles the processing

found in the visual system, and indeed, the progressive layers of deep networks appear to

mimic the progressive processing stages of the ventral stream [29]. We used this deep network

to assess how dimensionality changes from one layer to the next, providing a prediction of

how dimensionality might change in different visual areas along the ventral stream.

We input the same movie stimuli that we presented to the monkeys into the deep network,

and examined the dimensionality of the filter outputs in different layers of the deep network

(Fig 8B). For each layer, we analyzed the 100 filters that had RFs closest to the center of the

image. We found that the earliest layer (Fig 8B, layer 1) showed dimensionality and response

variance trends that matched the V1 population activity (Fig 3C). In progressively deeper lay-

ers (Fig 8B, going from layers 1 to 8), the responses to the gratings and noise movies decreased

in dimensionality and relative variance, whereas the responses to the natural movie increased

in dimensionality and relative variance. These findings are consistent with our understanding

of the ventral stream: in progressive stages of visual processing, neurons become more sensi-

tive to features in natural images and less sensitive to artificial images [30]. These results thus
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provide a prediction of how the dimensionality and variance of trial-averaged population

responses to natural and artificial images should change along the ventral stream, which can

be tested in future experiments [17].

Discussion

To aid in understanding the outputs of dimensionality reduction, we chose to study a brain

area close to the sensory periphery (V1). This allowed us to vary the sensory inputs and ask

whether the outputs of dimensionality reduction change in a sensible way. By applying PCA to

trial-averaged population responses to different classes of visual stimuli, including sinusoidal

gratings, a natural movie, and white noise, we found that the dimensionality of the population

responses grows with the stimulus complexity. In addition, we assessed whether the population

responses to different stimuli occupy similar dimensions of the population firing rate space

using a novel statistical method (the pattern aggregation method). We found that the popula-

tion responses to stimuli as different as gratings and natural movies tended to occupy similar

dimensions. For comparison, we applied the same analyses to the activity of a recently-pro-

posed V1 receptive field model and a deep convolutional neural network, both of which

showed trends similar to the real data. We further used these models to predict the dimension-

ality trends of the population responses to visual stimuli not shown to the monkeys, as well as

the dimensionality trends of population responses in brain areas other than V1.

Many previous studies have compared visual cortical responses to natural and artificial sti-

muli on a single-neuron level (e.g., [20–22, 31, 32]). Their predominant approach was to define

Fig 8. Dimensionality of activity in different layers of a deep convolutional neural network (CNN). A: The CNN comprised different layers

(black outline boxes), where each layer comprised a group of units that performed specific operations, such as convolution, pooling, concatenation,

and normalization. For each of the red-outlined units, we assessed the dimensionality of the activity of 100 filters. B: Dimensionality and variance of

model responses in each layer to movies, computed in the same manner as in Fig 3C.

doi:10.1371/journal.pcbi.1005185.g008
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a parameterized RF model to relate a neuron’s activity to the visual stimulus. These studies

found that, although RF models derived from natural stimuli share properties with those

derived from artificial stimuli [20, 31], there can be important differences [20–22]. Here, rather

than relating each neuron’s activity to the stimulus, we relate the activity of the recorded neu-

rons to each other. We can then ask how this relationship (i.e., the covariation of trial-averaged

activity among neurons) changes for different classes of visual stimuli. This approach has been

adopted for pairs of neurons (i.e., signal correlation) [33], and we extend this work to charac-

terize the signal correlation among all pairs of neurons at once. We found that the gratings,

natural, and noise stimuli elicit many common basis patterns, consistent with previous studies

showing similarities between RFs measured with gratings and natural stimuli [20] and those

measured with natural and noise stimuli [31]. Finally, our finding of some unique basis pat-

terns for each stimulus class suggests that estimates of RFs will best capture the responses to

the same type of stimulus used in estimating the RFs, as reported in previous studies [21, 22].

The quality of most RF models has been evaluated based on their ability to predict the activ-

ity of individual neurons (e.g., [20–23, 25, 31]). Given that there can be, in some cases, a sub-

stantial difference between the predictions of RF models and the recorded neural activity [21,

22, 31], especially for natural scenes, we need to quantify how they are different in an effort to

improve the RF models. This is often quantified by computing the percent variance of the

recorded activity explained by the model for each neuron individually [21–23]. Our work pro-

vides a complementary way to compare RF models and recorded activity by examining the

entire population together. We can compare the many V1 models that have been proposed by

assessing which ones best reproduce the relative dimensionalities across stimuli and the simi-

larity of basis patterns observed in recorded activity. The model that we tested does reproduce

the dimensionality trend of the population activity across stimuli, but does not reproduce the

response variance trend (Fig 6D). We speculate that a different spatiotemporal filter in the first

component of the model can help to increase the response variance to natural images [21],

thereby better matching the response variance trend of the model to that of the recorded

activity.

Different basis patterns may be used by the population activity during different task epochs,

suggesting that certain basis patterns drive downstream areas more effectively than others [16,

34]. Thus, the identification of which basis patterns are used may be critical for understanding

how different brain areas interact on a population level [35]. Furthermore, the activity patterns

across a neural population have been used to study normalization [36], decision making [2,

37], learning [4], and motor planning [5]. In the present work, we have developed a statistical

framework (the pattern aggregation method) to measure the similarity of basis patterns across

any number of stimulus conditions or time points. We validated this framework using record-

ings in V1, and the framework can be applied broadly to other brain areas.

The measurement of dimensionality depends on many factors, including the choice of

dimensionality reduction method, the number of neurons (cf. S1 Fig), and the number of data

points. In principle, one should use a nonlinear dimensionality reduction method (e.g., [38–

40]) because the underlying manifold of the population activity is likely to be nonlinear. For

example, divisive normalization nonlinearly maps the tuning curves of a population of neu-

rons onto a high-dimensional sphere [41], and a nonlinear dimensionality reduction method

may be able to extract the lower-dimensional embedding. However, most studies using

dimensionality reduction in systems neuroscience have focused on linear methods [1–4, 6, 11,

12, 16, 42]. The reasons are that 1) most nonlinear methods rely on a dense sampling of the

population activity space, in contrast to experimental data which tend to sparsely sample the

space, and 2) it is usually difficult to assess the contribution of each neuron to a low-dimen-

sional space identified by nonlinear methods. For the latter reason, we would not be able to
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compare how similar are the patterns for different stimuli, as we do in this study. Despite these

caveats, we applied a nonlinear method, fractal dimensionality [17, 38], to the three movies

and their population responses (S3 Fig). The ordering of fractal dimensionality across stimuli

was consistent with that of PCA dimensionality (Fig 3). Together with the results showing how

the dimensionality ordering of the population activity depends on stimulus complexity (Figs

2B and 3C) and neuron count (S1 Fig), this finding indicates that a linear method can provide

useful insights, even if the underlying manifold is indeed nonlinear.

