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Abstract

This paper analyzes the effect of replay attacks on

a control system. We assume an attacker wishes to dis-

rupt the operation of a control system in steady state.

In order to inject an exogenous control input without

being detected the attacker will hijack the sensors, ob-

serve and record their readings for a certain amount

of time and repeat them afterwards while carrying out

his attack. This is a very common and natural attack

(we have seen numerous times intruders recording and

replaying security videos while performing their attack

undisturbed) for an attacker who does not know the dy-

namics of the system but is aware of the fact that the

system itself is expected to be in steady state for the du-

ration of the attack. We assume the control system to

be a discrete time linear time invariant gaussian system

applying an infinite horizon Linear Quadratic Gaussian

(LQG) controller. We also assume that the system is

equipped with a χ2 failure detector. The main contri-

butions of the paper, beyond the novelty of the problem

formulation, consist in 1) providing conditions on the

feasibility of the replay attack on the aforementioned

system and 2) proposing a countermeasure that guar-

antees a desired probability of detection (with a fixed

false alarm rate) by trading off either detection delay

or LQG performance, either by decreasing control ac-

curacy or increasing control effort.

1. Introduction

Cyber Physical Systems (CPS) refer to the embed-

ding of widespread sensing, computation, communi-

cation and control into physical spaces [1]. Applica-

tion areas are as diverse as aerospace, chemical pro-
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cesses, civil infrastructure, energy, manufacturing and

transportation. Many of these applications are safety-

critical. The availability of cheap communication tech-

nologies as the internet makes such infrastructures sus-

ceptible to cyber security threats. National security may

be affected as infrastructures such as the power grid, the

telecommunication networks are vital to the normal op-

eration of our society. Any successful attack may sig-

nificantly hamper the economy, the environment or may

even lead to loss of human life. As a result, the role

security of CPS is of primary importance to guarantee

safe operation of CPS. The research community has ac-

knowledged the importance of addressing the challenge

of designing secure CPS [2] [3].

The impact of attacks on the cyber physical sys-

tems is addressed in [4]. The authors consider two pos-

sible classes of attacks on CPS: Denial of Service (DoS)

and deception attacks. The DoS attack prevents the ex-

change of information, usually either sensor readings or

control inputs between subsystems, while the deception

attack affects the data integrity of packets by modify-

ing their payloads. A robust feedback control design

against DoS attack is further discussed in [5]. We feel

that the deception attack can be subtler than DoS attack

as it is in principle more difficult to detect and it has

not adequately addressed. Hence, in this paper, we will

develop a methodology to detect a particular kind of de-

ception attack.

A significant amount of research effort has been

carried out to analyze, detect and handle failures in

CPS. Sinopoli et al. study the impact of random packet

drops on controller and estimator performance [6] [7].

In [8], the author reviews several failure detection al-

gorithm in dynamic systems. Results from robust con-

trol [9], a discipline that aims to design controllers

that function properly under uncertain parameter or un-

known disturbances, is applicable to some CPS scenar-

ios. However, a large proportion of the literature as-

sumes that the failure is either random or benign. On

the other hand, a cunning attacker can carefully design

his attack strategy and deceive both detectors and robust

controllers. Hence, the applicability of failure detection

algorithms is questionable in the presence of a smart at-

tacker.

Forty-Seventh Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 30 - October 2, 2009

978-1-4244-5871-4/09/$26.00 ©2009 IEEE 911



In this paper, we study the effect of a data replay at-

tack on control systems. We assume an attacker wishes

to disrupt the operation of a control system in steady

state. In order to inject an exogenous control input with-

out being detected the attacker will hijack the sensors,

observe and record their readings for a certain amount

of time and repeat them afterwards while carrying out

his attack. This is a very common and natural attack

(we have seen numerous times intruders recording and

replaying security videos while performing their attack

undisturbed) for an attacker who does not know the dy-

namics of the system but is aware that the system it-

self is expected to be in steady state for the duration of

the attack. We assume the control system to be a dis-

crete time linear time invariant (LTI) Gaussian system

applying an infinite horizon Linear Quadratic Gaussian

(LQG) controller. We also assume that the system is

equipped with a χ2 failure detector. The main contri-

butions of the paper, beyond the novelty of the problem

formulation, consist in providing conditions on the fea-

sibility of the replay attack on the aforementioned attack

and suggesting a countermeasure that guarantees a de-

sired probability of detection (with a fixed false alarm

rate) by trading off either detection delay or LQG cost,

i.e. either by decreasing control accuracy or increasing

control effort.

