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Abstract

We consider the problem of recovering a symmetric, positive semidefinite (SPSD)
matrix from a subset of its entries, possibly corrupted by noise. In contrast to
previous matrix recovery work, we drop the assumption of a random sampling of
entries in favor of a deterministic sampling of principal submatrices of the ma-
trix. We develop a set of sufficient conditions for the recovery of a SPSD matrix
from a set of its principal submatrices, present necessity results based on this set
of conditions and develop an algorithm that can exactly recover a matrix when
these conditions are met. The proposed algorithm is naturally generalized to the
problem of noisy matrix recovery, and we provide a worst-case bound on recon-
struction error for this scenario. Finally, we demonstrate the algorithm’s utility on
noiseless and noisy simulated datasets.

1 Introduction

There are multiple scenarios where we might wish to reconstruct a symmetric positive semidefinite
(SPSD) matrix from a sampling of its entries. In multidimensional scaling, for example, pairwise
distance measurements are used to form a kernel matrix and PCA is performed on this matrix to
embed the data in a low-dimensional subspace. However, it may not be possible to measure pairwise
distances for all variables, rendering the kernel matrix incomplete. In neuroscience, a population of
neurons is often modeled as driven by a low-dimensional latent state [1], producing a low-rank
covariance structure in the observed neural recordings. However, with current technology, it may
only be possible to record from a large population of neurons in small, overlapping sets [2, 3],
leaving holes in the empirical covariance matrix. More generally, SPSD matrices in the form of
Gram matrices play a key role in a broad range of machine learning problems such as support vector
machines [4], Gaussian processes [5] and nonlinear dimensionality reduction techniques [6] and the
reconstruction of such matrices from a subset of their entries is of general interest.

In real world scenarios, the constraints that make it difficult to observe a whole matrix often also
constrain which particular entries of a matrix are observable. In such settings, existing matrix com-
pletion results, which assume matrix entries are revealed in an unstructured, random manner [7–14]
or the ability to finely query individual entries of a matrix in an adaptive manner [15, 16] might
not be applicable. This motivates us to examine the problem of recovering a SPSD matrix from a
given, deterministic set of its entries. In particular we focus on reconstructing a SPSD matrix from
a revealed set of its principal submatrices.

Recall that a principal submatrix of a matrix is a submatrix obtained by symmetrically removing
rows and columns of the original matrix. When individual entries of a matrix are formed by pairwise
measurements between experimental variables, principal submatrices are a natural way to formally
capture how entries are revealed.
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Figure 1: (A) An example A matrix with two principal submatrices, showing the correspondence
between A(ρl, ρl) and C(ρl, :). (B) Mapping of C1 and C2 to C, illustrating the role of ιl, φl and
ηl.

Sampling principal submatrices also allows for an intuitive method of matrix reconstruction. As
shown in Fig. 1, any n × n rank r SPSD matrix A can be decomposed as A = CCT for
some C ∈ Rn×r. Any principal submatrix of A can also be decomposed in the same way.
Further, if ρi is an ordered set indexing the the ith principal submatrix of A, it must be that
A(ρi, ρi) = C(ρi, :)C(ρi, :)

T .1 This suggests we can decompose each A(ρi, ρi) to learn the the
rows of C and then reconstruct A from the learned C, but there is one complication. Any matrix,
C(ρi, :), such that A(ρi, ρi) = C(ρi, :)C(ρi, :)

T , is only defined up to an orthonormal transfor-
mation. The naı̈ve algorithm just suggested has no way of ensuring the rows of C learned from
two different principal submatrices are consistent with respect to this degeneracy. Fortunately, the
situation is easily remedied if the principal submatrices in question have some overlap, so that the
C(ρi, :) matrices have some rows that map to each other. Under appropriate conditions explored
below, we can learn unique orthonormal transformations rendering these rows equal, allowing us to
align the C(ρi, :) matrices to learn a proper C.

Contributions In this paper, we make the following contributions.

1. We prove sufficient conditions, which are also necessary in certain situations, for the exact
recovery of a SPSD matrix from a given set of its principal submatrices.

2. We present a novel algorithm which exactly recovers a SPSD matrix when the sufficient
conditions are met.

3. The algorithm is generalized when the set of observed principal submatrices of a matrix are
corrupted by noise. We present a theorem guaranteeing a bound on reconstruction error.