There are several other factors that can affect the dimensionality of population responses.

Dimensionality can depend on the properties of the particular neurons being sampled. In V1,

these properties include the size and scatter of the receptive fields, as well as their preferred

phases, orientations, and spatial frequencies. Another factor that can affect dimensionality in

V1 is the size of the visual stimulus. We presented large visual stimuli that extended outside of

the classical RF of most neurons. Previous studies have shown that stimulation outside of the

classical RF tends to increase the sparseness of V1 responses [43–46], which may affect the

dimensionality of the population response. Sparseness leads to independence in the responses

between neurons [43, 44, 47], and may lead to increased discriminability of the population

activity [48]. Independence implies that each basis pattern only captures modulations of a sin-

gle neuron (i.e., only one element of each pattern is non-zero), and the dimensionality (as

assessed by PCA) depends on the relative variances captured by the basis patterns (in this case,

the relative variances of the neurons). To our knowledge, there is no general relationship

between sparseness and dimensionality. For all these reasons, it is not possible to make abso-

lute statements about the dimensionality of V1. Instead, we made relative comparisons where

all of the factors affecting dimensionality are fixed, except for the stimulus content.

Although we believe that the results shown here are representative of a wide range of grat-

ings, natural, or noise stimuli, they should be interpreted in the context of the particular visual

stimuli used. For example, the dimensionality of the gratings movie and its population

response could be increased by including more than one spatial and temporal frequency. Simi-

larly, the dimensionality of the natural movie and its population response likely depends on

the particular movie clip shown. If the scenes in the movie change more quickly (or slowly)

over time, then we would expect the dimensionality over a 30-second time window to be larger

(or smaller). For the noise movie, our results in Fig 5B indicate that showing more instances of

white noise is not likely to further increase the dimensionality of the population response.

However, changing the statistics of the noise in the pixels could change the dimensionality of

the population response (Fig 7C).

At a population level, several studies have compared visual cortical activity evoked by natu-

ral and artificial stimuli to spontaneous activity [49–51]. These studies focused on the raw neu-

ral activity, which includes both the trial-averaged component (i.e., the PSTHs) and trial-to-

trial variability. Here, we focused on the trial-averaged component. Because trial-to-trial vari-

ability can be substantial relative to the trial-averaged component [52, 53], it is difficult to

directly compare results of these previous studies to those reported here. The current study

can be extended to study the population structure of trial-to-trial variability using a

dimensionality reduction method such as factor analysis rather than PCA [13] in tandem with

the pattern aggregation method.

For the stimuli that we tested and the recordings we made, we found that the dimensional-

ity trends were consistent between the visual stimuli and the population responses. However,

this need not be the case for other visual stimuli and other brain areas. In fact, a dimensionality

trend that is inconsistent between the stimuli and responses may yield important insight into

how the stimuli are encoded by the neurons under study. Part of resolving this potential dis-

crepancy may relate to the way in which stimulus complexity is measured. PCA dimensionality
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captures only a particular aspect of the stimulus, namely the anisotropy of the distribution of

pixel intensities in an Euclidian space. Other aspects of the stimuli may influence the neural

responses more strongly, and alternate measures of stimulus complexity can be used, for

example fractal dimensionality (S3 Fig) [17, 38] or a method based on image features extracted

by a deep neural network (Fig 8). Future studies employing additional stimuli and brain areas

can elucidate whether dimensionality trends remain consistent between sensory stimuli and

population responses.

Our work lays a solid foundation to assess the dimensionality and similarity of basis pat-

terns of neural population activity. Because V1 is a well-studied brain area and is close to the

sensory input, our results can be compared with expectations based on our intuition and well-

established RF models. Moving forward, these methods can be applied broadly to other brain

areas and behavioral tasks to examine how the complexity of the population response changes

due to conditions such as attentional state, learning, and contextual modulation.

Materials and Methods

Neural recordings

Details of the neural recordings have been described previously [54, 55]. Briefly, we recorded

from primary visual cortex (V1) of anesthetized, paralyzed macaque male monkeys. Anesthe-

sia was administered throughout the experiment with a continuous intravenous infusion of

sufentanil citrate (6–18 μg/kg/hr). Eye movements were minimized with a continuous intrave-

nous infusion of vecuronium bromide (100–150 μg/kg/hr). Experiments typically lasted 5–7

days. All experimental procedures followed guidelines approved by the Institutional Animal

Care and Use Committee of the Albert Einstein College of Medicine at Yeshiva University,

and were in full compliance with the guidelines set forth in the US Public Health Service

Guide for the Care and Use of Laboratory Animals.

Neural activity was recorded using 96-channel multi-electrode arrays (Blackrock Microsys-

tems, Salt Lake City, Utah), which covered 12.96 mm2 and had an electrode length of 1 mm.

The electrodes were inserted to a nominal depth of 0.6 mm to confine recordings mostly to

layers 2–3. Recordings were performed in parafoveal V1, with RFs within 5 degrees of the

fovea. Voltage waveform segments that passed a separately-chosen threshold for each channel

were later spike-sorted offline. For comparisons of population responses to different orienta-

tion gratings, we spike sorted responses together across all orientations, thereby obtaining a

common set of units. Similarly, we spike sorted responses together across all three movies. We

included sorted units for which the voltage waveform had a signal-to-noise ratio (SNR) greater

than 1.5, where SNR is defined as the ratio of the average waveform amplitude to the standard

deviation of the waveform noise [56]. This SNR threshold yielded both single-unit and multi-

unit activity (see [57] for comparison of these signals) with a median SNR near 2.5 for all data-

sets. We analyzed only neurons with mean firing rates greater than 1 spike per second.

Visual stimuli

We used two sets of visual stimuli. The first set (termed the individual gratings set) consisted

of individual presentations of drifting sinusoidal gratings with different orientations. The sec-

ond set (termed the movies set) consisted of different classes of visual stimuli, including a

sequence of drifting sinusoidal gratings with different orientations, a contiguous sequence of

natural scenes, and white noise. All stimuli were presented on a CRT monitor with a frame

rate of 100 or 120 Hz, and had mean luminance of approximately 40 cd/m2. We used a look-

up table for all stimuli to correct for the nonlinearity between input voltage and output lumi-

nance in the monitor.
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Individual gratings. Full-contrast (100%) drifting sinusoidal gratings with 12 equally-

spaced orientations (30˚ between adjacent orientations, covering 360˚) were presented. We

use “orientation” to refer to the angle of drift and “direction” to refer to two orientations that

are 180˚ apart (i.e., opposing drift) [19]. Spatial frequency (1.3 cpd) and temporal frequency

(6.25 Hz) were chosen to evoke robust responses from the population as a whole, and the posi-

tion and size (8–10 degrees) were sufficient to cover the RFs of all recorded neurons. Gratings

were block-randomized across the 12 orientations and presented for 1.28 seconds each, fol-

lowed by a 1.5 second inter-trial interval consisting of an isoluminant gray screen. We con-

ducted 200 trials for each of the 12 orientations.