The rest of the paper is organized as follows: In

Section 2, we provide the problem formulation by re-

visiting and adapting Kalman filter, LQG controller and

χ2 failure detector to our scenario. In Section 3, we

define the threat model of replay attack and analyze its

effect on the control schemes discussed in Section 2. In

Section 4 we discuss one possible countermeasure, the

efficiency of which is illustrated by several numerical

examples in Section 5. Finally Section 6 concludes the

paper. The appendix contains several proofs, some of

which had to be removed due to space constraints.

2. Problem Formulation

In this section we will formulate the problem by

deriving the Kalman filter, the LQG controller and χ2

detector for our case. We will use the notation below

for the remainder of the paper.

Consider the following linear, time invariant (LTI)

system whose state dynamics are given by

xk+1 = Axk +Buk +wk, (1)

where xk ∈ ℝ
n is the vector of state variables at time k,

wk ∈ ℝ
n is the process noise at time k and x0 is the ini-

tial state. We assume wk, x0 are independent Gaussian

random variables, x0 ∼ N (x̄0, Σ), wk ∼ N (0, Q).

A sensor network is monitoring the system de-

scribed in (1). At each step all the sensor readings are

sent to a base station. The observation equation can be

written as

yk =Cxk + vk, (2)

where yk ∈ ℝ
m is a vector of measurements from the

sensors and vk ∼ N (0, R) is the measurement noise

independent of x0 and wk.

2.1. Kalman Filter

It is well known that for the system of equations

(1), (2) the Kalman filter is the optimal estimator as

it provides the minimum variance unbiased estimate of

the state xk given the previous observations y0, . . . ,yk.

The Kalman filter is recursive and it takes the following

form:

x̂0∣−1 = x̄0, P0∣−1 = Σ, (3)

x̂k+1∣k = Ax̂k∣k +Buk, Pk+1∣k = APk∣kAT +Q,

Kk = Pk∣k−1CT (CPk∣k−1CT +R)−1,

x̂k∣k = x̂k∣k−1 +Kk(yk −Cx̂k∣k−1), Pk∣k = Pk∣k−1 −KkCPk∣k−1.

Although the Kalman filter uses a time varying gain Kk,

it is known that this gain will converge if the system

is detectable. In practice the Kalman gain usually con-

verges in a few steps. Hence, let us define

P ≜ lim
k→∞

Pk∣k−1, K ≜ PCT (CPCT +R)−1. (4)

Since control systems usually run for a long time,

we can assume to be running at steady state from the

beginning. Hence, we assume initial condition Σ = P.

In that case, the Kalman filter is a fixed gain estimator,

taking the following form

x̂0∣−1 = x̄0, x̂k+1∣k = Ax̂k∣k +Buk, x̂k∣k = x̂k∣k−1 +K(yk −Cx̂k∣k−1).

2.2. Linear Quadratic Gaussian (LQG) Opti-

mal Control

Given the state estimation x̂k∣k, the LQG controller

minimizes the following objective function1:

J = min lim
T→∞

E
1

T

[

T−1

∑
k=0

(xT
k Wxk + uT

k Uuk)

]

, (5)

where W,U are positive semidefinite matrices and uk is

measurable with respect to y0, . . . ,yk, i.e. uk is a func-

tion of previous observations. It is well known that the

1Here we just discuss the case of infinite horizon LQG control

problem.
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solution of the above minimization problem will lead to

a fixed gain controller, which takes the following form:

uk = u∗k =−(BT SB+U)−1BT SAx̂k∣k, (6)

where u∗k is the optimal control input and S satisfies the

following Riccati equation

S = AT SA+W −AT SB(BT SB+U)−1BT SA. (7)

Let us define L ≜ −(BT SB +U)−1BT SA, then u∗k =
Lxk∣k.