1.1 Related Work

The low rank matrix completion problem has received considerable attention since the work of
Candès and Recht [17] who demonstrated that a simple convex problem could exactly recover many
low-rank matrices with high probability. This work, as did much of what followed (e.g., [7–9]),
made three key assumptions. First, entries of a matrix were assumed to be uncorrupted by noise
and, second, revealed in a random, unstructured manner. Finally, requirements, such as incoherence,
were also imposed to rule out matrices with most of their mass concentrated in a only a few entries.

These assumptions have been reexamined and relaxed in additional work. The case of noisy ob-
served entries has been considered [10–14]. Others have reduced or removed the requirements for
incoherence by using iterative, adaptive sampling schemes [15,16]. Finally, recent work [18,19] has
considered the case of matrix recovery when entries are selected a deterministic manner.

1Throughout this work we will use MATLAB indexing notation, so C(ρi, :) is the submatrix of C made up
of the rows indexed by the ordered set ρi.
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Our work considerably differs from this earlier work. Our applications of interest allow us to assume
much structure, i.e., that matrices are SPSD, which our algorithm exploits, and our sufficient condi-
tions make no appeal to incoherence. Our work also differs from previous results for deterministic
sampling schemes (e.g., [18, 19]), which do not consider noise nor provide sufficient conditions for
exact recovery, instead approaching the problem as one of matrix approximation.

Previous work has also considered the problem of completing SPSD matrices of any [20] or low
rank [21,22]. Our work to identify conditions for a unique completion of a given rank can be viewed
as a continuation of this work where our sufficient and necessary conditions can be understood in
a particularly intuitive manner due to our sampling scheme. Finally, the Nyström method [23] is
a well known technique for approximating a SPSD matrix as low rank. It can also be applied to
the matrix recovery problem, and in the noiseless case, sufficient conditions for exact recovery are
known [24]. However, the Nyström method requires sampling full columns and rows of the original
matrix, a sampling scheme which may not be possible in many of our applications of interest.

2 Preliminaries

2.1 Deterministic Sampling for SPSD Matrices

We denote the set of index pairs for the revealed entries of a matrix by Ω. Formally, an index
pair, (i, j), is in Ω if and only if we observe the corresponding entry of an n × n matrix so that
Ω ⊂ [n] × [n].2 In this work, we assume Ω indexes a set of principal submatrices of a matrix.
Let Ωl ⊆ Ω indicate a subset of Ω. If Ωl indexes a principal submatrix of a matrix, it can be
compactly described by the unique set of row (or equivalently column) indices it contains. Let
ρ{Ωl} = {i|(i, j) ∈ Ωl} be the set of row indices contained in Ωl. For compactness, let ρl = ρ{Ωl}.
Finally, let |·| indicate cardinality. Then, for an n×nmatrix,A, of rank r > 0 we make the following
assumptions on Ω.

(A1) ρ{Ω} = [n].

(A2) There exists a collection Ω1, . . . ,Ωk of subsets of Ω such that Ω = ∪kl=1Ωl, and for
each Ωl, (i, i) ∈ Ωl and (j, j) ∈ Ωl if and only if (i, j) ∈ Ωl and (j, i) ∈ Ωl.

(A3) There exists a collection Ω1, . . . ,Ωk of subsets of Ω such that A2 holds and if k > 1,
there exists an ordering τ1, . . . , τk such that for all i ≥ 2, |ρτi ∩

(
∪i−1j=1ρτj

)
| ≥ r.

The first assumption ensures Ω indexes at least one entry for each row ofA. AssumptionA2 requires
that Ω indexes a collection of principal submatrices of A, and A3 allows for the possible alignment
of rows of C (recall, A = CCT ) estimated from each principal submatrix.

2.2 Additional Notation

Denote the set of real, n× n SPSD matrices by Sn+, and let A ∈ Sn+ be the rank r > 0 matrix to be
recovered. For the noisy case, Ã will indicate a perturbed version of A. We will use the notation Al
to indicate the principal submatrix of a matrix A indexed by Ωl.

Denote the eigendecomposition of A as A = EΛET for the diagonal matrix Λ ∈ Rr×r containing
the non-zero eigenvalues of A, λ1 ≥ . . . ≥ λr, along its diagonal and the matrix En×r containing
the corresponding eigenvectors of A in its columns. Let nl denote the size of Al and rl the rank.
Because Al is a principal submatrix of A, it follows that Al ∈ Snl

+ . Denote the eigendecomposition
of each Al as Al = ElΛlE

T
l for the matrices Λl ∈ Rrl×rl and El ∈ Rnl×rl . We add tildes to the

appropriate symbols for the eigendecomposition of Ã and its principal submatrices.

