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Kalman Filtering with Intermittent Observations:

Tail Distribution and Critical Value

Yilin Mo and Bruno Sinopoli

Abstract

In this paper we analyze the performance of Kalman filtering for linear Gaussian systems where

packets containing observations are dropped according to a Markov process, modeling a Gilbert-Elliot

channel. To address the challenges incurred by the loss of packets, we give a new definition of non-

degeneracy, which is essentially stronger than the classical definition of observability but much weaker

than one-step observability, which is usually used in the study of Kalman filtering with intermittent

observations. We show that the trace of the Kalman estimation error covariance under intermittent

observations follows a power decay law. Moreover we are able to compute the exact decay rate for

non-degenerate systems. Finally we derive the critical value for non-degenerate systems based on the

decay rate, which future improves the results from [1] and [2].

I. INTRODUCTION

A large wealth of applications demands wireless communication among small embedded

devices. Wireless Sensor Network (WSN) technology provides the architectural paradigm to

implement systems with a high degree of temporal and spatial granularity. Applications of

sensor networks are becoming ubiquitous, ranging from environmental monitoring and control

to building automation, surveillance and many others [3]. Given their low power nature and the

requirement of long lasting deployment, communication between devices is limited in range and

reliability. Changes in the environment, such as the simple relocation of a large metal object in a

This research is supported in part by CyLab at Carnegie Mellon under grant DAAD19-02-1-0389 from the Army Research

Office. Foundation. The views and conclusions contained here are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either express or implied, of ARO, CMU, or the U.S. Government or any of

its agencies.

Yilin Mo and Bruno Sinopoli are with the ECE department of Carnegie Mellon University, Pittsburgh, PA

ymo@andrew.cmu.edu, brunos@ece.cmu.edu

October 6, 2010 DRAFT



2

room or the presence of people, will inevitably affect the propagation properties of the wireless

medium. Channels will be time-varying and unreliable. Spurred by this consideration, our effort

concentrates on the design and analysis of estimation and control algorithms over unreliable

networks.

A substantial body of literature has been devoted to such issues in the past few years. In

this paper, we want to briefly revisit the paper of Sinopoli et al. [1]. In that paper, the authors

analyze the problem of optimal state estimation for discrete-time linear Gaussian systems, under

the assumption that observations are sent to the estimator via a memoryless erasure channel.

This implies the existence of a non-unitary arrival probability associated with each packet.

Consequently some observations will inevitably be lost. In this case although the discrete Kalman

Filter [4] is still the optimal estimator, the boundedness of its error depends on the arrival

probabilities of the observation packets. In particular the authors prove the existence of a critical

arrival probability pc, below which the expectation of estimation error covariance matrix Pk of

Kalman filter will diverge. The authors are not able to compute the actual value of this critical

probability for general linear systems, but provide upper and lower bounds. They are able to

show that for special cases, for example when C matrix is invertible, the upper bound coincides

with the lower bound and hence the exact critical value is obtained.

Philosophically such a phenomenon can be seen as related to the well known uncertainty

principle [5], [6], which states that the optimal long-range control of a linear system with

uncertain parameters does not exists if the uncertainty exceeds certain threshold. For Kalman

filtering with intermittent observations, the uncertainty is incurred by the random packet loss

and the optimal Kalman filter becomes unstable (i.e. the expectation of Pk is bounded) if too

many packets are dropped.

Lots of research effort has been made to analyze the system with intermittent observations.

One interesting direction is to characterize critical value for more general linear systems. Plarre

and Bullo [2] relax the invertible condition on C matrix to C only invertible on the observable

subspace. In [7], the authors prove that if the eigenvalues of system A matrix have distinguished

absolute values, then the lower bound is indeed the critical value. The authors also provide a

counter example to show that in general the lower bound is not tight.

The drawbacks of the above approach is that critical value only characterize the boundedness

of the expectation. To completely characterize the impact of lossy network on state estimation,
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it is much more desirable to calculate the probability distribution of estimation error covariance

matrix Pk instead of only considering the boundedness of its expectation. In [8], the author gives

a closed-form expression for cumulative distribution function of Pk when the system satisfies

non-overlapping conditions. In [9], the authors provide a numerical method to calculate the

eigen-distribution of Pk under the assumption that the observation matrix C is random and time

varying. In [10], the authors considered the probability of P (Pk ≤ M), and derived upper and

lower bound on such probability. However, only in specific cases these upper and lower bound

will coincides.

Other variations of the original problem are also considered. In [11], the authors introduce

smart sensors, which send the local Kalman estimation instead of raw observation. In [12], a

similar scenario is discussed where the sensor sends a linear combination of the current and

previous measurement. A Markovian packet dropping model is introduced in [13] and a stability

criterion is given. In [14], the authors study the case where the observation at each time splits into

two parts, which are sent to the Kalman filter through two independent erasure channels. This

work is further generalized by to n channels. A much more general model, which considered

packet drop, delay and quantization of measurements at the same time, is introduced by Xie and

Shi [15].

In the meantime, significant efforts have been made to design estimation and control schemes

over lossy network, leveraging some of the results and methodologies mentioned above. Estima-

tion of an unstable system is particularly important in control applications. Schenato et al. [16]

show how an estimator rendered unstable by sensor data loss can render the closed loop system

unstable. Similar packet drop models have been successfully used in sensor selection problems

for estimation in sensor networks. In [17], the authors consider a stochastic sensor scheduling

scheme, which randomly selected one sensor to transmit observation at each time. In [18], the

authors show how to design the packet arrival rate to balance the state estimation error and

energy cost of packet transmission.

This work breaks away from existing body of literature and uses a novel approach to character-

ize the stability of Kalman filtering under packet losses. There are several important contributions.

