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Sensor networks are gaining a central role in the research
community. This paper addresses some of the issues arising
from the use of sensor networks in control applications.
Classical control theory proves to be insufficient in modeling
distributed control problems where issues of communication
delay, jitter, and time synchronization between components
are not negligible. After discussing our hardware and software
platform and our target application, we review useful models
of computation and then suggest a mixed model for design,
analysis and synthesis of control algorithms within sensor
networks. We present a hierarchical model composed of
continuous time-trigger components at the low level and
discrete event-triggered components at the high level.

Index Terms— distributed control, sensor network, DPEG,
pursuit evasion game, TinyOS, NesC, mote, Mica, embedded

I. I NTRODUCTION

Sensor Networks (SN) are gaining a role of importance
in the research community. Embedded computers are well
settled in our lives, in our houses, in our cars, and in our
work environments.

Embedded systems, by definition, interact with the physical
world. They are sensors, actuators, and controllers which are
programmed to perform specified functions. As the range
of applications grows, the need arises to network several
embedded systems to perform incrementally complex tasks.
The automotive domain is an excellent illustrative example.
Here several embedded systems interact to provide a safe,
comfortable driving experience.

Recent developments in MEMS technology have provided
us with a wealth of cheap, customizable, embedded sensor
systems capable of wireless communication among each
other. The advantage of wireless sensor networks is enormous
– deploying and maintaining a network of thousands of nodes
is impractical considering the thousands of miles of wire
that would be needed for the connections. Several hardware
platforms are available, developed by both startups [1], [2],
[3] and universities [4].

Applications in various fields of research are being devel-
oped. Interesting ongoing projects include extensive experi-
mentation of structural response to earthquakes [5], habitat
monitoring [6], and intelligent transportation systems [7].
Other important fields of applications include home and
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building automation, and military applications. Self config-
urable, ubiquitous, easy to deploy, secure, undetectable sensor
networks are an ideal technology to employ in intelligence
operations and war scenarios for detecting movements of
enemy troops and artillery, and for monitoring and managing
friendly resources.

The research community has quickly acknowledged the
importance of large scale ad hoc networks, and developed
several services to support applications. Time services [8] pro-
vide the network with a globally consistent notion of time, lo-
calization services [9] allow computing nodes to acquire their
coordinates relative to each other, routing services [10], [11]
reliably deliver packets while dynamically adapting to the
ever changing network topology, and tracking services [12],
[13] follow objects moving through the network.

System design and implementation on such a versatile
platform introduces a series of issues. The longevity of
these networks requires a stable software platform capable of
self configuration, self upgrade, and adaptation to changing
environmental conditions. Another set of issues arises when
a sensor network is used for control applications. This is
the thrust of this paper. Throughout our discussion, we will
see several keys issues presenting themselves time and time
again: location determination, time synchronization, reliable
communication, power consumption management, coopera-
tion and coordination, and security.

The goal of our research is to design robust controllers
for distributed systems that violate typical control assump-
tions. Designed controllers will be evaluated on a distributed
control application testbed. Among the wealth of available
applications, we have selected a pursuit evasion game (PEG)
application. In our particular application, the sensor network
is deployed in the environment where the game is played and
cooperates with the pursuers’ team.

This application includes many interesting research prob-
lems in the areas of tracking, control design, security, and
robustness. For a PEG, the sensor network must be capable
of multiple vehicle tracking that can distinguish pursuers
from evaders. Furthermore, the network needs to have a
dynamic routing structure to deliver information to pursuers in
minimal time. Since the game will be played in a distributed
fashion, distributed sensing, control, and actuation need to
be accounted for during controller design. To prevent the
evader’s team from intercepting sensitive information, the
network must provide security features. Finally, since any one
node of a sensor network can fail, control algorithms should



2

Fig. 1. Pursuit-Evasion Game: what pursuers really see.

show graceful performance degradation.

II. PURSUIT EVASION GAMES

The framework of PEGs captures fundamental features for
modeling multi-agents in cooperative robotics and has been
an active area of research in the past decades. In this section,
we give a brief overview of the research history on PEGs,
describe the advantages of adding SNs to standard PEGs, and
enumerate additional issues that arise when using SNs.