Finally, let ιl = ρτl ∩ (∪j=1,...,l−1 ρτj ) be the intersection of the indices for the lth principal
submatrix with the indices of the all of the principal submatrices ordered before it. Let Cl be a
matrix such that ClCTl = Al. If Al is a principal submatrix of A there will exist some Cl such that
C(ρl, :) = Cl. For such a Cl, let φl be an index set that assigns the rows of the matrix C(ιl, :) to
their location in Cl, so that C(ιl, :) = Cl(φl, :) and let ηl assign the rows of C(ρl \ ιl, :) to their

2We use the notation, [n] to indicate the set {1, . . . , n}.
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Algorithm 1 SPSD Matrix Recovery (r, {Ẽl, Λ̃l, τl, ρl, φl, ιl, ηl}kl=1)

Initialize Ĉ as a n× r matrix.

1. Ĉ(ρτ1 , :)← Ẽτ1(:, 1 : r)Λ̃
1/2
τ1 (1 : r, 1 : r)

2. For l ∈ {2, . . . , k}
(a) Ĉl ← Ẽτl(:, 1 : r)Λ̃

1/2
τl (1 : r, 1 : r)

(b) Ŵl ← argminWWT=I ||Ĉ(ιl, :)− Ĉl(φl, :)W ||2F
(c) Ĉ(ρτl \ ιl, :)← Ĉl(ηl, :)Ŵl

3. Return Â = ĈĈT

location in Cl, so that C(ρl \ ιl, :) = Cl(ηl, :). The role of ρl, ιl, ηl and φl is illustrated for the case
of two principal submatrices with τ1 = 1, τ2 = 2 in Figure 1.

3 The Algorithm

Before establishing a set of sufficient conditions for exact matrix completion, we present our algo-
rithm. Except for minor notational differences, the algorithms for the noiseless and noisy matrix
recovery scenarios are identical, and for brevity we present the algorithm for the noisy scenario.

Let Ω sample the observed entires of Ã so that A1 through A3 hold. Assume each perturbed prin-
cipal submatrix, Ãl, indexed by Ω is SPSD and of rank r or greater. These assumptions on each
Ãl will be further explored in section 5. Decompose each Ãl as Ãl = ẼlΛ̃lẼ

T
l , and form a rank r

matrix Ĉl as Ĉl = Ẽl(:, 1 : r)Λ̃
1/2
l (1 : r, 1 : r).

The rows of the Ĉl matrices contain estimates for the rows of C such that A = CCT , though rows
estimated from different principal submatrices may be expressed with respect to different orthonor-
mal transformations. Without loss of generality, assume the principal submatrices are labeled so
that τ1 = 1, . . . , τk = k. Our algorithm begins to construct Ĉ by estimating Ĉ(ρ1, :) = Ĉ1. In this
step, we also implicitly choose to express Ĉ with respect to the basis for Ĉ1. We then iteratively add
rows to Ĉ, for each Ĉl adding the rows Ĉl(ηl, :) to Ĉ. To estimate the orthornormal transformation
to align the rows of Ĉl with the rows of Ĉ estimated in previous iterations, we solve the following
optimization problem

Ŵl = argmin
WWT=I

∣∣∣∣∣∣Ĉ(ιl, :)− Ĉl(φl, :)W
∣∣∣∣∣∣2
F
. (1)

In words, equation 1 estimates Ŵl so that the rows of Ĉl which overlap with the previously
estimated rows of Ĉ match as closely as possible. In the noiseless case, (1) is equivalent to
Ŵl = W : Ĉ(ιi, :)− Ĉl(φi, :)W = 0. Equation 1 is known as the Procrustes problem and is
non-convex, but its solution can be found in closed form and sufficient conditions for its unique
solution are known [25].

After learning Ŵl for each Ĉl, we build up the estimate for Ĉ by setting Ĉ(ρl \ ιl, :) = Ĉl(ηl, :)Ŵl.
This step adds the rows of Ĉl that do not overlap with those already added to Ĉ to the growing
estimate of Ĉ. If we process principal submatrices in the order specified by A3, this algorithm will
generate a complete estimate for Ĉ. The full matrix Â can then be estimated as Â = ĈĈ. The
pseudocode for this algorithm is given in Algorithm 1.

4 The Noiseless Case

We begin this section by stating one additional assumption on A.
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(A4) There exists a collection Ω1, . . . ,Ωk of subsets of Ω such that A2 holds and if k > 1,
there exists an ordering τ1, . . . , τk such that the rank of A(ιl, ιl) is equal to r for each
l ∈ {2, . . . , k}.