The objective function given by the optimal estima-

tor and controller is in our case is

J = trace(SQ)+ trace[(ATSA+W − S)(P−KCP)].
(8)

2.3. χ2 Failure Detector

The χ2 detector [10] is widely used to detect

anomalies in control systems. Before introducing the

detector, we will characterize the probability distribu-

tion of the residue of the Kalman filter:

Theorem 1. For the LTI system defined in (1) with

Kalman filter and LQG controller, the residues yi −
Cx̂i∣i−1 of Kalman filter are i.i.d. Gaussian distributed

with 0 mean and covariance P , where P =CPCT +R.

Proof. Due to space constraints, we cannot give the

proof here. Please refer to [10] for the details.

By Theorem 1, we know that the probability to get

the sequence yk−T +1, . . . ,yk when the system is operat-

ing normally is

P(yk−T +1, . . . ,yk) =

[

1

(2π)N/2∣P∣

]T

exp(−
1

2
gk),

(9)

where

gk =
k

∑
i=k−T +1

(yi −Cx̂i∣i−1)
T
P

−1(yi −Cx̂i∣i−1). (10)

When this probability is low, it means that the system is

likely to be subject to certain failure. In order to check

the probability, we only need to compute gk. Hence, the

χ2 detector at time k takes the following form

gk =
k

∑
i=k−T +1

(yi−Cx̂i∣i−1)
T
P

−1(yi−Cx̂i∣i−1)≶ threshold,

(11)

where T is the window size of detection. By Theo-

rem 1, the left of the equation is χ2 distributed with

mT degrees of freedom2. Hence, it is easy to calcu-

late the false alarm rate from χ2 distribution. If gk is

greater than the threshold, then the detector will trigger

an alarm.

3. Replay Attack against Control System

In this section, we assume that a malicious third

party wants to break the control system described in

Section 2. We will define an attack model similar to

the replay attack in computer security and analyze the

feasibility of such kind of attack on the control system.

We will later generalize our analysis to other classes of

control systems.

We suppose the attacker has the capability to per-

form the following actions:

1. It can inject a control input ua
k into the system any-

time.

2. It knows all sensor readings and can modify them.

We will denote the reading modified by the at-

tacker by y′k.

Given these abilities, the attacker will implement

the following attack strategy, which can be divided into

two stages:

1. The attacker records a sufficient number of yks

without giving any input to the system.

2. The attacker gives a sequence of desired control

input while replaying the previous recorded yks.

Remark 1. The attack on the sensors can be done by

breaking the cryptography algorithm. Another way to

perform an attack, which we think is much harder to

defend, is to induce false sensor readings by changing

the local conditions around it. Such attack may be easy

to carry out when sensors are spatially distributed in

remote locations.

Remark 2. We assume that the attacker has control

over all the sensors. This could be accomplished for a

smaller system consisting of few sensors. For a large

system, usually the whole system can be break down

to several small and weakly coupled subsystems. For

example consider the temperature control problem in a

building. One can think of the temperature in each room

as subsystems, which will hardly affects each other.

Hence, the attacker only needs to control the sensors of

a small subsystem in order to perform the replay attack

on the subsystem.

2The degrees of freedom is from the definition of χ2 distribution.

Please refer to [11] for more details.
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Remark 3. The attack strategy is fairly simple. In prin-

ciple, if the attacker has more knowledge of the sys-

tem model, the controller design, it can perform a much

more subtle and powerful attack. However, to identify

the underlying model of the system is usually a hard

problem and not all the attackers have the knowledge

and power to do so. Hence, we will only focus on a sim-

ple, easy to implement attack strategy which is easy to

implement.

Remark 4. When the system is under attack, the cen-

tral computer will be unable to perform close loop con-

trol on the system since the sensory information is not

available. Hence, we cannot guarantee any control per-

formance of the system under this attack. Any counter-

attack will need to be able to detect the attack.