A. PEG Overview

Pursuit-Evasion Games (PEGs) are a mathematical abstrac-
tion arising from numerous situations which addresses the
problem of controlling a swarm of autonomous agents in the
pursuit of one or more evaders. Typical examples are search
and rescue operations, surveillance, localization and tracking
of moving parts in a warehouse, and search and capture
missions. In some cases, the evaders are actively avoiding
detection as in capture missions, whereas in other cases their
motion is approximately random as in rescue operations.

Different versions of PEGs have been analyzed according
to different frameworks and assumptions. Deterministic PEGs
on finite graphs have been extensively studied [14], [15]. In
these games, the playing field is abstracted to be a finite
set of nodes and the allowed motions for the pursuers and
evaders are represented by edges connecting nodes. An evader
is captured if both the evader and one of the pursuers occupy
the same node. One of the most important problems arising
from this framework is the computation of thesearch number,
i.e., the smallest number of pursuers necessary to capture
a single evader in a finite time, regardless of the escaping
policy adopted by the evader. It has been shown that this
problem is NP-hard [15], [16]. This approach is limited only
to worst case motions of the evaders, and it is in general
overly pessimistic. A great deal of research has focused on
how to reduce a continuous space into a discrete number
of regions, each to be mapped into a node of the graph,
so that the game on the reduced graph is equivalent to the

Fig. 2. Pursuit-Evasion Game: sensor network increases visibility.

original game in the continuous space. For example LaValle
et al. proposed a method of decomposing the continuous
space into a finite number of regions forknown polygonal
environments [17] and simply connected, smooth-curved, two
dimensional environment [18].

Another active area of research deals with PEGs where
the environment isunknown. In this framework, an additional
map-learningphase is required to precede the pursuit phase.
The map-learning phase is, by itself, time-consuming and
computationally intensive even for simple two-dimensional
rectilinear environments [19]. Moreover, inaccurate sensors
complicate this process and a probabilistic approach is often
required [20].

Finally, a recent approach to PEGs has dealt with combin-
ing map-learning and pursuit into a single problem. This is
done in a probabilistic framework to avoid the conservative-
ness inherent in worst-case assumptions on the motion of the
evader. A probabilistic framework also naturally takes into
account inaccurate sensor readings, uncertaina priori map of
terrain, and evaders motion policies [21], [22].

B. Sensor Networks in PEGs

The use of a sensor network can greatly improve the
overall performance of a PEG. Pursuers have a relatively
small detection range. They usually employ computer vision
or ultrasonic sensors, providing only local observability over
the area of interest. This constraint makes designing a co-
operative pursuit algorithm harder because lack of complete
observability only allows for suboptimal pursuit policies. See
Figure 1. Furthermore, a smart evader is difficult to catch
unless appropriately detected.

Communication among pursuers may be difficult over a
large area. Lack of communication, even partially, among
pursuers is a major disruption for any pursuit policy. Because
of the expense of unmanned vehicles, it is unrealistic to
deploy a large number of them to continuously monitor a
large region.

With sensor networks, complete visibility of the field and
communication over a long radius is possible. See Figure 2.
Global pursuit policies can then be used to efficiently find
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the optimal solution regardless of the level of intelligence
of the evader. Also, with a sensor network, the number of
pursuers needed is likely a function exclusively of the number
of evaders and not to the size of the field.

This DPEG scenario exposes a number of issues fun-
damental to any sensor network. Resolving these issues is
complicated by the desire to make the solutions robust even
in a dynamic, ad-hoc network.

Time– The notion of time presents two distinct problems.
First, coordinating sensing and actuating in the physical world
requires either a sense of global time or the ability to resolve
different time measurements to a meaningful representation.
Second, many existing design techniques assume that the
computation of control and the processing of sensing and
actuation occur within a negligible amount of time; thus,
requiring new design and analysis techniques for sensor
networks.

Communication– It is expected that a network of motes
will span a spatial area significantly greater than a single
mote’s maximum communication area. For a mote to send a
message to another, distant mote, intermediate motes must be
able to relay the message. Additionally, because motes can
go offline without warning, the underlying communication
protocol must be robust to network changes.

Location – Sensing and actuating events in the physical
world must be paired with the relative or absolute location
of the mote to be useful to control algorithms. That location
must be assumed, provided, or deduced.

Cooperation– Tasks that require the combined effort of
two or more motes, such as any form of distributed sensing
or distributed computing, require protocols and structures that
provide handshaking, coordination, and possibly hierarchy.