First of all the problem formulation is general and can address any packet drop model. While

existing results partially address the stability of the first moment of the error covariance under i.i.d

packet losses, we characterize the stability of all moments under Markovian packet loss models.
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We also show that the proposed methodology applies to general packet loss models, provided

that certain probabilities associated with the specific loss process can be computed. This not only

advances the current state of the art, as the computation of the critical value becomes a special

case, but generalizes to a much larger class of erasure channel models. This goal is accomplished

by characterizing the tail distribution of trace(Pk), i.e. study how P (trace(Pk) > M) converges

to 0 as M goes to infinity. We will show that, under minimal assumptions on the system,

trace(Pk) follows a power decay law. This result has tremendous value of its own, as it provides

the designer with a quantitative bound on the quality of the estimator. We are able compute

the exact decay rate for a large class of linear Gaussian systems, defined as non-degenerate.

We illustrate the relationship between non-degeneracy and observability and argue that such

condition, rather than the weaker notion of observability, is the appropriate one to check when

the observation process is random. Under this assumption we derive useful bounds for the Riccati

equation, that can be used independently of any loss process. We then compute the critical value

for non-degenerate system as a consequence of the tail distribution and prove that it attains the

lower bound derived in [1]. Degenerate systems will in general have a higher critical probability,

as shown in [7].

The paper is organized in the following manner: Section II formulates the problem. Section III

defines non-degenerate system and compares it to the definition of observability and one-step

observability. Section IV states several important inequalities on iterative Riccati and Lyapunov

equations, which is used in Section V to derive the exact decay rate for non-degenerate systems.

In Secion VI we derived the critical value and boundedness conditions of higher moments of

Pk based on the tail distribution, and compare our results with the existing results from the

literature. Finally Section VII concludes the paper.

II. PROBLEM FORMULATION

Consider the following linear system

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)
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where xk ∈ Cn is the state vector, yk ∈ Cm is the output vector, wk ∈ Cn and vk ∈ Cm are

Gaussian random vectors1 with zero mean and covariance matrices Q ≥ 0 and R > 0, respec-

tively. Assume that the initial state x−1 is also a Gaussian vector of mean x̄−1 and covariance

matrix Σ ≥ 0. Let wi, vi, x−1 be mutually independent. Define |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, not

necessarily distinct, as the eigenvalues of A.

Consider the case in which observations are sent to the estimator via a Gilbert-Elliot channel,

where the packet arrival is modeled by a Markov process {γk}. According to this model, the

measurement yk sent at time k reaches its destination if γk = 1; it is lost otherwise. Let γk be

independent of wk, vk, x0, i.e. the communication channel is independent of both process and

measurement noises and let the transition matrix to be P (γk+1 = 0|γk = 0) P (γk+1 = 1|γk = 0)

P (γk+1 = 0|γk = 1) P (γk+1 = 1|γk = 1)

 =

 1− p1 p1

p2 1− p2

 .
Furthermore, we assume the Markov chain is irreducible and stationary, i.e. 0 < p1 ≤ 1, 0 <

p2 ≤ 1 and P (γ0 = 0) = . . . = P (γk = 0) = p2/(p1 + p2). In this paper we will also consider

the i.i.d. packet drop model, which can be seen as a special case of Markovian model. It is easy

to prove if p1 + p2 = 1, then γks are i.i.d. distributed and we define p = p1 in that case.

The Kalman Filter equations for this system were derived in [1] and take the following form:

x̂k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1),

Pk = Pk|k−1 − γkKkCPk|k−1,

where

x̂k+1|k = Ax̂k, Pk+1|k = APkA
H +Q,

Kk = Pk|k−1C
H(CPk|k−1C

H +R)−1,

x̂−1 = x̄−1, P−1 = Σ.

To simplify notations, let us first define the functions

h(X) , AXAH +Q, g(X) , h(X)− h(X)CH(Ch(X)CH +R)−1Ch(X). (2)

1Since we will use A in its diagonal standard form, we will assume every vector and matrix discussed in this paper to be in

complex plane.
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As a result, it is easy to see that

Pk+1 =

 h(Pk) γk+1 = 0

g(Pk) γk+1 = 1
(3)

It is easy to see that the following properties hold for both h and g:

Proposition 1: 1) h(X1) ≥ h(X2) if X1 ≥ X2.

2) g(X1) ≥ g(X2) if X1 ≥ X2.

3) h(X) ≥ g(X).

The proof can be found in the Proposition 3 in the appendix.

In this paper we wish to analyze the tail behavior of the distribution of Pk, i.e., we want to

know how likely is for the Kalman filter to have a very large Pk due to packet loss. Let us first

define

ϕ(M) , sup
k
P (trace(Pk) > M), (4)

where M > 0 is a scalar. Hence, ϕ(M) denotes the maximum probability of trace(Pk) to be

larger than M . However in general the exact value of ϕ(M) is hard to compute. In this paper

we are more concerned with the decay rate under which ϕ(M) converges to 0 as M goes to

infinity. Let us define the upper and lower decay rates respectively as

φ , lim sup
M→∞

logϕ(M)

logM
, φ , lim inf

M→∞

logϕ(M)

logM
. (5)

It is easy to see that since ϕ(M) ≤ 1, both φ and φ are always non-positive. If φ = φ, then we

define φ , φ = φ as the decay rate.

Remark 1: If the decay rate φ > −∞ is well defined, we can conclude from the definition

that the following inequality holds for sufficient large M :

Mφ−δ ≤ ϕ(M) ≤Mφ+δ,

where δ > 0 can be arbitrarily small. As a result, we know the asymptotic behaviour when M

approaches infinity. A slow decay rate would indicate that with high probability the filter will

get a large estimation error covariance Pk over time, while a fast decay rate indicates that such

event is less likely.