Movies. We presented three different 30-second grayscale movies: gratings, natural, and

noise, as described previously [55]. Each movie comprised 750 unique images (each presented

for four consecutive video refreshes of the CRT, for an effective framerate of 25 Hz). The

movie frames were surrounded by a gray field of average luminance. The mean (normalized)

RMS contrasts were 0.17, 0.17, and 0.09 for the gratings, natural, and noise movies, respec-

tively. Thus, the global statistics were matched for the gratings and natural movies.

The gratings movie was a pseudo-randomly chosen sequence of full-contrast drifting sinu-

soidal gratings with 98 equally-spaced orientations (3.67˚ between adjacent orientations, cov-

ering 360˚). The presentation of each drifting grating of a particular orientation lasted 300 ms.

Spatial frequency (1.3 cpd), temporal frequency (6.25 Hz), position and size (8 degrees or 640

pixel diameter circular aperature) were chosen to evoke high firing rates and to sufficiently

cover RFs of all recorded neurons. Two 300 ms periods of blank screen frames were included

at a randomly-chosen position in the sequence, bringing the total to 100 stimuli in a block last-

ing 30 seconds. A 30-second movie with the same random sequence of gratings and blank

screens was repeated 120 times.

The natural movie was a 30 second consumer film of a contiguous sequence of natural

scenes converted to grayscale (a monkey wading through water). The movie was displayed in a

square of 5 degrees (400 × 400 pixels) to cover all RFs, and repeated 120 times.

The noise movie was 30 seconds of white noise, where each 4 degree (320 × 320 pixel)

frame comprised a 40 × 40 grid of 8-pixel squares. Each 8 × 8-pixel square displayed a random

intensity drawn from a uniform distribution independently (in space and time) of other

squares. The entire 40 × 40 grid was randomly shifted or “jittered” k pixels (1� k� 8) hori-

zontally and vertically between consecutive frames to avoid high-contrast grid effects. One

noise movie was randomly generated, and the same movie was repeated 120 times.

Preprocessing of population activity and visual stimuli

Population activity for individual gratings. We presented the individual gratings stimu-

lus set to three monkeys (101r, 102l, 103r). After removing neurons that did not satisfy the

SNR and firing rate criteria, the lowest number of neurons across monkeys was 61. Because

measurements of dimensionality can be influenced by the size of the recorded population, we

selected a random subset of 61 neurons from the data sets with larger populations, in order to

combine results across monkeys (dimensionality trends were similar across monkeys for all

analyses). We considered neural activity in a 1 second window starting at stimulus onset (dis-

carding the remaining 0.28 seconds of response). Results were similar for a 1 second window

starting 100 ms after stimulus onset to avoid onset transient effects. For each neuron and ori-

entation, we took spike counts in 20 ms bins and averaged them across trials to create a peri-

stimulus time histogram (PSTH), yielding 50 time points. Because a processing step in PCA

subtracts from each PSTH the mean across the 50 time points, we can compare (across differ-

ent orientations) fluctuations of trial-averaged activity around its mean.
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Population activity for movies. We presented the movies stimulus set to two monkeys

(monkey 1: 103l, 61 neurons, monkey 2: 102l, 81 neurons). For each neuron, we took spike

counts in 20 ms bins during the 30-second movie presentation and averaged them across trials

to create a PSTH. For each movie, this yielded a PSTH with 1,500 time points for each neuron.

PCA then centers each PSTH by subtracting its mean, enabling the study of fluctuations of the

firing rate around the mean. We ensured the neural activity was centered just once for all anal-

yses (i.e., for non-overlapping one-second time windows, the “local” mean was not subtracted

again). In this way, all dimensionality measurements are made using a common reference

frame, thereby allowing comparison of dimensionality across different time windows (analysis

in Fig 5B).

Visual stimuli for movies. To relate neural complexity to stimulus complexity, we per-

formed PCA on the movie stimuli. This required the following preprocessing steps in order to

match the sizes of images across stimuli and remove incidental spatial correlations in the noise

movie. The processed movies were only used for PCA analysis; the original, unprocessed mov-

ies were shown to subjects. We first cropped the grating and natural image frames to 320 x 320

pixels to match the size of the noise images. The noise movie had two incidental spatial corre-

lations from the experimental design that prevented it from being “true” white noise: spatial

correlations caused by noise images being comprised squares of 8 × 8 pixels with identical

intensities and spatial correlations caused by jittering the squares to avoid grid effects. To

weaken these correlations, we converted the images of all movies to 8 × 8 pixel squares. The

average pixel intensity was computed for each pixel square, and each image was compressed

from a matrix of 320 × 320 values to a matrix of 40 × 40 values. Because we averaged over fixed

pixel squares, we did not eliminate all incidental spatial correlations in the noise movie, as the

borders between the 8 × 8 pixels with identical intensities were jittered randomly from frame-

to-frame. Thus, the red eigenspectrum curve in Fig 3B is not perfectly diagonal, which is

expected from true white noise. Each 40 × 40 pixel image was then reshaped into a vector

(with size 1,600 × 1). Each movie stimulus was therefore represented as 750 vectors (one for

each image) in a 1,600-dimensional space, where each axis corresponds to the average intensity

of one pixel block.

Assessing dimensionality and similarity of patterns

Assessing dimensionality. We describe here how we assessed the dimensionality of the

population activity and that of the visual stimuli. Conceptually, the dimensionality is the num-

ber of basis patterns needed to describe the population activity (Fig 1) or the pixel intensities

of the visual stimuli. There are many ways to assess dimensionality, including linear [58] and

nonlinear [39, 40] methods. Here, we focus on the most basic linear dimensionality reduction

method, principal component analysis (PCA). PCA is appropriate for use with trial-averaged

neural activity because trial averaging removes much of the Poisson-like spiking variability,

consistent with PCA’s implicit assumption of no observation noise [13]. PCA has also been

applied to pixel intensities in previous studies [17, 27].