Power– Energy is a valued resource in a sensor network.
Service and performance guarantees provided by a sensor
network must be balanced against overall power consumption.

Security – To prevent numerous potential abuses of a
sensor network, a communication security layer must provide
known guarantees for access control, message integrity, and
confidentiality.

When developing control applications on a sensor network
platform, we are particularly interested with issues related to
time, communication, and location. We will focus on these
issues throughout.

C. Distributed PEGs

To start our distributed pursuit evasion game (DPEG) sce-
nario, the motes comprising the sensor network are deployed
onto the playing field in a sleep state. The mote sensor
network then goes through an initialization and calibration
stage for bootstrapping their provided services. The pursuers
and evaders then enter the playing field and remain within
the field for the duration of the game.

The sensor network provides a variety of services to
both pursuers and other sensor motes: time synchronization,
localization, moving entity (pursuer or evader) estimation, etc.
For the purpose of the game, the sole goal of these services is
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Fig. 3. Evolution of motes from the Berkeley TinyOS group.

to produce estimates on the positions, velocity, and identity of
entities in the playing field. This information is time stamped
and routed to all pursuers in the playing field. The pursuers
have onboard computation facilities comparable to a laptop
computer. We may choose to have the pursuers communicate
through a separate robust channel to coordinate to capture the
evader when and if that channel is available.

When all evaders are captured (a capture occurs when
a pursuer is “close enough” to it), the game ends. A base
station is outside the playing area and provides logging and
visualization services.

III. I MPLEMENTATION

Our implementations span hardware, software, and various
application scenarios to explore and demonstrate distributed
control via sensor networks. In the hardware section, we
discuss our current embedded network devices. Then, in the
software section, we review our new programming language,
operating system, and system service architecture. Finally,
we survey our current and future testbeds for interacting and
learning at the whole-system level.

A. Hardware

The hardware platform developed by the TinyOS group at
Berkeley consists of numerous, small, extendible embedded
network devices. Each device has limited power, computation,
and storage resources – significantly limited when compared
to modern desktop computer systems. The goal of each hard-
ware platform is to provide computation, sensing, actuation,
and communication resources embedded in miniature packag-
ing. By making the conscious design decision to significantly
limit the resources available per mote, we leave the door open
for reaching the goal of dust-sized devices.

The current platforms are designed to be both modular
and flexible; providing ease in re-targeting motes to new and
unanticipated applications while allowing for significant code
reuse. Figure 3 shows the evolution of the base computation
modules. In particular, the most recent transition from the
Rene2/Dot to Mica (Figure 4) gave at least a four-fold
increase in program memory, RAM, and radio transmission
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Fig. 4. Mica mote (2′′ × 1′′ × 3
4

′′
) with attached weather board module.

rate. All motes have otherwise had some form of an 4 MHz,
8-bit Atmel microcontroller and an RFM TR1000 radio.

Add-on boards for the motes may be designed for general
purpose sensing or targeted toward a particular application.
For instance, the weather sensing board has humidity, baro-
metric pressure, infrared, temperature, and light sensors and
is used for experiments on Great Duck Island [23] in Maine.
And, a motor/servo and whisker/accelerometer board were
developed for COTS-BOTS [24] (Figure 5) for controlling
off-the-shelf miniature cars. We also have various general-
purpose sensor boards that have some combination of photo-
diodes, temperature sensors, magnetometers, accelerometers,
microphones, and sounders.

The overall modularity of these devices comes at the cost
of size. A device targeted at large-scale deployment can do
away with the add-on connector and supporting circuitry. The
resulting space savings in the current platforms easily allows
for a final form-factor with diameter smaller than a quarter.

All together, the hardware platforms have been sufficient
to meet the needs of both research and experimentation.

B. System services

We build our embedded software with NesC [25], a new,
open-source programming language developed at Berkeley.
NesC extends the standard C language with semantics and
syntax for component-based architectures. Component be-
haviors are described with bidirectional interfaces that either
provide commands or require the dependent to handle events.
Components are statically wired together to form a whole
program or system; which when compiled with a whole-
program compiler, allow for greater optimizations and effi-
ciency. Whole programs also match well with formal analysis
tools for verifying system functionality.