It is worth noticing that in the attacking stage, the

goal of the attacker is to make the fake readings y′ks look

normal yks. Replaying the previous yks is just the easi-

est way to achieve this goal. There are other methods,

such as machine learning, to generate a fake sequence of

readings. In order to provide a unified framework to an-

alyze such kind of attack, we can think of y′ks as the out-

put of the following virtual system (this does not neces-

sarily mean that the attacker runs a virtual system):

x′k+1 = Ax′k +Bu′k +w′
k, y′k =Cx′k + v′k,

x̂′k+1∣k = Ax̂′k∣k +Bu′k, x̂′k+1∣k+1 = x̂′k+1∣k +K(y′k − x̂′k+1∣k),

u′k = Lx̂′k∣k,

with initial conditions x′0 and x̂′
0∣−1

. If the attacker actu-

ally learns the system, then the virtual system will be the

system the attacker runs. For the replay attack, suppose

that the attacker records the sequence yks from time t

time. Then the virtual system is just a time shifted ver-

sion of the real system, with x′k = xt+k, x̂′
k∣k = x̂t+k∣t+k

(Note that the attacker may not know xt+k and x̂t+k∣t+k).

Suppose the system is under attack and the de-

fender is using the χ2 detector to perform intrusion de-

tection. We will rewrite the estimation of the Kalman

filter x̂k∣k−1 in the following recursive way:

x̂k+1∣k = Ax̂k∣k +Buk = (A+BL)x̂k∣k

= (A+BL)[x̂k∣k−1 +K(y′k −Cx̂k∣k−1)]

= (A+BL)(I−KC)x̂k∣k−1 +(A+BL)Ky′k.

(12)

For the virtual system, it is easy to see that the same

equation holds true for x̂′
k∣k−1

:

x̂′k+1∣k = (A+BL)(I−KC)x̂′k∣k−1 +(A+BL)Ky′k. (13)

Define A ≜ (A+BL)(I−KC), then3

x̂k∣k−1 − x̂′k∣k−1 = A
k(x̂0∣−1 − x̂′0∣−1). (14)

Define x̂0∣−1 − x̂′
0∣−1

≜ ζ . Now write the residue as

y′k −Cx̂k∣k−1 = (y′k −Cx̂′k∣k−1)+CA
kζ , (15)

and

gk =
k

∑
i=k−T +1

[

(y′i −Cx̂′k∣k−1)
T
P

−1(y′i −Cx̂′k∣k−1)

+2(y′i −Cx̂′k∣k−1)
T
P

−1CA
iζ + ζ T (A i)TCT

P
−1CA

iζ
]

.

(16)

By the definition of the virtual system, we know that

y′k −Cx̂′
k∣k−1

follows exactly the same distribution as

yk−Cx̂k∣k−1. Hence, if A is stable, the second term and

the third term in (16) will converge to 0. As a result,

y′k −Cx̂k∣k−1 will converges to the same distribution as

yk−Cx̂k∣k−1, and the detection rate given by χ2 detector

will be the same as false alarm rate. In other words, the

detector is useless.

On the other hand, if A is unstable, the attacker

cannot replay y′k for long since gk will soon become

unbounded. In this case, the system is resilient to the

replay attack, as the detector will be able to detect the

attack. It turns out the feasibility result derived for a

special estimator, controller, and detector implementa-

tions is actually applicable to virtually any system. In

fact we can generalize the technique used here to an-

alyze more general controller, estimator and detectors.

Suppose the state of the estimator at time k is sk and it

evolves according to

sk+1 = f (sk,yk). (17)

Define the norm of f to be

∥ f∥≜ sup
∆s ∕=0,y,s

∥ f (s,y)− f (s+∆s,y)∥

∥∆s∥
. (18)

Suppose that the defender is using the following crite-

rion to perform intrusion detection

g(sk,yk)≶ threshold, (19)

where g is an arbitrary continuous function.

Theorem 2. If ∥ f∥ ≤ 1, then

lim
k→∞

g(sk, y′k) = g(s′k, y′k), (20)

3For simplicity, here we consider the time the attack begins as time

0.
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where s′k is the states variables of the virtual system.

The detection rate βk at time k converges to

lim
k→∞

βk = αk, (21)

where αk is the false alarm rate of the virtual system at

time k.

Proof. Due to space limit, we will just give an outline

of the proof. First, ∥ f∥ ≤ 1 will ensure that sk con-

verges to s′k. By the continuity of g, g(sk, y′k) converges

to g(s′k, y′k). The detection rate of the system and the

false alarm rate of the virtual system are given by

βk = Prob(g(sk, y′k)> threshold),

αk = Prob(g(s′k, y′k)> threshold).
(22)

Hence βk converges to αk.