PCA dimensionality was assessed as the number of basis patterns needed to explain 90% of

the variance in the population activity or visual stimuli. The threshold of 90% is arbitrary, and

we verified that the results were qualitatively similar for other high-percentage thresholds (e.g.,

70% and 80%). It is possible to use a data-driven approach to determine the variance threshold

[17]. Under this approach, data which require a small or large number of dimensions to

explain the majority of the variance can be deemed low-dimensional. To aid in interpreting

dimensionality comparisons, we chose to use a pre-determined (90%) variance threshold in

this work. It is important to note that the dimensionality depends on many factors, including
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the dimensionality reduction method (here, PCA), metric for assessing dimensionality (here,

90% variance explained), the number of neurons, and the number of data points used. Thus,

we do not attempt to interpret the dimensionality in an absolute sense. Rather, we make rela-

tive comparisons of dimensionality across experimental conditions, while keeping these other

factors fixed.

Assessing similarity of patterns. In addition to computing the number of basis patterns

needed for each condition, we sought to compare the patterns across conditions. The following

is the intuition for performing this comparison. Consider two sets of patterns: condition A
requires kA patterns and condition B requires kB patterns, where kA> kB. At one extreme, the

space spanned by the condition A patterns includes the space spanned by the condition B pat-

terns (i.e., the spaces overlap). In this case, the joint space is described by kAB = max(kA, kB) =

kA patterns. At the other extreme, the space spanned by the condition A patterns is orthogonal

to the space spanned by the condition B patterns. In this case, the joint space is described by

kAB = kA + kB patterns. In general, kAB will lie between max(kA, kB) and kA + kB. The closer kAB
is to max(kA, kB), the more similar the patterns are. Conversely, the closer kAB is to kA + kB, the

more dissimilar the patterns are.

To compute kAB, we tried several different approaches. In the first approach, we aggregated

the population activity (or visual stimuli) for different conditions, then applied the same PCA

method to find the number of dimensions that explained 90% of the variance. A problem with

this approach is that it does not account for possibly different variances of the population

activity (or visual stimuli) across conditions. The consequence is that kAB obtained by this

method can be less than max(kA, kB), thereby violating the intuition laid out above. To see this,

consider a scenario where kA> kB and condition B has much larger variance than condition

A. The aggregated population activity (or visual stimuli) would be dominated by condition B,

essentially ignoring the patterns of condition A. As a result, the aggregated dimensionality kAB
would be close to kB, which is less than max(kA, kB) = kA. This motivated us to consider a sec-

ond approach in which we normalized the population activity (or visual stimuli) such that the

direction of greatest variance was 1 for each condition. However, there are still scenarios for

which kAB obtained by this method is less than max(kA, kB), due to how the variance is distrib-

uted across patterns.

Pattern aggregation method. To overcome the issues described above, we developed an

alternative approach which guaranteed that kAB would be between max(kA, kB) and kA + kB.

This method, termed the pattern aggregation method, is based on first identifying the kA pat-

terns for condition A (represented by UA: N × kA, whose columns are orthonormal and where

N is the number of pixels or the number of neurons) and kB patterns for condition B (repre-

sented by UB: N × kB, whose columns are orthonormal) separately using PCA. Then, we aggre-

gate the patterns into a single matrix V = [UAUB] (where V: N × (kA + kB)) and designate kAB to

be the effective column rank (defined below) of V. In the case where kA> kB and the space

spanned by the condition A patterns includes the space spanned by the condition B patterns,

then kAB will be max(kA, kB) = kA. On the other hand, if the space spanned by the condition A
patterns is orthogonal to the space spanned by the condition B patterns, then kAB will be

kA + kB. For more than two conditions, this method is easily extended by aggregating the pat-

terns for all conditions into V = [UAUBUC. . .].

The effective column rank of V is the number of “large” singular values of V. The definition

of “large” requires setting a threshold (termed the rank threshold, between 0 and 1) for the sin-

gular values. The rank threshold determines how different two basis patterns (cf. Fig 1, green)

need to be before they define separate dimensions. To gain intuition for the rank threshold, we

ran a simulation where we rotated a 2-d unit vector (vB) from a position of overlap with

another unit vector (vA, 0˚) to a position of orthogonality (90˚) (Fig 9A). We varied the rank
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threshold for different angles between vA and vB, and assessed the effective column rank of V.

A rank threshold t = 0 means that slight deviations of vB away from vA lead to V = [vAvB] hav-

ing an effective column rank of two (Fig 9B). In other words, if two patterns are slightly differ-

ent, the dimensionality of the data will be two. On the other hand, a rank threshold t = 1

means that vB needs to be orthogonal to vA for V to have an effective column rank of two (Fig

9B). In other words, two patterns need to be orthogonal for the dimensionality of the data to

be two; else, the dimensionality will be one. As a compromise between the two extremes, we

used a rank threshold t = 0.5 throughout this study. This threshold means that the transition

from one to two dimensions occurs when the angle between vA and vB is near 45 degrees (Fig

9B). We also verified that this intuition holds for higher-dimensional spaces by rotating a sub-

space towards an orthogonal subspace by taking a convex combination of the two subspaces

and measuring the rank at intermediate rotations.

Computing dimensionality expected by chance. To assess whether two sets of patterns

are similar or dissimilar, it is necessary to compare kAB to a chance level, rather than simply

asking whether kAB is closer to the minimum dimensionality bound max(kA, kB) or maximum

dimensionality bound kA + kB. The reason is that the chance level depends on the relative val-

ues of kA, kB, and N, and does not simply lie halfway in between max(kA, kB) and kA + kB. For

example, if N is large relative to kA and kB, the chance level would lie near kA + kB because ran-

domly drawn patterns in a high-dimensional space tend to be orthogonal. We compute the

chance level by drawing patterns randomly from the N-dimensional space, and compute a dis-

tribution of aggregated dimensionalities. Specifically, we repeatedly draw kA orthonormal pat-

terns and kB orthonormal patterns in an N-dimensional space, and measure their aggregated

dimensionality using the same method as applied to the data.

The above method makes the implicit assumption that all patterns within the N-dimen-

sional space can be shown in the data. In some cases, there is reason to believe that not all pat-

terns in the N-dimensional space can be achieved. For example, the underlying neural

circuitry may constrain the space of activity patterns that a population of neurons is capable of

producing [4, 10]. In such settings, the chance level should be computed by drawing patterns

randomly from an M-dimensional space, where M< N. Ideally, the range of M should be

determined using a large number of stimuli and/or time points to obtain as accurate an esti-

mate of the space of activity patterns that can be produced as possible. We can then assess

whether the results hold for all values of M within this range.