Berkeley’s open-source embedded operating system,
TinyOS [26], provides basic system services, such as com-
munication and simple process scheduling, and access to

Fig. 5. COTS-BOTS developed by Sarah Bergbreiter and Kris Pister.

hardware components, such as sensor and actuators. It is
specifically designed for extremely resource-limited devices
that have only a few kilobytes of memory. TinyOS is written
in NesC using a component-based architecture with layered
access to hardware resources, which provides robustness,
flexibility, and extensibility.

Using NesC and TinyOS as building blocks, we have been
working with a number of other groups on the NEST project
funded by DARPA to develop a coherent architecture of sys-
tem services to help solve fundamental sensor network stum-
bling issues. The crucial services we have currently identified
are estimation, grouping, localization, power management,
routing, service coordination, and time synchronization. We
feel that these components will facilitate a large set of rich
and adaptive applications.

To address time issues within a sensor network, we propose
a time synchronization API that supports two time manage-
ment protocols: a global NTP-like synchronization protocol,
and a local time protocol with the means to transform
time readings between individual motes. It is expected that
NTP-like global synchronization will offer lower precision
time measurements, but otherwise provide an immediately
available global time on the mote. Local transformations
between individual mote “time-zones” has the advantages of
higher precision between pairs of motes, being able to back-
calculate synchronized times for past events, and guarantees
monotonicity in local time by not directly modifying the
local clock [8]. Various applications can have vastly different
time synchronization requirements, and we feel these two
methodologies together can more adequately serve a broad
set of applications.

To address communication issues within a sensor network,
we propose a general routing framework that supports a num-
ber of routing methodologies. First, because sensor networks
primarily sense and interact with phenomena in the physical
world, routing to geographic regions is expected to be the
common-case. Second, to assist in routing packets around
physical obstacles, routing based on geographic direction is
expected to be useful. Third, the more obvious case of routing
to symbolic network identifiers is reserved for dynamically
routing to physically moving destinations within the network.
Finally, the general-case of constraint-based routing provides
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Fig. 6. Sample component architecture demonstrating the design method-
ology.

means to route based on arbitrary criteria, such as power level,
sensor values, and so on.

To resolve the physical location of motes in a sensor net-
work [9], we propose a top-to-bottom localization framework.
A localization service requires a broad set of coordination
and processing stages between motes: coordinated sensors
and actuators, group data management, and computation.
Separating localization into a number of distinct components
that work together allows for an amount of heterogeneity in
the sensor network that may be necessary given the limited
resources of the motes.

To address the issues of coordination between motes, we
propose both application targeted grouping algorithms and
general purposing grouping services. A group management
service must provide means to send and receive data from
a group, the ability to join and leave a group, and leader
election. For tracking a moving evader in a PEG scenario,
decisions to join and leave groups can be tied to sensor read-
ings. This simplifies the handshaking and decision process,
allowing for overall lower overhead. There are concerns that
these services in the general case impose significant overhead
on a sensor network.

Issues of power management are on the agenda but are
currently unaddressed in the architecture. Issues of security
are being solved at the operating system level, providing
transparent authentication, encryption, and concealment.

Our methodology for creating an infrastructure for these
services is to first specify a set ofprototypesthat define ab-
stract programming interfaces for classes of components and
services. Developers then createcomponentsthat instantiate
analgorithmusing one or more prototypes. Some components
may behave asserviceswhose execution and behavior are
managed by a central coordinator. Finally, interaction between
components must be formalized by specifyingprotocolsand
types. Figure 6 illustrates this methodology in a sample
architecture that shows the interactions and protocols between
components, services, a service coordinator, sensors, and
radio channel.

Figure 7 further shows the relationship between these
services, components, TinyOS, and a DPEG application layer.

Sensor Net
Clients

(Pursuers)

Request evader 
position updates

Communicate and coordinate 
with other pursuers

Actuate to 
capture

Sensor Net
Middleware

Platform level components (tinyOS/nesC)
Core TinyOS services: * Encryption
* Link-layer AM messages * Reliable link-layer
* Time stamped below MAC * Basic scheduler
* Clock * Sensor drivers

Core
Platform
Services

Routing

Service Coordination

Power MgmtTime SyncGrouping

Naming CalibrationLocalizationEstimation

Fig. 7. Relationship between proposed services and components.

C. Testbeds

Our current experimental platform is functional but limited
when compared to the scope of a full DPEG scenario. It
is the result of a focused effort to produce a solution for
a set of particular goals rather than to provide a general
framework. To that end, it exists more as a proof that a highly
constrained DPEG solution is achievable and that NesC and
TinyOS provide a suitable platform for development.