In this paper we also want to characterize the conditions under which E(P q
k ) is uniformly

bounded, where q ∈ N. For the case where q = 1 and γks are independent, Sinopoli et al. [1]

prove the following existence theorem for the critical arrival probability:
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Theorem 1: If (A,Q
1
2 ) is controllable, (C,A) is detectable, and A is unstable, then there

exists a critical value pc ∈ [0, 1) such that 2,3

sup
k
EPk = +∞ for 0 ≤ p < pc and for some P0 ≥ 0, (6)

EPk ≤MP0 ∀k for pc < p ≤ 1 and for all P0 ≥ 0, (7)

where MP0 > 0 depends on the initial condition P0 ≥ 0.

For simplicity, we will say that EPk is unbounded if supk EPk = +∞ or EPk is bounded if

there exists a uniform bound independent of k. In the following sections, we will derive the

decay rate of ϕ(M) and use it to characterize the boundedness of E(P q
k ).

III. NON-DEGENERATE SYSTEMS

In this section we will introduce the concept of non-degeneracy and provide some insight on

why the new definition is crucial in the analysis of Kalman filtering with intermittent observations.

We will also compare this new definition with the traditional definition of observability and one-

step observability.

Before continuing on, we want to state the following assumptions on the system, which are

assumed to hold throughout the rest of the paper:

(H1) (C,A) is detectable.

(H2) (A, Q1/2) is controllable.

(H3) A is unstable and diagonalizable4.

Remark 2: The first assumption is essential for the classical Kalman filter to have a bounded

estimation error. The second assumption is used to guarantee the existence of the critical value,

as per Theorem 1, and is usually satisfied by the majority of real systems. We further require A

to be unstable only because this is the only interesting case. If A is stable, one can prove that

the Kalman filter will still have a bounded estimation error even in the absence of observations.

The study of estimation of unstable systems is particularly important for closed loop control,

as an unstable estimator can render a closed loop system unstable. Finally the requirement

2We use the notation supk Ak = +∞ when there is no matrix M ≥ 0 such that Ak ≤M,∀k.
3Note that all the comparisons between matrices in this paper are in the sense of positive definite unless otherwise specified
4We allow complex eigenvalues.
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of diagonalizability is used to define non-degenerate systems. While it is possible that such a

requirement excludes some interesting systems, such as double integrators, we do believe most

real systems are diagonalizable and therefore the results presented herein retian a great degree

of generality. Although we believe that the results can be extended to Jordan forms, we expect

the proofs to be lengthy, technical and not necessary insightful. Nonetheless, for the sake of

completeness, we plan to remove this assumption and consider more general Jordan forms in

future work.

Since we assume that A can be diagonalized, without loss of generality, we can assume it is

already in the diagonal standard form by performing a linear transformation on the system. Also

since the eigenvalues of A can be complex, we will use Hermitian instead of transpose in the

rest of the paper.

We now are ready to define non-degenerate systems:

Definition 1: Consider the system (A,C) in its diagonal standard form, i.e. A = diag(λ1, . . . , λn)

and C = [C1, . . . , Cn]. A block of the system is defined as a subsystem (AI = diag(λi1 , . . . , λij), CI =

[Ci1 , . . . , Cij ]), 1 ≤ i1 < . . . < ij ≤ n, where I = {i1, . . . , ij} ⊂ {1, . . . , n} is the index set.

Definition 2: An equiblock is a block which satisfies λi1 = . . . = λij .

Definition 3: A quasi-equiblock is a block which satisfies |λi1 | = . . . = |λij |.

Definition 4: A system (A,C) is one-step observable if C is full column rank.

Definition 5: A diagonalizable system is non-degenerate if every quasi-equiblock of the system

is one-step observable. It is degenerate if there exists at least one quasi-equiblock which is not

one-step observable.

For example, if A = diag(2,−2) and C = [1, 1], then the system is degenerate since

it is a quasi-equiblock and not one-step observable. For A = diag(2,−2, 3,−3) and C = 1 0 1 0

0 1 0 1

, the two equiblocks are (diag(2,−2), I2) and (diag(3,−3), I2) and both of

them are one-step observable. Thus, the system is non-degenerate.

To compare observability and non-degeneracy, we provide the following theorem:

Theorem 2: A system is observable if and only if every equiblock is one-step observable.

Proof: This is a direct result of Theorem 1 in [19] and the duality between observability

and controllability.

As a result, we can conclude that observability is weaker than non-degeneracy, since every
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equiblock is a quasi-equiblock. Therefore, a non-degenerate system is also observable. The

converse is not true, as an observable system may be degenerate as shown in the example

above).

On the other hand, non-degeneracy is obviously weaker than one-step observability. In fact,

for a one-step observable system, the C matrix must have at least n independent rows, which

implies yk is at least a Cn vector, while, for a non-degenerate system, the C matrix is required

only to have the number of rows equal to the dimension of the largest quasi-equiblock. Enforcing

one-step observability in large systems requires the use of a potentially high number of sensors

and communications at each sampling period. Enforcing non degeneracy in general requires

the use of less sensors and communication bandwidth. We will show that the same asymptotic

performance is attained for both one-step observable and non degenerate systems.

To summarize the above comparison, we have:

1) The system is observable if and only if every equiblock is one-step observable.

2) The system is non-degenerate if and only if every quasi-equiblock is one-step observable.

3) The system is one-step observable if C is full column rank.