Fig 9. Assessing similarity of basis patterns. A: Conceptual illustration for two neurons, where vA denotes the basis pattern

for one condition and vB denotes the basis pattern for another condition. As vB is rotated away from vA, the question is at which

point do we consider vA and vB to span two dimensions. B: The transition from one to two dimensions in A depends on the rank

threshold t. For t = 0.5, the transition occurs when the angle between vA and vB is near 45 degrees.

doi:10.1371/journal.pcbi.1005185.g009
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Similarity index. The similarity of two sets of patterns depends, relative to the two

extremes (max(kA, kB) and kA + kB), on whether kAB is larger or smaller than the chance level.

We summarized this dependence with a single number, the similarity index. The similarity

index is defined as s ¼ k̂AB� kAB
kAþkB� maxðkA;kBÞ

. Intuitively, we take the difference between the mean

chance dimensionality (k̂AB) and the actual dimensionality for the aggregated patterns of A
and B (kAB). Then, we normalize this difference by the difference between the two extreme

dimensionalities, yielding an index between −1 and 1. A similarity index of s> 0 means that

the patterns are more similar (i.e., more overlapping) than expected by chance, whereas s< 0

means that the patterns are less similar (i.e., closer to orthogonal) than expected by chance.

Statistical assessment of dimensionality

Error bars for the dimensionality of the population activity were computed by subsampling

from all time points. We chose subsampling over bootstrapping, since bootstrapping led to

biased estimates due to small sample size relative to the number of neurons. For population

responses to the stimulus movies, we randomly subsampled 750 of the 1,500 time points, com-

puted the dimensionality of the subsampled points, and repeated this 100 times (Fig 4C). Simi-

larly, for the dimensionality analysis in 1 second windows, we randomly sampled 25 of the 50

time points 100 times (Fig 5A). We did not compute error bars for the visual stimuli because

subsampling was not possible (only 750 available time points), and bootstrapping was not pos-

sible due to the small number of time points relative to the dimensionality (1,600) of the pixel

space. All p-values were computed from 105 runs of a random permutation test.

Receptive field model

We considered a recently-proposed RF model of V1 neurons [25] that includes four compo-

nents—oriented Gabor filtering, subtraction of untuned suppressive filtering, divisive normali-

zation, and pointwise nonlinearity—common to many RF models of V1 neurons [23]. We

input the individual gratings and movie stimuli into the model, and asked how the dimension-

ality ordering after each model component compares to that of the population activity. The

parameter values for 100 model neurons were drawn from the distributions reported in [25]

rather than fit to data because we did not present the mixed gratings stimuli necessary for fit-

ting the parameters. For this reason, we compare dimensionality trends between the model

and population activity, rather than their absolute values.

Component 1: Oriented Gabor filtering. The first component for each model neuron is

an oriented Gabor filter applied to the input image. Because [25] incorporates direction selec-

tivity only when parameterizing the orientation tuning curve of a neuron, we needed a way to

incorporate temporal filtering that would be applicable to any image sequence and allow for

direction selectivity. We adopted a straightforward approach to extend the 2-d Gabor filter to

a 3-d Gabor filter, which considers both space and time [59]. The following equation describes

the 3-d Gabor filter G for pixel location (x, y) and time index t:

Gðx; y; tÞ ¼ realfHðx; y; tÞ � Sðx; y; tÞg ð1Þ

where

Hðx; y; tÞ ¼ exp �
1

2
ð~x2 þ ~y2 þ ~t2Þ

� �

Sðx; y; tÞ ¼ exp � j2pðgsx0 þ �þ gtt0Þ½ �

and ½~x; ~y;~t � and [x0, y0, t0] are defined below. Thus, the Gabor filter is the product of a Gaussian

Population Activity Patterns in Macaque V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005185 December 9, 2016 25 / 31



envelope H and a sinusoid S. To orient the Gabor, the pixel locations (x, y) are first rotated by

orientation angle θ. To incorporate direction selectivity, (x, y, t) are further rotated by angle β,

which is either 0˚ or 180˚. These rotations are achieved with a rotation matrix, R:

R ¼

1 0 0

0 cos ðbÞ � sin ðbÞ

0 sin ðbÞ cos ðbÞ

2

6
4

3

7
5�

cos ðyÞ � sin ðyÞ 0

sin ðyÞ cos ðyÞ 0

0 0 1

2

6
4

3

7
5 ð2Þ

One can then compute the rotated [x0, y0, t0]T = R × [(x − xloc), (y − yloc), t]T and the scaled

and rotated ½~x; ~y;~t �T ¼ R� ½ðx � xlocÞ=sx; ðy � ylocÞ=sy; t=st�
T
, where (x, y, t) are scaled by

(σx, σy, σt) before rotation to align the Gaussian envelope with the orientation angle. The

Gabor filter G is normalized by its Frobenius norm.

We chose the parameter values for each model neuron in the following manner to be bio-

logically plausible. The center of the RFs (xloc, yloc) were drawn from a Gaussian with mean

160 and variance 20 to be partially overlapping at the center of the 320 × 320 pixel image. The

spatial phase ϕ was drawn from a uniform distribution between 0 and 2π. The temporal fre-

quency γt = 6.25 Hz was fixed at the same temporal frequency as that for the drifting gratings.

Orientation angle θ was drawn from a uniform distribution between 0 and π. The direction of

drift β was randomly chosen from the set {0, π}. The sizes of the Gaussian envelope were σx =

20 + |�| (where � was drawn from a standard Gaussian) and σy = cσx (where c is the aspect ratio

drawn from the distribution reported in [25]). The size of the temporal envelope was σt = 8d,

where d 2 [0, 1] is the direction selectivity constant found in [25]. The spatial frequency γs was

drawn from the distribution reported in [25].

To compute the output of this model component at timestep t and considering the past

T = 15 timesteps, the dot product of the 3-d Gabor filter (G) with the sequence of images

(It, t − 1, . . ., t − T) was computed as: L1 ¼
Xt

m¼t� T

X

x;y

Gðx; y;m � tÞImðx; yÞ. This quantity was then

passed through a linear rectifying function to yield the response R1 = max(0, L1).

Component 2: Subtraction of untuned Gabor filtering. The next component of the

model subtracts from R1 the response of an untuned suppressive filter to the current image.

The untuned suppressive filter Guntuned was computed as a difference of 2-d Gaussians:

Guntunedðx; yÞ ¼ Gs1
ðx; yÞ � Gs2

ðx; yÞ ð3Þ

where Gs ¼
1

2ps2
exp �

1

2

ðx � xlocÞ
2

s2
þ
ðy � ylocÞ

2

s2

� �� �

ð4Þ

The RF centers (xloc, yloc) were kept the same as those for the first model component, and the

spreads of the filters were fixed at σ1 = 20, σ2 = 30. The dot product of the untuned Gabor filter

Guntuned and the current image I, computed as L2 ¼
X

x;y

Guntunedðx; yÞIðx; yÞ, was then passed

through a weighted linear rectifying function S2 = max{0, ωL2}, where ω was drawn from the

distribution reported in [25]. Finally, the output of this model component R2 was the differ-

ence of the response of the untuned Gabor filter with the previous component’s output: R2 =

R1 − S2.