Figure 8 shows the setup for that platform. A human
remotely controls a miniature car, and the sensor network
remotely controls a pan-tilt-zoom camera to track the car.
Because we have not yet integrated a self-localization service
on the motes, the sensor network is a uniform grid of 25
motes, where each mote presumes its location given its
network address. Each mote shares its location with its local
neighborhood, which is necessary both for position estimation
and geographic-based routing. When a mote detects change
in its local magnetic field, it broadcasts its readings to its
local neighbors and records similar broadcasts from other,
nearby motes. In this way, local behaviors are expected; we
are currently not attempting to aggregate readings from the
entire network to produce a single, global estimate. The mote
with the highest reading is implicitly elected the leader, who
calculates a position estimate from its cached neighborhood
readings. That estimate is sent via reliable geographic-based
multi-hop routing to a base station mote, which relays it
to a camera mote. The camera mote performs the actuation
necessary to point toward the estimated location.

What we would like to do is to use the sensor network
software architecture to implement this scenario in a more
versatile, general framework. We are looking forward to a
more complete, outdoor PEG scenario, shown in Figure 9.
Beyond that scenario, we look forward to expanding our
understanding of whole-system behavior through formalism
and parameterization of distributed sensor networks.

IV. M ETHODOLOGY

Our initial DPEG implementation has provided valuable
insight into the pressing issues that a control design method-
ology must address, and we will use these ideas to inform our
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Fig. 8. Indoor sensor-based tracking testbed.

proposed design methodology. In this section, we will first
review existing design approaches that address the issues of
scalability and distribution. During this discussion, we will
be interested in extracting the essence of existing algorithms
while abstracting away the particular choice of model. Fol-
lowing this, models of computation will be explored that are
useful for describing such systems. Finally, we will discuss
our proposed design methodology that will be applied to the
next DPEG implementation.

A. Scalability and Distributed Control

Distributed control systems are an integral part of our world
and have been studied in many different contexts ranging from
biology to artificial intelligence to control systems. Naturally
occurring distributed systems such as ants searching for food,
bacteria foraging, and the flight formations of some birds
have been well studied by biologist and are beginning to
receive more attention from other communities interested
in distributed algorithms. Indeed, the artificial intelligence
community has considered such systems in more abstract
terms for several years. Additionally, the continuous time
control community has addressed many of the features that
distinguish distributed control systems from classical central-
ized control systems.

Nature provides us with several good examples of
distributed control in action. For example, schooling in
fishes [27] and cooperation in insect societies [28] exhibit
complex collective patterns arising from rather simple indi-
vidual behavior. These social behaviors have been argued to
improve food search, predator avoidance and colony survival
for the species as a whole rather than for the individual.
Some researchers have been turning to such examples to gain
insight into these naturally optimized distributed algorithms.
Investigating bacteria foraging of E. coli, Passino [29] has
developed a distributed optimization algorithm. The algorithm
models how E. coli bacteria move in a solution as they
collectively search for nutrients and avoid toxins to reach an
optimal state where the collection of bacteria is satisfied with
their surroundings.

Fig. 9. Outdoor DPEG testbed.

The artificial intelligent community has addressed such
systems under the title of distributed agents for several
years [30]. Some researchers in this community have devel-
oped approaches such as free market systems [31] that mimic
our own trade system. In this architecture, each agent, which
could be a robot with a specialized ability, bids on a particular
task based on its cost function which combines the robot’s
reward and effort. It is even possible for robots to become
leaders who bid on tasks and then subcontract the task out to
several other robots.

The continuous control community has wrestled with
distributed systems for many years in the realm of pro-
cess control, and has independently addressed many of the
caveats of distributed systems such as jitter compensation
and scheduling. Martı́ et al [32] have identified the types
of jitter that can occur in distributed systems and investi-
gated compensation techniques. Their method first analyzes
whether on-line or off-line compensation is needed. If on-
line compensation is feasible, then the parameters of the
control law are dynamically updated according to the next
time the controller will be executed. Other researchers have
reformulated the typical scheduling problem as a dynamic
system so that the techniques of control theory may be
applied [33]. In [34], a centralized scheduling rule is replaced
with local instantiations of integral controllers that are shown
to drive the state to a viable solution.