Before proceeding, we wish to give some intuition on the importance of the concept of non-

degeneracy for Kalman filtering with intermittent observations. The more rigorous discussion

can be found in the next section. The main reason to introduce such concept is the loss of

observability. It is well known that observability may be lost when discretizing a continuous

time system or using a different sampling on a discrete time system, since different eigenvalues

may rotate to the same point. The same thing happens when packet drops occur, which can

be seen as a random sampling of the system. As a result, we need the stronger condition of

non-degeneracy to ensure that no matter under what rate the system is sampled, it will always

remain observable, which is illustrated by the following proposition:

Proposition 2: If the system is non-degenerate, then (Aq, C) is observable for any q ∈ R.

Proof: We will use Theorem 2. First consider an equiblock (AqI , CI), where

AqI = diag(λqi1 , . . . , λ
q
ij

).

Since λqi1 = . . . = λqij , we know that

|λi1| = . . . = |λij |.
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As a result, (AI , CI) is a quasi-equiblock for the original system. Hence, it is one-step observable,

which implies that (AqI , CI) is also one-step observable. Therefore, all the equiblocks of (Aq, C)

are one-step observable. Using Theorem 2 we conclude the proof.

IV. GENERAL INEQUALITIES ON ITERATIVE RICCATI AND LYAPUNOV EQUATIONS

Before deriving the decay rate, we will establish several inequalities on iterative Riccati and

Lyapunov equations, which will be used in the next section. We want to emphasize that such

inequalities are derived independently of the packet loss model and can therefore be used in a

more general context.

To simplify notations, let us define

g1(X) = g(X), gi(X) = g(gi−1(X)), h1(X) = h(X), hi(X) = h(hi−1(X)).

where functions g, h are defined in (2). Moreover we will simply write the composition of gi

and hj as

gihj(X) = gi(hj(X)).

The first inequality provides a lower bound for hi(X):

Theorem 3: Suppose the system satisfies assumptions (H1) − (H3), then the following in-

equality holds

trace(hi(X)) ≥ α|λ1|2i, i ≥ n, (8)

where X is positive semidefinite and α > 0 is a constant independent of X and i.

Proof: First let us consider hn(X), from the definition of h, we can simply write it as

hn(X) = Q+ AQAH + · · ·+ An−1QA(n−1)H + AnXAnH ,

where AnH = (AH)n. Since we already assumed that (A, Q1/2) is controllable, we know that

Q + · · · + An−1QA(n−1)H is strictly positive definite. Hence, it is possible to find α > 0, such

that

Q+ AQAH + · · ·+ An−1QA(n−1)H > α|λ1|2nIn > 0.

Now consider hi(X), where i ≥ n,

hi(X) = Q+ AQAH + · · ·+ Ai−1QA(i−1)H + AiXAiH ≥ Ai−nQA(i−n)H + . . . Ai−1QAi−1

= Ai−n

(
n−1∑
j=0

AjQAjH

)
A(i−n)H ≥ α|λ1|2nAi−nA(i−n)H .
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Taking the trace on both sides and using the fact that A is a diagonal matrix, we have

trace(hi(X)) ≥ α|λ1|2n
(

n∑
j=1

|λj|2i−2n
)
≥ α|λ1|2i,

which concludes the proof.

The following theorem characterizes the upper bound:

Theorem 4: Consider a system that satisfies assumptions (H1) − (H3). If the unstable part

is non-degenerate, then the following inequality holds:

trace(hi1ghi2−1g · · ·hil−1ghil+1−1(Σ)) ≤ α

l∏
j=1

(|λj|+ ε)2ij , (9)

where l is the number of unstable eigenvalues of the system, α > 0 is a constant independent

of ij and ε > 0 can be arbitrarily small.

Proof: The proof is quite long and is reported in the appendix.

Remark 3: Suppose that l observations are received at times k1 > k2 > . . . > kl, where

k ≥ k1 and kl ≥ 0. To simplify notations let us define k0 = k and kl+1 = 0 and ij = kj−1 − kj ,

j = 1, 2, . . . , l, l + 1. From the definition of h and g, we know that

Pk = hi1ghi2−1g · · ·hil−1g(Pkl−1),

and

Pkl−1 ≤ hil+1−1(Σ).

From Theorem 4, we know that the trace of Pk is bounded by α
∏l

j=1(|λj| + ε)2ij . In other

words, no matter how many packets are lost from time 1 to time kl − 1, we could always have

a bounded estimation error as long as l packets arrive from time kl to time k. In the classical

setting of perfect communications, it is easy to derive from the observability Grammian that

the estimation error is bounded when n sequential packets are received, provided the system is

detectable. Hence, our result can be seen as a generalization of the classical result, since we

do not require sequential packets arrivals. However, we do need to enforce the requirement of

non-degeneracy, instead of observability, on the system.

To see why the requirement of non-degeneracy is crucial for (9) to hold, let us consider the

system, where

A =

 0
√

2
√

2 0

 , C = [ 1 0 ], Q = Σ = I2, R = 1.
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It is easy to check the system satisfies assumptions (H1)− (H3). However it is degenerate. Let

X = diag(a, b). Simple algebraic calculation yields

h(X) = diag(2b+ 1, 2a+ 1), g(X) = diag((2b+ 1)/(2b+ 2), 2a+ 1) ≥ diag(0, 2a+ 1).

As a result, it is easy to see that

hi1ghi2−1ghi3−1(Σ) ≥ diag(0, 2i1+i2+i3+1 − 1)

when both i1 and i2 are even. Hence inequality (9) does not hold since the right hand side

depends not only on i1 and i2 but also i3. In other word, we cannot bound the estimation error

by a function of i1 and i2 even when two packets have arrived.

Also note that in the statement of the theorem we do not assume any channel failure models.

As a result, the above theorem can also be used to analyze the performance of Kalman filtering

with other packet drop models.