Component 3: Divisive normalization. The next component of the model is divisive nor-

malization, which divides the output of the previous component with the mean output of all

other model neurons from the first component plus an additive offset. Let Ri
1

and Ri
2

refer to

the output of the ith model neuron from the first and second model components, respectively.
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Then, the output of the ith model neuron after divisive normalization Ri
3

was computed as fol-

lows:

Ri
3
¼

Ri
2

soffset þ
1

N� 1

XN

j ¼ 1;

j 6¼ i

Rj
1

ð5Þ

where the additive offset σoffset was drawn from the distribution reported in [25], and the num-

ber of neurons N = 100.

Component 4: Pointwise nonlinearity. The final output of the model was computed by

passing the output of the previous model component through a pointwise nonlinearity:

R4 ¼ maxf0;R3g½ �
q

ð6Þ

where the exponent q was drawn from the distribution reported in [25].

Parametrically altering the visual stimuli

To study how dimensionality of the model outputs changes as we parametrically alter the

visual stimuli, we performed three analyses. First, we varied the contrast of the images of the

natural movie in 5 different increments: 100%, 75%, 50%, 25%, 5%. For each image, we sub-

tracted the mean luminance of that image, scaled the result by one of the percentages above,

and added back the mean luminance. Second, we transformed the images of the natural movie

to pink noise by randomizing the phase of the 2-d Fourier transform for each image. To avoid

removing local contrast of the natural images [26], we added an offset to each phase, where the

offset was randomly drawn from a uniform distribution over the range [−α, α]. We considered

5 values for α: 0˚ (i.e., no change of the natural image), 45˚, 90˚, 135˚, 180˚ (i.e., pink noise).

Third, we transformed the pink noise images (which retained the power spectrum of the natu-

ral images) to white noise by raising the power spectrum of the pink noise to different frac-

tional exponents. The intuition behind this is that the power spectrum of natural images falls

off as 1/f 2, where f is frequency [27]. Raising the power spectrum to a fractional exponent, for

example 1/2, transforms the 1/f 2 fall-off to a 1/f fall-off. To ensure the average magnitude of

the power spectrum was similar for each transformed image, we normalized the power spec-

trum of each image by dividing by its sum of magnitudes λ. We then raised the normalized

power spectrum to 5 different exponents: 1 (i.e., pink noise), 3/4, 1/2, 1/4, 0 (i.e., white noise).

Finally, we scaled the resulting power spectrum by λ.

Deep convolutional neural network

To assess how the ordering of dimensionality might change at different stages of visual pro-

cessing, we studied a deep convolutional neural network (CNN). We used an instantiation of a

CNN called GoogLeNet [28], trained with the Princeton Vision and Robotics Toolkit [60], and

available in Matlab with MatConvNet [61]. The CNN had different processing units, including

convolution, pooling, concatenation, and normalization/softmax. Each unit comprised many

filters (from 103 to 106) that performed the same operation (e.g., convolution) but on different

spatial regions of the input. Each layer comprised a group of units (shown in Fig 8A). We

assessed dimensionality of the outputs of eight consecutive layers of the deep network. For the

first layer, we analyzed the outputs of 100 filters of the second normalization unit. For layers 2

to 8, we analyzed the outputs of 100 filters of the concatenation units. For each analyzed unit,

we chose the 100 filters to have the closest RFs to the center of the image.
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Supporting Information

S1 Fig. The ordering of dimensionality of the population responses to the movie stimuli

remained consistent for a wide range of neuron counts. We randomly subsampled a smaller

number of neurons from the 61 neurons of monkey 1 (left panel) and from the 81 neurons of

monkey 2 (right panel). We then computed the dimensionality for the subsampled population

responses to each movie separately. We assessed dimensionality as the number of dimensions

needed to explain 90% of the variance. Error bars represent the standard deviation for 50 dif-

ferent subsamples.

(EPS)

S2 Fig. Two-dimensional projections for the visual stimuli and population activity. Projec-

tions were found using the DataHigh software [62], to show variance within each movie and

separation between movies. A: Projection for the pixel intensities for the visual stimuli, captur-

ing 18% of the total variance. Each dot is an image, and v1 and v2 are orthonormal projection

vectors of the high-dimensional pixel space. B: Projections for the population responses for

monkey 1 (left panel, 14% of the total variance) and monkey 2 (right panel, 27% of the total

variance). Each trajectory traces out the population activity timecourse for one movie (grat-

ings: blue, natural: green, noise: red). The orthonormal projection vectors v1 and v2 of the

high-dimensional firing rate spaces are computed separately for each monkey.

(EPS)

S3 Fig. Fractal dimensionality of the visual stimuli and population responses. Fractal

dimensionality was computed by the same method as in [17]. The intuition behind fractal

dimensionality is to define a hypersphere with radius r and ask how the number of points N
contained within that sphere grows as r increases. The faster N grows with r, the higher the

dimensionality. We plot log(N) versus log(r), where the slope is defined to be the fractal

dimensionality. A: Fractal dimensionality of the pixel intensities of the gratings (blue), natural

(green), and noise (red) movies. Slopes (Δ) were computed by linear regression between the

bounds of 6 and 12 of the log number of neighbors. B: Fractal dimensionality of the population

responses to the gratings, natural, and noise movies for monkey 1 (left panel) and monkey 2

(right panel). Slopes were computed by linear regression between the bounds of 4 and 10 of

the log number of neighbors.

(EPS)

Acknowledgments

We are grateful to Douglas Ruff and Ruben Coen-Cagli for helpful advice and discussion. Data

were collected by AK, MAS, and Ryan Kelly as part of a collaborative effort between the Kohn

laboratory at Albert Einstein College of Medicine and the Lee laboratory at Carnegie Mellon

University. We are grateful to Tai Sing Lee for research support.

Author Contributions

Conceptualization: BRC MAS AK BMY.

Data curation: BRC MAS AK.

Formal analysis: BRC BMY.

Funding acquisition: BRC MAS AK BMY.

Investigation: MAS AK.

Population Activity Patterns in Macaque V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005185 December 9, 2016 28 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005185.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005185.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005185.s003


Methodology: BRC BMY.

Project administration: MAS AK BMY.

Resources: MAS AK BMY.

Software: BRC.

Supervision: MAS AK BMY.