In Theorem 2 we show that A1 - A4 are sufficient to guarantee the exact recovery of A. Conditions
A1 - A4 can also be necessary for the unique recovery of A by any method, as we show next in
Theorem 1. Theorem 1 may at first glance appear quite simple, but it is a restatement of Lemma 6
in the appendix, from which more general necessity results can be derived. Specifically, Corollary
7 in the appendix can be used to establish necessity conditions for recovering A from a set of its
principal submatrices which can be aligned in a overlapping sequence (e.g., submatrices running
down the diagonal of A), which might be encountered when constructing a covariance matrix from
sequentially sampled subgroups of variables. Corollary 8 establishes a similar result when there
exists a set of principal submatrices which have no overlap among themselves but all overlap with
one other submatrix not in the set, and Corollary 9 establishes that it is often sufficient to find just
one principal submatrix that obeys certain conditions with respect to the rest of the sampled entries
of the matrix to certify the impossibility of matrix completion. This last corollary in fact applies
even when the rest of the sampled entries do not fall into a union of principal submatrices of the
matrix.
Theorem 1. Let Ω 6= [n] × [n] index A so that A2 holds for some Ω1 ⊆ Ω and Ω2 ⊆ Ω. Assume
rank{A(ρ1, ρ1)} = rank{A(ρ2 \ ι2, ρ2 \ ι2)} = r. Then A1, A3 and A4 must hold with respect to
Ω1 and Ω2 for A to be recoverable by any method.

The proof can be found in the appendix. Here we briefly provide the intuition. Key to understanding
the proof is recognizing that recovering A from the set of entries indexed by Ω is equivalent to
learning a matrix C from the same set of entries such that A = CCT . If A1 is not met, a complete
row and the corresponding column ofA is not sampled, and there is nothing to constrain the estimate
for the corresponding row of C. If A3 and A4 are not met, we can construct a C such that all of the
entries of the matrices A and CCT indexed by Ω are identical yet A 6= CCT .

We now show that our algorithm can recoverA as soon as the above conditions are met, establishing
their sufficiency.
Theorem 2. Algorithm 1 will exactly recover A from a set of its principal submatrices indexed by
Ω1, . . . ,Ωk which meets conditions A1 through A4.

The proof, which is provided in the appendix, shows that in the noiseless case, for each principal
submatrix, Al of A, step 2a of Algorithm 1 will learn an exact Ĉl such that Al = ĈlĈ

T
l . Further,

when assumptions A3 and A4 are met, step 2b will correctly learn the orthonormal transformation
to align each Ĉl to the previously added rows of Ĉ. Therefore, progressive iterations of step 2
correctly learn more and more rows of a unified Ĉ. As the algorithm progresses, all of the rows of
Ĉ are learned and the entirety of A can be recovered in step 3 of the algorithm.

It is instructive to ask what we have gained or lost by constraining ourselves to sampling principal
submatrices. In particular, we can ask how many individual entries must be observed before we
can recover a matrix. A SPSD matrix has at least nr degrees of freedom, and we would not expect
any matrix recovery method to succeed before at least this many entries of the original matrix are
revealed. The next theorem establishes that our sampling scheme is not necessarily wasteful with
respect to this bound.
Theorem 3. For any rank r > 0 matrix A ∈ Sn+ there exists a Ω such that A1−A3 hold and

|Ω| ≤ n(2r + 1).

Of course, this work is motivated by real-world scenarios where we are not at the liberty to finely
select the principal submatrices we sample, and in practice we may often have to settle for a set of
principal submatrices which sample more of the matrix. However, it is reassuring to know that our
sampling scheme does not necessarily require a wasteful number of samples.

We note that assumptions A1 through A4 have an important benefit with respect to a requirement
of incoherence. Incoherence is an assumption about the entire row and column space of a matrix
and cannot be verified to hold with only the observed entries of a matrix. However, assumptions
A1 through A4 can be verified to hold for a matrix of known rank using its observed entries. Thus,
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it is possible to verify that these assumptions hold for a given Ω and A and provide a certificate
guaranteeing exact recovery before matrix completion is attempted.

5 The Noisy Case

We analyze the behavior of Algorithm 1 in the presence of noise. For simplicity, we assume each
observed, noise corrupted principal submatrix is SPSD so that the eigendecompositions in steps 1
and 2a of the algorithm are well defined. In the noiseless case, to guarantee the uniqueness of Â, A4
required each A(ιl, ιl) to be of rank r. In the noisy case, we place a similar requirement on Ã(ιl, ιl),
where we recognize that the rank of each Ã(ιl, ιl) may be larger than r due to noise.