V. DECAY RATE FOR NON-DEGENERATE SYSTEMS

In this section, we will use Theorem 3 and 4 to derive the decay rate for non-degenerate

systems. Let us first define the following event:

EN
k,a = {No more than a packets arrive between time k and time k −N + 1},

where k ≥ N .

Theorem 5: Suppose the system satisfies assumptions (H1)− (H3), then

φ ≥ log(1− p1)
2 log |λ1|

. (10)

Proof: If |λ1| = 1, then (10) becomes

φ ≥ −∞,

which will always hold. Hence, without loss of generality, let us assume |λ1| > 1. First let us

set M large enough and choose N ∈ N such that

α|λ1|2N−2 ≤M < α|λ1|2N .

Since |λ1| > 1, we can always find such N . Let us consider estimation error at time k > N .

Suppose the observations made at time k−N + 1, . . . , k are all lost, then by definition of h, we

know that

Pk = hN(Pk−N).
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Now by Theorem 3, we know that

trace(Pk) ≥ α|λ1|2N > M.

As a result, when packets k −N + 1 to k are all lost, trace(Pk) > M . Hence

ϕ(M) = sup
k
P (trace(Pk) > M) ≥ P (EN

k,0)

The probability on the right hand side can be easily computed from the Markovian packet loss

assumption:

P (EN
k,0) = P (γk−N+1 = . . . = γk = 0) = P (γk−N+1 = 0)

k−1∏
i=k−N+1

P (γi+1 = 0|γi = 0)

=
p2

p1 + p2
(1− p1)N−1.

Since we already assumed that

α|λ1|2N−2 ≤M,

we know that

N ≤ logM − logα

2 log |λ1|
− 1.

As a result,

φ = lim inf
M→∞

logϕ(M)

logM
≥ lim inf

M→∞

log(1− p1)
logM

(
logM − logα

2 log |λ1|
− 2

)
+ lim inf

M→∞

log p2 − log(p1 + p2)

logM

=
log(1− p1)
2 log |λ1|

,

which concludes the proof.

Remark 4: The above theorem indicates that the distribution of trace(Pk) follows a power

decay rule as it can decay at most Mφ−δ fast when A is strictly unstable. Also since we do

not assume non-degeneracy in the proof, the result is valid for general linear systems satisfying

assumptions (H1)− (H3).

Now let us consider an upper bound for φ, which is given by the following theorem:

Theorem 6: Consider a system which satisfies assumptions (H1) − (H3) and the unstable

part is non-degenerate, then the following inequality holds:

φ ≤ log(1− p1)
2 log |λ1|

. (11)
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Proof: First we claim that

trace(Pk) ≤ β|λ1|2k,

where β > 0 is a constant independent of k. It is clear that the worst case happens when all the

packets from time 1 to time k are lost. Hence

Pk ≤ hk(Σ) =
k−1∑
j=0

AjQAjH + AkΣAkH .

Now we can find a constant β′ > 0, such that Q ≤ β′In and Σ ≤ β′In. Therefore, we have

trace(Pk) ≤ β′trace(
k∑
j=0

AjAjH) = β′
n∑
i=1

|λi|2k+2 − 1

|λi|2 − 1
≤ nβ′

|λ1|2k+2 − 1

|λ1|2 − 1
≤ nβ′|λ1|2

|λ1|2 − 1
|λ1|2k,

where we use the fact that A is diagonal. Hence, trace(Pk) ≤ β|λ1|2k, where β = (nβ′|λ1|2)/(|λ1|2−

1).

Now let us fix ε > 0 defined in Theorem 4 and M large enough. Without loss of generality,

we will also assume α > β, where α is also defined in Theorem 4, since we could always pick

a larger α. Choose N such that

α(|λ1|+ ε)2N ≤M < α(|λ1|+ ε)2N+2. (12)

Since we assumed that α > β, we know that if k ≤ N , then

trace(Pk) ≤ β|λ1|2k ≤ β|λ1|2N < M.

As a result, P (trace(Pk) > M) = 0, when k ≤ N . Therefore

ϕ(M) = sup
k>N

P (trace(Pk) > M).

Now let us consider the case where k > N . Suppose we have received more than l packets from

time k −N + 1 to time k. Assume that the latest packet is received at time k1, and the second

latest packet is received at time k2, and so on. To simplify notation, define k0 = k, kl+1 = 0

and ij = kj−1 − kj , j = 1, . . . , l + 1. From the definition of h and g, we know that

Pk = hi1ghi2−1g · · ·hil−1g(Pkl−1),

and

Pkl−1 ≤ hil+1−1(Σ).
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From Theorem 4, we know that

trace(Pk) = trace(hi1ghi2−1g · · ·hil−1ghil+1−1(Σ)) ≤ α
l∏

j=1

(|λj|+ ε)2ij ≤ α(|λ1|+ ε)2(k−kl).

Using the fact that more than l packets are received from time k −N + 1 to time k, we know

that

kl ≥ k −N + 1⇒ k − kl < N,

which implies that

trace(Pk) < α(|λ1|+ ε)2N ≤M.

As a result, if more than l packets are received from time k−N+1 to time k, then trace(Pk) ≤M .

Therefore

P (trace(Pk) > M) ≤ P (EN
k,l−1).

Now let us estimate the probability on the right hand side. Unlike the P (EN
k,0), the exact value of

such probability cannot be easily computed. As a result we will only focus on the upper bound

of P (EN
k,l−1). We know that there are totally 2N possible combinations of γk−N+1, . . . , γk and∑l−1

i=0

 N

i

 of them belongs to the event EN
k,l−1. Suppose that γ′k−N+1, . . . , γ

′
k is one of the

eligible combination. As a result

P (γ′k−N+1, . . . , γ
′
k) = P (γ′k−N+1)

k∏
i=k−N

P (γ′i|γ′i−1).