Validation: BRC MAS AK BMY.

Visualization: BRC MAS AK BMY.

Writing – original draft: BRC BMY.

Writing – review & editing: BRC MAS AK BMY.

References
1. Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a virtual-navigation

decision task. Nature. 2012; 484(7392):62–68. doi: 10.1038/nature10918 PMID: 22419153

2. Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent computation by recurrent dynam-

ics in prefrontal cortex. Nature. 2013; 503(7474):78–84. doi: 10.1038/nature12742 PMID: 24201281

3. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, et al. Neural popula-

tion dynamics during reaching. Nature. 2012;. doi: 10.1038/nature11129 PMID: 22722855

4. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, et al. Neural constraints on

learning. Nature. 2014; 512(7515):423–426. doi: 10.1038/nature13665 PMID: 25164754

5. Li N, Daie K, Svoboda K, Druckmann S. Robust neuronal dynamics in premotor cortex during motor

planning. Nature. 2016; 532(7600):459–464. doi: 10.1038/nature17643 PMID: 27074502

6. Mazor O, Laurent G. Transient dynamics versus fixed points in odor representations by locust antennal

lobe projection neurons. Neuron. 2005; 48(4):661–673. doi: 10.1016/j.neuron.2005.09.032 PMID:

16301181

7. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, et al. The importance of mixed selectivity

in complex cognitive tasks. Nature. 2013; 497(7451):585–590. doi: 10.1038/nature12160 PMID:

23685452

8. Daie K, Goldman MS, Aksay ER. Spatial patterns of persistent neural activity vary with the behavioral

context of short-term memory. Neuron. 2015; 85(4):847–860. doi: 10.1016/j.neuron.2015.01.006

PMID: 25661184

9. Cohen MR, Maunsell JH. A neuronal population measure of attention predicts behavioral performance

on individual trials. J Neurosci. 2010; 30(45):15241–15253. doi: 10.1523/JNEUROSCI.2171-10.2010

PMID: 21068329
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33. Martin KA, Schröder S. Functional heterogeneity in neighboring neurons of cat primary visual cortex in

response to both artificial and natural stimuli. The Journal of Neuroscience. 2013; 33(17):7325–7344.

doi: 10.1523/JNEUROSCI.4071-12.2013 PMID: 23616540

34. Raposo D, Kaufman MT, Churchland AK. A category-free neural population supports evolving demands

during decision-making. Nat Neurosci. 2014; 17:1784–1792. doi: 10.1038/nn.3865 PMID: 25383902

35. Semedo J, Zandvakili A, Kohn A, Machens CK, Yu BM. Extracting Latent Structure From Multiple Inter-

acting Neural Populations. In: Advances in Neural Information Processing Systems; 2014. p. 2942–

2950.

36. Busse L, Wade AR, Carandini M. Representation of concurrent stimuli by population activity in visual

cortex. Neuron. 2009; 64(6):931–942. doi: 10.1016/j.neuron.2009.11.004 PMID: 20064398

37. Machens CK, Romo R, Brody CD. Functional, but not anatomical, separation of “what” and “when” in

prefrontal cortex. J Neurosci. 2010; 30(1):350–360. doi: 10.1523/JNEUROSCI.3276-09.2010 PMID:

20053916

38. Camastra F, Vinciarelli A. Estimating the intrinsic dimension of data with a fractal-based method. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on. 2002; 24(10):1404–1407. doi: 10.1109/

TPAMI.2002.1039212

39. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality

reduction. Science. 2000; 290(5500):2319–2323. doi: 10.1126/science.290.5500.2319 PMID:

11125149

40. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;

290(5500):2323–2326. doi: 10.1126/science.290.5500.2323 PMID: 11125150

Population Activity Patterns in Macaque V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005185 December 9, 2016 30 / 31

http://dx.doi.org/10.1162/NECO_a_00648
http://www.ncbi.nlm.nih.gov/pubmed/25058707
http://www.ncbi.nlm.nih.gov/pubmed/3193169
http://www.ncbi.nlm.nih.gov/pubmed/8922429
http://www.ncbi.nlm.nih.gov/pubmed/12805314
http://dx.doi.org/10.1523/JNEUROSCI.1422-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15295035
http://dx.doi.org/10.1523/JNEUROSCI.4661-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22302799
http://dx.doi.org/10.1523/JNEUROSCI.3726-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16291931
http://www.ncbi.nlm.nih.gov/pubmed/15969914
http://dx.doi.org/10.1016/j.neuron.2015.10.009
http://www.ncbi.nlm.nih.gov/pubmed/26549331
http://dx.doi.org/10.1016/j.visres.2005.11.008
http://www.ncbi.nlm.nih.gov/pubmed/16384589
http://dx.doi.org/10.1146/annurev.neuro.24.1.1193
http://www.ncbi.nlm.nih.gov/pubmed/11520932
http://dx.doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
http://dx.doi.org/10.1038/nn.3402
http://dx.doi.org/10.1038/nn.3402
http://www.ncbi.nlm.nih.gov/pubmed/23685719
http://dx.doi.org/10.1016/j.neuron.2005.01.029
http://www.ncbi.nlm.nih.gov/pubmed/15748852
http://dx.doi.org/10.1371/journal.pbio.0030342
http://dx.doi.org/10.1523/JNEUROSCI.4071-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23616540
http://dx.doi.org/10.1038/nn.3865
http://www.ncbi.nlm.nih.gov/pubmed/25383902
http://dx.doi.org/10.1016/j.neuron.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20064398
http://dx.doi.org/10.1523/JNEUROSCI.3276-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20053916
http://dx.doi.org/10.1109/TPAMI.2002.1039212
http://dx.doi.org/10.1109/TPAMI.2002.1039212
http://dx.doi.org/10.1126/science.290.5500.2319
http://www.ncbi.nlm.nih.gov/pubmed/11125149
http://dx.doi.org/10.1126/science.290.5500.2323
http://www.ncbi.nlm.nih.gov/pubmed/11125150


41. Ringach DL. Population coding under normalization. Vision research. 2010; 50(22):2223–2232. doi: 10.

1016/j.visres.2009.12.007 PMID: 20034510

42. Richmond BJ, Optican LM. Temporal encoding of two-dimensional patterns by single units in primate

primary visual cortex. II. Information transmission. Journal of Neurophysiology. 1990; 64(2):370–380.

PMID: 2213123

43. Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision.