B. Models of Computation

The impossibility of characterizing these systems within
the classical control framework raises the need to select one
or more models of computation (MOCs) in order to accurately
analyze distributed control problems in sensor networks. Our
hope would be that such a combination captures the continu-
ously changing dynamics of the environment, the distribution
of resources, and the discrete nature of the hardware. To ad-
dress this issue more specifically, we investigate several com-
mon MOCs, including discrete event, continuous dynamical
systems, discrete-time dynamical systems, hybrid automata,
synchronous reactive languages, and data-flow models. For
each of these, we consider its advantages and its drawbacks
with respect to control applications within sensor networks.
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Fig. 10. Section of a distributed continuous control MOC with sensing,
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Continuous time dynamical systems[35], [36] are a well
studied formal model. Key properties such as stability and
reachability can be deducted using available analytical and
numerical methods. Controllers can be designed to meet
desired specifications. Additionally, they are familiar to the
control community, and hence preferred for control applica-
tions. However, for distributed control applications in sensor
networks, this theory is not able to capture communication
delays, time skew between clocks, or discrete decision mak-
ing. Since all the variables are continuous, it is difficult
to model such discrete phenomena. Additionally, controllers
must be implemented on microprocessors, and control must
be piecewise constant.

To describe the controller’s piecewise constant nature, we
turn to discrete time dynamical systems[35], [36]. However,
we are again limited to characterizing systems without mode
changes. Additionally, this MOC assumes periodic activation
of the controller with instantaneous computation of the control
law which is not preserved by the underlying platform. This
model does not directly address sensing and actuation jitter,
but it can be taken into account by augmenting with time
delays between the plant and the controller. This approach
assumes that the control law is computed synchronously
on each node everyT seconds, but different sensing and
actuation jitters are allowed for each node. This model is
useful when we assume that the process scheduler running
on each node can ensure synchronous operation. Additionally,
the system can be modified to distribute control computation
across nodes with state communication between them, as
shown in Figure 10.

The multi-modal nature of such systems can be described

by a hybrid automaton[37]. These systems nicely account
for both the “continuous flow” and discrete jumps of such
systems. Note, that “continuous flow”, or just flow, in a hybrid
automaton may be modeled by either differential equations
or difference equations. They allow the system to evolve
according to the flow with occasional discrete transitions.
Additionally, with each discrete transition, the equations gov-
erning the flow are allowed to change. Difference equations
allow such a model to capture the piecewise constant nature
of the controller. Mode changes can then be characterized
by the discrete dynamics, where all the discrete properties
of our application must be encoded. The discrete dynamics
are similar to finite state machines in that encoding many
discrete variables leads to a discrete state explosion problem
and quickly becomes unmanageable for sensor networks.

To consider MOCs more appealing for algorithms, we can
considerdiscrete event systems[38]. Such a model works
well for mode changes or task scheduling and characterizes
the hardware platform nicely, as well. It also allows for the
system to be event-triggered, which is often the case in sensor
networks. However, it does not support continuous variables,
and given the discrete nature of variables we again run up
against a state explosion problem when modeling a large
number of nodes. Finally, such systems generally do not
correlate time-steps of the model with real-time.

Dataflow [39] MOCs are intended to describe data trans-
formations. In particular, they are useful for characterizing
several communicating processes. However, this paradigm is
awkward for control since it generally considers the relation-
ship between sequences of inputs and sequences of outputs,
rather than the evolution of the output for each input signal
in turn. In general, when composing several dataflow models
in a feedback loop, the result may not be deterministic [40].

Another set of common modeling paradigms aresyn-
chronous reactive languages, such as Signal [41], Lustre [42],
and Esterel [43]. These languages support a broad range of
formal verification tools to aid in debugging. Additionally, it
is possible to generate code for the platform directly from
the synchronous reactive language. However, we again find
that there is no relation between time-steps of the language
and real-time. Furthermore, synchronous reactive systems
presume the existence of a global clock and that time-
steps, and hence the computation of fixed points, happen
instantaneously. This MOC is not appropriate because it is not
congruent with the event triggered nature of sensor networks.
Finally, such a model can be counter-intuitive since it searches
for a fixed point at every step.