Since there are at most l − 1 γ′is which are 1, one can prove there exist at least N − 2l + 1

pairs of (γ′i, γ
′
i+1), which are both 0. As a result, the probability to get (γ′k−N+1, . . . , γ

′
k) is upper

bounded by

P (γ′k−N+1, . . . , γ
′
k) ≤ (1− p1)N−2l+1.

Therefore

P (EN
k,l−1) ≤

l−1∑
i=0

 N

i

 (1− p1)−2l+1(1− p1)N = Poly(N)(1− p1)N .

where

Poly(N) =
l−1∑
i=0

 N

i

 (1− p1)−2l+1
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is a (l − 1)th polynomial of N . Therefore,

φ = lim sup
M→∞

logϕ(M)

logM
≤ lim sup

M→∞

log[Poly(N)]

logM
+ lim sup

M→∞

N log(1− p1)
logM

.

For the first term, by the first inequality in (12), we have

lim sup
M→∞

∣∣∣∣ log[Poly(N)]

logM

∣∣∣∣ ≤ lim sup
N→∞

∣∣∣∣ log[Poly(N)]

2N log(|λ1|+ ε)

∣∣∣∣ = 0.

For the second term, by the second inequality in (12), it is easy to establish the following

inequality

N >
logM

2 log(|λ1|+ ε)
− 1.

Therefore,

lim sup
M→∞

N log(1− p1)
logM

≤ lim sup
M→∞

(
logM

2 log(|λ1|+ ε)
− 1

)
log(1− p1)

logM
=

log(1− p1)
2 log(|λ1|+ ε)

.

Thus, we can conclude that

φ ≤ log(1− p1)
2 log(|λ1|+ ε)

.

If we let ε goes to 0, we can conclude the proof.

Combining the above two Theorems, we have

Theorem 7: Consider a system which satisfies assumptions (H1) − (H3) and the unstable

part is non-degenerate, then the decay rate is given by the following equality:

φ =
log(1− p1)
2 log |λ1|

. (13)

Remark 5: The results we derived here can be used for much more general packet drop

models, as long as P (En
k,0) and P (EN

k,l−1) can be computed.

Remark 6: For non-degenerate system, the decay rate is a decreasing function of p1, which

is very intuitive since larger p1 indicates the channel is more capable of recovering from bad

state. However this may not be true for degenerate system. For example, consider the system

A = diag(2,−2), C = [1, 1] and transition matrix P (γk+1 = 0|γk = 0) P (γk+1 = 1|γk = 0)

P (γk+1 = 0|γk = 1) P (γk+1 = 1|γk = 1)

 =

 1− p1 p1

1 0

 .
If p1 = 1, then the sequence of γks will become 101010 · · · . Hence, it is equivalent to sampling

the system only at even (or odd depends on the γ0) time and it is easy to see such system is
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unobservable. As a result ϕ(M) = 1 for any M and the decay rate is 0. However, if p1 is not 1,

then we can get several consecutive 0s in the sequence of γk. As a result, it is possible to get

observations made both at odd and even time (for example it is possible to get “1001” for γ0 to

γ3) and hence φ ≤ 0.

As discussed in the Section III, we know that the following inequality holds when M is

sufficient large:

Mφ−δ ≤ sup
k
P (trace(Pk) > M) ≤Mφ+δ,

where δ > 0 can be arbitrarily small. Such result is very useful to characterize the tail distribution

of Pk. In the next section, we will apply this result to derive the boundedness conditions for

higher moments of Pk and critical value for i.i.d. packet drop model.

VI. CRITICAL VALUE AND BOUNDEDNESS OF HIGHER MOMENTS

In this section we want to derive the critical value and boundedness conditions of higher

moments for Kalman filtering with intermittent observations based on the decay rate we derive

in Section V, which is given by the following theorem:

Theorem 8: Consider a system which satisfies assumptions (H1) − (H3) and the unstable

stable part is non-degenerate. Let q ∈ N. E [P q
k ] is uniformly bounded if

p1 > 1− 1

|λ1|2q
. (14)

It is unbounded for some initial condition Σ if

p1 < 1− 1

|λ1|2q
. (15)

Proof: Let us first prove the case where q = 1. It is easy to see that EPk is uniformly

bounded if and only if E[trace(Pk)] is uniformly bounded. As a result, we will only focus on

the boundedness of E[trace(Pk)]. Now let us first prove that if p1 ≥ 1−|λ1|−2, then E[trace(Pk)]

is uniformly bounded. Since trace(Pk) is non-negative, it is easy to see the following equality

holds

E [trace(Pk)] =

∫ ∞
0

P (trace(Pk) > M)dM.

Taking the supremum on both side yields

sup
k
E [trace(Pk)] =

∫ ∞
0

ϕ(M)dM.
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Now by the definition of decay rate φ, we know that

ϕ(M) ≤Mφ+δ,

provided that M is sufficient large and δ > 0 can be arbitrarily small. Hence, it is easy to check

that the following condition is sufficient for trace(EPk) to be uniformly bounded:

φ+ δ < −1,

which is equivalent to
log(1− p1)
2 log |λ1|

< −1− δ.

Manipulating the above equations we know the following condition is sufficient

p1 > 1− |λ1|−2−2δ.

Since δ can be arbitrarily close to 0, we can conclude that

p1 > 1− |λ1|−2,

is sufficient for E(Pk) to be uniformly bounded. Then let us prove that p1 ≤ 1−|λ1|2 is sufficient

for an unbounded E[trace(Pk)]. Since trace(Pk) is non-negative, it is easy to see that

E[trace(Pk)] ≥M × P (trace(Pk) ≥M), for all M .