(A5) There exists a collection Ω1, . . . ,Ωk of subsets of Ω such that A2 holds and if k > 1,
there exists an ordering τ1, . . . , τk such that the rank of Ã(ιl, ιl) is greater than or equal to
r for each l ∈ {2, . . . , k}.

(A6) There exists a collection Ω1, . . . ,Ωk of subsets of Ω such that A2 holds and Ãl ∈ Snl
+

for each l ∈ {1, . . . , k}.

In practice, any Ãl which is not SPSD can be decomposed into the sum of a symmetric and an
antisymmetric matrix. The negative eigenvalues of the symmetric matrix can then be set to zero,
rendering a SPSD matrix. As long as this resulting matrix meets the rank requirement in A5, it can
be used in place of Ãl. Our algorithm can then be used without modification to estimate Â.

Theorem 4. Let Ω index an n×nmatrix Ã which is a perturbed version of the rank r matrixA such
that A1−A6 simultaneously hold for a collection of principal submatrices indexed by Ω1, . . . ,Ωk.

Let b ≥ maxl∈[k] ||Cl||F for some Cl ∈ Rnl×r such that Al = ClC
T
l , ζ ≥ λl,1 and delta ≤

min{mini∈[r−1], |λl,i − λl,i+1|, λl,r} for all l. Assume ||Al − Ãl||F ≤ ε for all l for some ε <

min{b2/r, δ/2, 1}. Then if in step 2 of Algorithm 1, rank
{
Ĉl(φl, :)

T Ĉ(ιl, :)
}

= r for all l ≥ 2,

Algorithm 1 will estimate an Â from the set of principal submatrices of Ã indexed by Ω such that

∣∣∣∣∣∣A− Â∣∣∣∣∣∣
F
≤ 2Gk−1L||C||F

√
rε+G2k−2L2rε,

where C ∈ Rn×r is some matrix such that A = CCT , G = 4 + 12/v, and v ≤ λr(A(ιl, ιl))/b
2 for

all l ≥ 2 and L =

√
1 + 16ζ

δ2 + 8
√
2ζ1/2

δ3/2
.

The proof is left to the appendix and is accomplished in two parts. In the first part, we guarantee
that the ordered eigenvalues and eigenvectors of each Ãl, which are the basis for estimating each
Ĉl, will not be too far from those of the corresponding Al. In the second part, we bound the amount
of additional error that can be introduced by learning imperfect Ŵ matrices which result in slight
misalignments as each Ĉl matrix is incorporated into the final estimate for the complete Ĉ. This
second part relies on a general perturbation bound for the Procrustes problem, derived as Lemma 16
in the appendix.

Our error bound is non-probabilistic and applies in the presence of adversarial noise. While we know
of no existing results for the recovery of matrices from deterministic samplings of noise corrupted
entries, we can compare our work to bounds obtained for various results applicable to random sam-
pling schemes, (e.g., [10–13]). These results require either incoherence [10, 11], boundedness [13]
of the entries of the matrix to be recovered or assume the sampling scheme obeys the restricted
isometry property [12]. Error is measured with various norms, but in all cases shows a linear de-
pendence on the size of the original perturbation. For this initial analysis, our bound establishes that
reconstruction error consistently goes to 0 with perturbation size, and we conjecture that with a re-
finement of our proof technique we can prove a linear dependence on ε. We provide initial evidence
for this conjecture in the results below.
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Figure 2: Noiseless simulation results. (A) Example masks for successful completion of a rank 4
matrix. (B) Completion success as rank is varied for masks with minimal overlap (minl |ιl|) of 10.
(C) Completion success for rank 1 − 55 matrices with block diagonal masks with minimal overlap
ranging between 0− 54.