C. Design Approaches

In the previous two sections we described different ap-
proaches to address scalability and synchronus/asynchronous
systems. Our approach to scalability for DPEGs will rely
heavily on distributed processing of sensors readings in order
to get good estimates of positions and velocities of both
evaders and pursuers. The control of each pursuer dynamics
is performed within the pursuer itself based on network
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readings, but higher level coordination will be distributed
between all the pursuers to maximize robustness to adversarial
attack. In order to address the issues arising from the fact
that DPEGs include synchronous and asynchronous dynam-
ics, several ad-hoc solutions are available. To compensate
for nonuniform time-delays, one approach is to buffer the
incoming data for a certain amount of time such that most
of the data has arrived. With this approach, the problem has
been reduced to the classical control problem of driving a
system with a fixed time delay. However, this result comes
at the price of suboptimal performance. As for missing data,
the most common solutions are either using the most recent
data regardless of its exact time of arrival, or estimating the
most probable measurement that is consistent with previous
measurements and the dynamics of the system.

Some issues related to the event-triggered nature of dis-
tributed control have been addressed by the hybrid system
control community. Here the idea is to develop a formalism
that combines the best of control theory and state machine
theory [44], [45], [46]. Although few analytical results are
available today, this rather intuitive and promising approach
is an active area of research.

Time synchronization research for sensor networks has
been intense, yielding promising results [8]. In our model, we
confidently assume that sensors readings come with accurate
time-stamp. Also we assume that sensors know their location
in space. A localization service ensures that the nodes in a
deployed network can compute their location relative to each
other [9]. With these two assumptions, we use the standard
control formalism with sensor networks. A choice of a model
is critical to the design of controllers for such systems. In
dealing with complex applications such as DPEGs, control
must be exercised at several levels and a hierarchical system
seems to be the natural modeling choice. A graphical repre-
sentation is shown in Figure 11.

At the low level, the continuous time dynamics of the
system need to be captured. Since the implemented controllers
are digital, the model is discretized to yield a discrete time
control system. At this level, the system is time based, in the
sense that time triggers each transition. At each time step,
an observation, generated from a sensor reading, needs to be

Filtering,
Prediction, 

State Observer

Controller,
path planner

State
Control
input

Plant

Sensing

Fig. 12. Low level controller

provided to the controller, which will in turn produce an input
to the dynamics of the system, via an actuator. In standard
control problems, the sensors are physically attached to the
plant; therefore, it is assured to receive a sensor reading at
each time step. In the case of SNs, the sensing is distributed.
This means that it may take some time for the observation
to reach its destination since packets over the network are
subject to delay and loss. Additionally, the control law needs
some information about the plant to compute the next input,
which will heavily rely on state estimation, prediction, and
smoothing. In the absence of an observation, we will make use
of the model alone to provide state estimation for control. In
this way, late packets can be used to improve current estimate.
Several methods can be used for estimation from Kalman to
particle filtering. A graphical representation of the low level
controller is shown in Figure 12.

At the higher level, the system is event based. In this
domain, the control reacts to one or more events, sequences of
which are called behaviors. Events are detected by the sensor
network and transmitted to a discrete controller that generates
the appropriate reaction. Each reaction is then transmitted to
the lower level by changing the control objective to agree
with the new specifications. Once again events occur in an
asynchronous fashion, making formal analysis difficult. To
work with such events, we implement the system using a
synchronous reactive language, where behaviors can be veri-
fied and mapped to our asynchronous platform, making sure
the verified properties are preserved. The problem of mapping
behaviors from different domains has been tackled in several
different ways. We follow the approach of Benveniste [47]
by designing controllers in a synchronous fashion, verifying
the behavior, and then de-synchronizing the algorithm to be
implemented on the asynchronous target architecture. The
advantage of this approach also includes the possibility of
automatically generating embedded code directly from a high
level specification language, thus enormously speeding up the
development phase. A graphical representation of the design
flow is shown in Figure 13.

V. CONCLUSIONS

In this paper, we presented an overview of research ac-
tivities dealing with distributed control in sensor networks.
We introduced sensor networks and related research issues.
We then presented our hardware and software platforms while
proposing an open architecture to help develop rich distributed
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Fig. 13. A graphical representation of the proposed design methodology

applications. We presented an overview of the theoretical
issues facing researchers interested in using sensor networks
for distributed control applications. We identified key proper-
ties that cause classical control theory to fail. We suggested
a general approach to control design using a hierarchical
model composed of continuous time-triggered components at
the low level and discrete event-triggered components at the
high level. For the future, we will focus on implementation,
verification, and testing of our methodologies in distributed
control systems on our proposed DPEG testbed.
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