Take the supremum over k and M on both side we have

sup
k
E[trace(Pk)] ≥ sup

M
[M × ϕ(M)] . (16)

Since we know that

ϕ(M) ≥Mφ−δ,

when M is sufficient large, the right hand side of (16) is unbounded if

1 + φ− δ > 0,

which is equivalent to

p1 < 1− |λ1|−2+2δ.

Since δ can be arbitrary small, we can conclude that

p1 < 1− |λ1|2,
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is sufficient for an unbounded E(Pk).

Now let us consider arbitrary q. Suppose the eigenvalues of Pk are ξ1 ≥ ξ2 ≥ . . . ≥ ξn. Hence,
n∑
i=1

ξi = trace(Pk),
n∑
i=1

ξqi = trace(P q
k ).

Since Pk is positive semidefinite, ξi are non-negative. As a result, it is easy to prove that

trace(P q
k ) ≤ trace(Pk)

q, (17)

and the equality holds only when ξ1 = trace(Pk) and ξ2 = . . . = ξn = 0. Moreover,

trace(P q
k ) ≥ n

(
trace(Pk)

n

)q
, (18)

and the equality holds only when ξ1 = . . . = ξn = trace(Pk)/n. Let us define

ϕq(M) , sup
k
P (trace(P q

k ) > M),

and similarly

φq , lim sup
M→∞

logϕq(M)

logM
, φ

q
, lim inf

M→∞

logϕq(M)

logM
.

Moreover φq , φq if φq = φ
q
. It is easy to see from (17) and (18) that

φq = φ/q.

Therefore, using the same argument as the proof for the case q = 1, we conclude the proof.

Since independent packet drop is a special case for the Markovian packet drop, we have the

following corollary:

Corollary 1: Consider a system which satisfies assumptions (H1) − (H3) and the unstable

stable part is non-degenerate. If γks are i.i.d. distributed and P (γk = 1) = p, then the critical

value of the system is given by

pc = 1− |λ1|−2 (19)

Before finishing this section, we want to compare our result on critical value, with the results

from [1] and [2]. Let us assume that A = diag(λ1, . . . , λn) and C = [C1, . . . , Cn]. In [1], the

authors could derive the exact critical value in two cases:

1) C is invertible.

2) A has only one unstable eigenvalue.
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If C is invertible, then the system is one-step observable and thus non-degenerate. For the second

case, suppose that λ1 is the only unstable eigenvalue, it is easy to see that C1 could not be a zero

vector otherwise the system is not detectable. As a result, the unstable part, which is defined as

the block AI = λ1, CI = C1, is non-degenerate by the definition.

In [2], the authors derive the critical value under the assumption that C is invertible on the

observable subspace. Since the system is detectable, then all the unstable eigenvalues must be

observable. Suppose that λ1, . . . , λl are unstable eigenvalues and λl+1, . . . , λl′ are stable and

observable eigenvalues. Then matrix [C1, . . . , Cl′ ] must be full column rank since C is invertible

on the observable space, which implies that [C1, . . . , Cl] must be also full column rank. Hence,

the unstable part of the system is one-step observable and thus non-degenerate.

In conclusion, for diagonalizable systems, all the cases discussed in [1] and [2] are included

in Theorem 8.

Remark 7: Note that the critical value for degenerate system is not 1− |λ1|−2 in general, as

in shown in [7]. This is caused by the loss of observability incured by packet drop. As a result,

some packets contain only redundant information which does not improve the estimation on some

mode of the system and in general more packets are needed to obtain a bounded estimation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we address the problem of state estimation for a discrete-time linear Gaussian

system where observations are communicated to the estimator via a memoryless erasure channel.

We were able to characterize the tail distribution of the estimation error covariance for Markovian

packet losses and compute the value of the critical probability for each of its moments. We

introduced the concept of non-degeneracy and show how such concept, rather than the weaker

notion of observability, is the appropriate property to check when observations are sampled

according to a stochastic process. This analysis leaves open the analysis for degenerate and

non diagonalizable systems. Although some important systems fall within this class, we argue

that our analysis covers most systems and can be extended, with considerable effort, to systems

that admit non diagonal Jordan forms. As for degenerate systems, some preliminary results are

contained in [7]. We plan to complete the characterization of the problem by generalizing our

approach in both directions.
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IX. APPENDIX

This section is devoted to proving Theorem 4. Before continue on, we would like to state the

following properties of function g and h, which will be used in the proof:

Proposition 3: Let

h(X,A,Q) = AXAH+Q, g̃(X,R) = X−XCH(CXCH+R)−1CX, g(X,A,Q,R) = g̃(h(X,A,Q), R).

Then the following propositions hold:

1) h is an increasing function of X and Q5.

2) g is an increasing function of X , Q, R.

3) h(X) ≥ g(X).

4) h(X,αA,Q) ≥ h(X,A,Q) when α > 1.

5) g(X,αA,Q,R) ≥ g(X,A,Q,R) when α > 1.

Proof:

1) The first proposition is trivial.

2) It is easy to see that g̃ is an increasing function of R and hence that g is also increasing

of R. To prove that g is an increasing function of X , let us first use the matrix inversion

lemma to write g̃ as

g̃(X,R) = (X−1 + CR−1CH)−1.

It is easy to see that g̃ is increasing in X . Combining this with the fact that h is also an

increasing function of X , we can conclude that g is increasing in X .

3)

h(X)− g(X) = h(X)CH(Ch(X)CH +R)−1Ch(X) ≥ 0.

4) It is easy to see that

h(X,αA,Q)− h(X,A,Q) = (α2 − 1)AXAH ≥ 0.