The LQG controller, Kalman filter and χ2 de-

tector becomes just a special case, where the state

sk of the estimator at time k is yk−T +1, . . . ,yk and

x̂k−T +1∣k−T , . . . , x̂k∣k−1. The f function is given by (3)

and g is given by (11).

Remark 5. The convergence of detection rate under the

replay attack to the false alarm rate indicates that the

information given by the detector will asymptotically go

to 0. In the other word, the detector becomes useless

and the system is not resilient to replay attack.

4. Detection of Replay Attack

As discussed in the previous section, there exist

control systems that are not resilient to the replay attack.

In this section, we want to design a detection strategy

against replay attacks. Throughout this section we will

always assume that A is stable.

The main problem of LQG controller and Kalman

filter is that they use a fixed gain, or a gain that con-

verges really fast. Hence, the whole control system is

static in some sense. In order to detect replay attack, we

redesign the controller as

uk = u∗k +∆uk, (23)

where u∗k is the optimal LQG control signal and ∆uks

are drawn from an i.i.d. Gaussian distribution with zero

mean and covariance Q, and ∆uks are chosen to be also

independent of u∗k . Figure 1 shows the diagram of the

whole system.

We add ∆uk as an authentication signal. We choose

it to be zero mean because we do not wish to introduce

any bias to xk. It is clear that without the attack, the con-

troller is not optimal in the LQG sense anymore, which

Plant SensorActuator

Attacker

z−1

Controller

Detector

Estimator

yk −Cx̂k∣k−1

x̂k∣k

uk−1

monitor/control

ua
k

yk/y′k

uk

u∗k

Figure 1. System Diagram

means that in order to detect the attack, we need to sacri-

fice control performance. The following theorem char-

acterizes the loss of LQG performance when we inject

∆uk into the system:

Theorem 3. The LQG performance after adding ∆uk is

given by

J′ = J+ trace[(U +BT SB)Q]. (24)

Proof. See the appendix.

We now wish to consider the χ2 detector after

adding the random control signal. The following the-

orem shows the effectiveness of the detector under the

modified control scheme.

Theorem 4. In the absence of an attack,

E[(yk −Cx̂k∣k−1)
T
P

−1(yk −Cx̂k∣k−1)] = m. (25)

Under attack

lim
k→∞

E[(y′k −Cx̂k∣k−1)
T
P

−1(y′k −Cx̂k∣k−1)] (26)

= m+ 2trace(CT
P

−1CU ),

where U is the solution of the following Lyapunov

equation

U −BQBT = A U A
T . (27)

Proof. The first equation is trivial to prove using Theo-

rem 1. Rewrite x̂k+1∣k as

x̂k+1∣k = A x̂k∣k−1 +(A+BL)Ky′k +B∆uk. (28)

For the virtual system

x̂′k+1∣k = A x̂′k∣k−1 +(A+BL)Ky′k +B∆u′k. (29)

Hence,

x̂k∣k−1− x̂′k∣k−1 =A
k(x̂0∣−1− x̂′0∣−1)+

k−1

∑
i=0

A
k−i−1B(∆ui−∆u′i).

(30)
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As a result,

y′k −Cx̂k∣k−1 = y′k −Cx̂′k∣k−1 +CA
k(x̂0∣−1 − x̂′0∣−1)

+C
k−1

∑
i=0

A
k−i−1B(∆ui −∆u′i).

(31)

The first term has exactly the same distribution as yk −
Cx̂k∣k−1. The second term will converge to 0 when A

is stable. Also ∆ui is independent of the virtual system

and for the virtual system, y′k −Cx̂′
k∣k−1

is independent

of ∆u′i. Hence

lim
k→∞

Cov(y′k −Cx̂k∣k−1) = lim
k→∞

Cov(y′k −Cx̂′k∣k−1)

+
∞

∑
i=0

Cov(CA
iB∆ui)+

∞

∑
i=0

Cov(CA
iB∆u′i)

= P + 2
∞

∑
i=0

CA
iBQBT (A i)TCT .

By the definition of U , it is easy to see that

U =
∞

∑
i=0

A
iBQBT (A i)T .

Hence, limk→∞ Cov(y′k −Cx̂k∣k) = P + 2CU CT and

lim
k→∞

E[(y′k −Cx̂k∣k−1)
T
P

−1(y′k −Cx̂k∣k−1)]

= trace

[

lim
k→∞

Cov(y′k −Cx̂k∣k)×P
−1

]

= m+ 2trace(CT
P

−1CU ).