Science. 2000; 287(5456):1273–1276. doi: 10.1126/science.287.5456.1273 PMID: 10678835

44. Vinje WE, Gallant JL. Natural stimulation of the nonclassical receptive field increases information trans-

mission efficiency in V1. J Neurosci. 2002; 22(7):2904–2915. PMID: 11923455

45. Pecka M, Han Y, Sader E, Mrsic-Flogel TD. Experience-dependent specialization of receptive field sur-

round for selective coding of natural scenes. Neuron. 2014; 84(2):457–469. doi: 10.1016/j.neuron.2014.

09.010 PMID: 25263755

46. Coen-Cagli R, Kohn A, Schwartz O. Flexible gating of contextual influences in natural vision. Nature

neuroscience. 2015;. doi: 10.1038/nn.4128 PMID: 26436902

47. Olshausen BA, et al. Emergence of simple-cell receptive field properties by learning a sparse code for

natural images. Nature. 1996; 381(6583):607–609. doi: 10.1038/381607a0 PMID: 8637596

48. Froudarakis E, Berens P, Ecker AS, Cotton RJ, Sinz FH, Yatsenko D, et al. Population code in mouse

V1 facilitates readout of natural scenes through increased sparseness. Nat Neurosci. 2014;. doi: 10.

1038/nn.3707 PMID: 24747577

49. Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natu-

ral vision. Nature. 2004; 431(7008):573–578. doi: 10.1038/nature02907 PMID: 15457262

50. Berkes P, Orbán G, Lengyel M, Fiser J. Spontaneous cortical activity reveals hallmarks of an optimal

internal model of the environment. Science. 2011; 331(6013):83–87. doi: 10.1126/science.1195870

PMID: 21212356

51. Okun M, Yger P, Marguet SL, Gerard-Mercier F, Benucci A, Katzner S, et al. Population rate dynamics

and multineuron firing patterns in sensory cortex. J Neurosci. 2012; 32(48):17108–17119. doi: 10.1523/

JNEUROSCI.1831-12.2012 PMID: 23197704

52. Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variabil-

ity in evoked cortical responses. Science. 1996; 273(5283):1868–1871. doi: 10.1126/science.273.

5283.1868 PMID: 8791593

53. Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in single neurons in cat and mon-

key visual cortex. Vision research. 1983; 23(8):775–785. doi: 10.1016/0042-6989(83)90200-6 PMID:

6623937

54. Smith MA, Kohn A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J Neu-

rosci. 2008; 28(48):12591–12603. doi: 10.1523/JNEUROSCI.2929-08.2008 PMID: 19036953

55. Kelly RC, Smith MA, Kass RE, Lee TS. Local field potentials indicate network state and account for neu-

ronal response variability. Journal of computational neuroscience. 2010; 29(3):567–579. doi: 10.1007/

s10827-009-0208-9 PMID: 20094906

56. Kelly RC, Smith MA, Samonds JM, Kohn A, Bonds A, Movshon JA, et al. Comparison of recordings

from microelectrode arrays and single electrodes in the visual cortex. J Neurosci. 2007; 27(2):261–264.

doi: 10.1523/JNEUROSCI.4906-06.2007 PMID: 17215384

57. Wissig SC, Kohn A. The influence of surround suppression on adaptation effects in primary visual cor-

tex. J Neurophysiol. 2012; 107(12):3370–3384. doi: 10.1152/jn.00739.2011 PMID: 22423001

58. Cunningham JP, Ghahramani Z. Linear Dimensionality Reduction: Survey, Insights, and Generaliza-

tions. Journal of Machine Learning Research. 2015; 16:2859–2900.

59. Yun T, Guan L. Human emotional state recognition using real 3D visual features from Gabor library.

Pattern Recognition. 2013; 46(2):529–538. doi: 10.1016/j.patcog.2012.08.002

60. Xiao J. Princeton Vision and Robotics Toolkit; 2013.

61. Vedaldi A, Lenc K. MatConvNet—Convolutional Neural Networks for MATLAB. In: Proceeding of the

ACM Int. Conf. on Multimedia; 2015.

62. Cowley BR, Kaufman MT, Butler ZS, Churchland MM, Ryu SI, Shenoy KV, et al. DataHigh: graphical

user interface for visualizing and interacting with high-dimensional neural activity. Journal of neural

engineering. 2013; 10(6):066012. doi: 10.1088/1741-2560/10/6/066012 PMID: 24216250

Population Activity Patterns in Macaque V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005185 December 9, 2016 31 / 31

http://dx.doi.org/10.1016/j.visres.2009.12.007
http://dx.doi.org/10.1016/j.visres.2009.12.007
http://www.ncbi.nlm.nih.gov/pubmed/20034510
http://www.ncbi.nlm.nih.gov/pubmed/2213123
http://dx.doi.org/10.1126/science.287.5456.1273
http://www.ncbi.nlm.nih.gov/pubmed/10678835
http://www.ncbi.nlm.nih.gov/pubmed/11923455
http://dx.doi.org/10.1016/j.neuron.2014.09.010
http://dx.doi.org/10.1016/j.neuron.2014.09.010
http://www.ncbi.nlm.nih.gov/pubmed/25263755
http://dx.doi.org/10.1038/nn.4128
http://www.ncbi.nlm.nih.gov/pubmed/26436902
http://dx.doi.org/10.1038/381607a0
http://www.ncbi.nlm.nih.gov/pubmed/8637596
http://dx.doi.org/10.1038/nn.3707
http://dx.doi.org/10.1038/nn.3707
http://www.ncbi.nlm.nih.gov/pubmed/24747577
http://dx.doi.org/10.1038/nature02907
http://www.ncbi.nlm.nih.gov/pubmed/15457262
http://dx.doi.org/10.1126/science.1195870
http://www.ncbi.nlm.nih.gov/pubmed/21212356
http://dx.doi.org/10.1523/JNEUROSCI.1831-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.1831-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23197704
http://dx.doi.org/10.1126/science.273.5283.1868
http://dx.doi.org/10.1126/science.273.5283.1868
http://www.ncbi.nlm.nih.gov/pubmed/8791593
http://dx.doi.org/10.1016/0042-6989(83)90200-6
http://www.ncbi.nlm.nih.gov/pubmed/6623937
http://dx.doi.org/10.1523/JNEUROSCI.2929-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19036953
http://dx.doi.org/10.1007/s10827-009-0208-9
http://dx.doi.org/10.1007/s10827-009-0208-9
http://www.ncbi.nlm.nih.gov/pubmed/20094906
http://dx.doi.org/10.1523/JNEUROSCI.4906-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17215384
http://dx.doi.org/10.1152/jn.00739.2011
http://www.ncbi.nlm.nih.gov/pubmed/22423001
http://dx.doi.org/10.1016/j.patcog.2012.08.002
http://dx.doi.org/10.1088/1741-2560/10/6/066012
http://www.ncbi.nlm.nih.gov/pubmed/24216250