6 Simulations

We demonstrate our algorithm’s performance on simulated data, starting with the noiseless setting
in Fig. 2. Fig. 2A shows three sampling schemes, referred to as masks, that meet assumptions A1
through A3 for a randomly generated 40× 40 rank 4 matrix. In all of the noiseless simulations, we
simulate a rank r matrix A ∈ Sn+ by first randomly generating a C ∈ Rn×r with entries individ-
ually drawn from a N (0, 1) distribution and forming A as A = CCT . The block diagonal mask
is formed from 5 × 5 principal submatrices running down the diagonal, each principal submatrix
overlapping the one to its upper left. Such a mask might be encountered in practice if we obtain
pairwise measurements from small sets of variables sequentially. The lth principal submatrix of the
full columns mask is formed by sampling all pairs of entires, (i, j) indexed by i, j ∈ {1, 2, 3, 4, l+4}
and might be encountered when obtaining pairwise measurements between sets of variables, where
some small number of variables is present in all sets. The random mask is formed from principal
submatrices randomly generated to conform to assumptions A1 through A3 and demonstrates that
masks with non-obvious structure in the underlying principal submatrices can conform to assump-
tions A1 through A3. Algorithm 1 correctly recovers the true matrix from all three masks.

In panel Fig. 2B, we modify these three types of masks so each is made up of size 25× 25 principal
submatrices and minl |ιl|, the minimal overlap of a principal submatrix with those ordered before
it, is 10 for each and attempt to reconstruct random matrices of size 55 × 55 and increasing rank.
For matrices of rank r ≤ 15, corollaries 7 − 9 in the appendix can be applied to these scenarios
to establish the necessity that minl |ιl| be greater than or equal to r for a rank r matrix. We see
that matrix recovery is successful for rank 10 or less, as predicted by theory, and unsuccessful for
matrices of greater rank. In Fig. 2C, we show this is not unique to masks with minimal overlap of
10. Here we generate block diagonal masks with minimal overlap between the principal submatrices
varying between 0 and 54. For each overlap value, we then attempt to recover matrices of rank 1
through o+ 1, where o is the minimal overlap value. To guard against false positives, we randomly
generated 10 matrices of a specified rank for each mask and only indicated success in black if
matrix completion was successful in all cases. Matrix completion failed exactly when the rank
of the underlying matrix exceeded the minimal overlap value of the mask. Identical results were
obtained for the full column and random masks.
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Figure 3: Noisy simulation results. (A) Reconstruction error with increasing amounts of noise
applied to the original matrix. (B) Traces in panel (A), each divided by its value at ε = εmin.

We provide evidence the dependence on ε in Theorem 4 should be linear in Fig. 3. We generate
random 55× 55 matrices of rank 1 through 10. Matrices were generated as in the noiseless scenario
and normalized to have a Frobenius norm of 1. We use a block diagonal mask with 25×25 blocks and
an overlap of 15 and randomly generate SPSD noise, scaled so that ||Al − Ãl|| = ε for each principal
submatrix. We sweep through a range of ε ∈ [εmin, εmax] for a εmin > 0 and a εmax determined
by the matrix with the tightest constraint on ε in theorem 4. Fig. 3A shows that reconstruction
error generally increases with ε and the rank of the matrix to be recovered. To better visualize the
dependence on ε, in Fig. 3B, we plot ||A− Â||F /||A− Â||F,εmin , where ||A− Â||F,εmin indicates the
reconstruction error obtained with ε = εmin. All of the lines coincide, suggesting a linear dependence
on ε.

7 Discussion

In this work we present an algorithm for the recovery of a SPSD matrix from a deterministic sam-
pling of its principal submatrices. We establish sufficient conditions for our algorithm to exactly
recover a SPSD matrix and present a set of necessity results demonstrating that our stated conditions
can be quite useful for determining when matrix recovery is possible by any method. We also show
that our algorithm recovers matrices obscured by noise with increasing fidelity as the magnitude of
noise goes to zero. Our algorithm incorporates no tuning parameters and can be computationally
light, as the majority of computations concern potentially small principal submatrices of the original
matrix. Implementations of the algorithm, which estimate each Ĉl in parallel, are also easy to con-
struct. Finally, our results could be generalized when the principal submatrices our method uses for
reconstruction are themselves not fully observed. In this case, existing matrix recovery techniques
can be used to estimate each complete underlying principal submatrix with some bounded error. Our
algorithm can then reconstruct the full matrix from these estimated principal submatrices.

An open question is the computational complexity of finding a set of principal submatrices which
satisfy conditions A1 through A4. However, in many practical situations there is an obvious set of
principal submatrices and ordering which satisfy these conditions. For example, in the neuroscience
application described in the introduction, a set of recording probes are independently movable and
each probe records from a given number of neurons in the brain. Each configuration of the probes
corresponds to a block of simultaneously recorded neurons, and by moving the probes one at a
time, blocks with overlapping variables can be constructed. When learning a low rank covariance
structure for this data, the overlapping blocks of variables naturally define observed blocks of a low
rank covariance matrix to use in algorithm 1.
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