(32)

Corollary 1. In the absence of an attack, the expecta-

tion of χ2 detector is

E(gk) = mT . (33)

Under attack, the asymptotic expectation becomes

lim
k→∞

E(gk) = mT + 2trace(CT
P

−1CU )T . (34)

The difference in the expectation of gk illustrates

that the detection rate will not converges to the false

alarm rate, which will also be shown in the next section.

Another thing worth noticing is that to design Q, one

possible criterion is to minimize J′ − J = trace[(U +
BT SB)Q] while maximizing trace(CT P−1CU ).

5. Simulation Result

In this section we provide some simulation results

on the detection of replay attack. Consider the control

system described in Section 2 is controlling the temper-

ature inside one room. Let Tk be the temperature of the

room at time k and T ∗ to be the desired temperature.

Define the state as xk = Tk −T ∗. Suppose that

xk+1 = xk + uk +wk, (35)

where uk is the input from air conditioning unit and wk

is the process noise. Suppose that just one sensor is

measuring the temperature, which is

yk = xk + vk, (36)

where vk is the measurement noise. We choose R =
0.1, Q = W = U = 1. One can compute that P =
1.092, K = 0.9161, L = −0.6180. Hence A = 0.0321

and the system is vulnerable to replay attack. The LQG

cost is J = 1.7076, J′ = J+ 2.618Q.

We will first fix the window size T = 5 and show

the detection rate for different Qs. We assume that the

attacker records the yks from time 1 to time 10 and then

replays it from time 11 to time 20. We also fixed the

false alarm rate to be 5% at each step.

10 11 12 13 14 15 16 17 18 19 20
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Time(k)
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n
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a
te

 

 

Figure 2. Detection rate at each time step for

Q = 0.6 (blue dashed line), Q = 0.4 (brown dot

line), Q = 0.2 (red dash-dot line) and Q = 0

(black solid line).

Figure 2 shows the detection rate at each time step

for different Qs. Each detection rate is the average of

10,000 experiments. Note that the attack starts at time

11. Hence, each line starts at the false alarm rate 5%

at time 10. One can see that without additional in-

put signal, the detection rate will soon converge to 5%,

which proves that the detector is inefficient for replay
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Figure 3. Detection rate at each time step for

T = 5 (blue dashed line), T = 4 (brown dot
line), T = 3 (red dash-dot line) and T = 2 (black

solid line).

attack. With Q = 0.6, the loss of LQG performance is

2.618× 0.6/1.7076= 91% with respect to the optimal

LQG cost. As a result of the high control performance

lost, one can get more than 35% detection rate at each

step.

Next we would like to fix Q = 0.6 and compare

the detection rate of different window size T . We still

assume the attack starts at time 11 and the false alarm

rate is 5%. Fig 3 shows the detection rate for different

window size. It is worth noticing that choosing a small

window size will make the detector response faster to

replay attack. However, the asymptotic detection rate

will be lower than that of larger window size. On the

other hand, by the law of large numbers, the asymptotic

detection rate will converges to 1 as T increases. How-

ever the detector will respond very slowly to the replay

attack. For more details on the choice of window size,

please refer to [8].

6. Conclusions

In this paper we defined a replay attack model on

cyber physical system and analyzed the performance of

the control system under the attack. We discovered that

for some control systems, the classical estimation, con-

trol, failure detection strategy are not resilience to the

replay attack. For such kind of system, we provide a

technique that can improve detection rate in the expense

of control performance.

7. Appendix: Proof of Theorem 3

To simplify notation, let us first define the sigma al-

gebra generated by yk, . . . ,y0, ∆uk−1, . . . ,∆u0 to be Fk.

Due to space limit, we will just list the outlines of the

proof. Before proving Theorem 3, we need the follow-

ing lemmas:

Lemma 1. The following equations about Kalman filter

are true:

x̂k∣k = E(xk∣Fk),Pk∣k = E(ek∣keT
k∣k∣Fk),

where ek∣k = xk − x̂k∣k.

Lemma 2. The following equations are true

E(xT
k S xk∣Fk) = trace(S Pk∣k)+ (x̂k∣k)

T
S x̂k∣k, (37)

where S is any positive semidefinite matrix.

Now define

JN ≜ minE

[

N−1

∑
i=0

(xT
i Wxi + uT

i Uui)

]

. (38)

By the definition of J′, we know that J′ = limN→∞ JN/N.

Now fix N, let us define

Vk(xk)≜ minE

[

N−1

∑
k=i

(xT
i Wxi + uT

i Uui)∣Fk

]

, (39)

and VN(xN) = 0. By definition, we know that E(V0) =
JN . Also from dynamic programming, we know that Vk

satisfies the following backward recursive equation:

Vk(xk) = min
u∗

k

E
[

xT
k Wxk + uT

k Uuk +Vk+1(xk+1)∣Fk

]

.

(40)

Let us define

Sk−1 ≜ AT SkA+W −AT SkB(BT SkB+U)−1BT SkA,

ck−1 ≜ ck + trace[(W +AT SkA− Sk−1)Pk−1∣k−1]+ trace(SkQ)

+ trace[(BT SkB+U)Q],

with SN = 0, cN = 0.

Lemma 3. Vk(xk) is given by

Vk(xk) = E[xT
k Skxk∣Fk]+ ck, k = N, . . . ,0. (41)

Proof. We will use backward induction to prove (41).

First it is trivial to see that VN = 0 satisfies (41). Now

suppose that Vk+1 satisfies (41), then by (40)

Vk(xk) = minE
[

xT
k Wxk + uT

k Uuk +Vk+1(xk+1)∣Fk

]

= minE[xT
k Wxk +(u∗k +∆uk)

TU(u∗k +∆uk)

+ xT
k+1Sk+1xk+1 + ck+1∣Fk].
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First we know that u∗k is measurable to Fk and ∆uk is

independent of Fk, hence

E[(u∗k+∆uk)
TU(u∗k+∆uk)∣Fk] = (u∗k)

TUu∗k+trace(UQ).
(42)

Then let us write xk+1 as

xk+1 = Axk +Bu∗k +B∆uk +wk.

By the fact that ∆uk, wk are independent of Axk +Bu∗k ,

one can finally get

E(xT
k+1Sk+1xk+1∣Fk) = E(xT

k AT Sk+1Axk∣Fk)+

2(u∗k)
T BT Sk+1Ax̂k∣k +(u∗k)

T BT Sk+1B(u∗k)

+ trace(Sk+1Q)+ trace(BT Sk+1BQ).

(43)

By (42) and (43), we know that

Vk(xk) = min
u∗

k

[(u∗k)
T (U +BT Sk+1B)u∗k + 2(u∗k)

T BT Sk+1Ax̂k∣k]

+E[xT
k (W +AT Sk+1A)xk∣Fk]+ trace(Sk+1Q)

+E(ck+1∣Fk)+ trace[(BTSB+U)Q].

Hence, the optimal u∗k is

u∗k =−(U +BT Sk+1B)−1BT Sk+1Ax̂k∣k, (44)

and Vk(xk) is

Vk(xk) = (x̂k∣k)
T AT Sk+1B(BT Sk+1B+U)−1BT Sk+1Ax̂k∣k

+E[xT
k (W +AT Sk+1A)xk∣Fk]+ trace(Sk+1Q)

+ ck+1 + trace[(BTSk+1B+U)Q]

= E(xT
k Skxk∣Fk)+ trace[(W +AT Sk+1A− Sk)Pk∣k]

+ ck+1 + trace(Sk+1Q)+ trace[(BT Sk+1B+U)Q]

= E(xT
k Skxk∣Fk)+ ck,

(45)

which completes the proof4.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Since

JN = EV0 = E(xT
0 S0x0)+ trace[

N−1

∑
k=0

(W +AT Sk+1A− Sk)Pk∣k]

+ trace(
N−1

∑
k=0

Sk+1Q)+ trace[
N−1

∑
k=0

(BT Sk+1B+U)Q],

we know that

J′ = lim
N→∞

JN/N = trace[(W +AT SA− S)(P−KCP)]+ trace(SQ)

+ trace[(BT SB+U)Q] = J+ trace[(BT SB+U)Q].

(46)

4We use Lemma 2 in the second equality.
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