5By increasing we mean if X1 ≥ X2, i.e. X1−X2 is positive semidefinite, then h(X1)−h(X2) is also positive semidefinite.
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5) The proposition is true because of the previous proposition and the fact that g is increasing

in X .

Now we want to use the above propositions to simplify the problem. First since g, h are

increasing in Q,R and X , we could find α1 > 0 such that Q ≤ α1In, Σ ≤ α1In and R ≤ α1Im.

Since we are only concerned with the upper bound, without loss of generality we can replace

Q,Σ and R by α1In, α1In and α1Im.

Furthermore without loss of generality we can assume that there is no eigenvalue of A that

is on the unit circle by replacing A by (1 + δ)A, where δ > 0 can be arbitrary small due to the

fact that

h(X,αA,Q) ≥ h(X,A,Q), g(X,αA,Q,R) ≥ g(X,A,Q,R), if α > 1.

Combining with the assumption that A can be diagonalized, we will assume that A =

diag(A1, A2), where Ai is diagonal and A1 and A2 contain the strictly unstable and stable

eigenvalues of A respectively. We will also assume C = [C1, C2], where Cis are of proper

dimensions.

From definition of h and g, we know that

Pk = hi1ghi2−1g · · ·hil−1ghil+1−1(Σ),

provided that l packets arrive at time k1 > . . . > kl. Also define k0 = k, kl+1 = 0 and

ij = kj−1 − kj for 1 ≤ j ≤ l + 1. As a result, proving Theorem 4 is equivalent to showing that

trace(Pk) ≤ α
n∏
j=1

(|λj|+ ε)2ij .

To prove the above inequality, we will exploit the optimality of Kalman filtering. We will

construct a linear filter whose error covariance satisfies (9). Therefore Pk must also satisfy (9)

due to the optimality of Kalman filtering. To construct such an estimator, let us rewrite the

system equations as

xk+1,1 = A1xk,1 + wk,1

xk+1,2 = A2xk,2 + wk,2,

yk = C1xk,1 + vk + C2xk,2
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Since A2 is stable, we can just use x̂k,2 = Ak2x0,2 as an unbiased estimate of xk,2. The new

system equations become

xk+1,1 = A1xk,1 + wk,1

y′k = (yk − C2A
k
2x0,2) = C1xk,1 + vk + C2(xk,2 − Ak2x0,2)

To obtain an estimator for xk,1, let us first write down the relation between y′k and xk,1 as:
γky

′
k

...

γ1y
′
1

x̄0,1

 =


γkC1

...

γ1C1A
−k+1
1

A−k1

xk,1 +


γkvk

...

γ1v1

x̄0,1 − x0,1

+


γkC2(xk,2 − Ak2x0,2)

...

γ1C2(x1,2 − x1,2)

0

 (20)

−



0 · · · 0 0

γk−1C1A
−1
1 · · · 0 0

... . . . ...
...

γ1C1A
−k+1
1 · · · γ1C1A

−1
1 0

A−k1 · · · A−21 A−11




wk−1,1

...

w0,1

 .

where γi = 1 if and only if i = kj , j = 1, . . . , l. To write (20) in a more compact form, let us

define the following quantities:

Fk ,


A−11 · · · 0 0

... . . . ...
...

A−k+1
1 · · · A−11 0

A−k1 · · · A−21 A−11

 ∈ Clk×lk. (21)

Gk ,



0 · · · 0 0

C1 · · · 0 0
... . . . ... 0

0 · · · C1 0

0 · · · 0 Il


∈ C(mk+l)×lk. (22)

ek , −GkFk


wk−1,1

...

w0, 1

+


vk
...

v1

x̄0,1 − x0,1

+


C2(xk,2 − Ak2x0,2)

...

C2(x1,2 − x1,2)

0

 ∈ Cmk+l. (23)
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Tk ,


C1

...

C1A
−k+1
1

A−k1

 ∈ C(mk+l)×l, Y ′k =


y′k
...

y′1

x̄0,1

 ∈ Cmk+l. (24)

Define Γk as removing the zero rows from diag(γkIm, γk−1Im, . . . , γ1Im, Il), where γi = 1 if

and only if i = kj , j = 1, . . . , l. Thus Γk is a ml + l by mk + l matrix. Also define

Ỹ ′k , ΓkYk, T̃k , ΓkTk, ẽk , Γkek.

Now we can rewrite (20) in a more compact form as

Ỹ ′k = T̃kxk + ẽk. (25)

Since we assumed, without loss of generality, that R, Q, Σ0 are all diagonal matrices, it is

easy to see that xk,2 and xk,1 are mutual independent. As a result, one can easily prove that the

following estimator of xk is unbiased

x̂k,1 = (T̃Hk Cov(ẽk)
−1T̃k)

−1THk Cov(ẽk)
−1Ỹ ′k , x̂k,2 = Ak2x0,2, (26)

with covariance

P ′k =

 P ′k,1 P ′k,off

(P ′k,off )
H P ′k,2

 , (27)

where

P ′k,1 = (T̃Hk Cov(ẽk)
−1T̃k)

−1, P ′k,2 = Cov(xk,2) = Ak2Σ0A
kH
2 +

k−1∑
i=0

Ai2QA
iH
2 . (28)

Since we are only concerned with the trace of P ′k, it is easy to see that

trace(P ′k) = trace(P ′k,1) + trace(P ′k,2),

where trace(P ′k,2) is uniformly bounded regardless of k. Therefore, in order to prove (9) we

will focus exclusively on trace(P ′k,1). Combining this argument with the optimality argument of

Kalman filtering, we only need to prove that

trace(P ′k,1) = (T̃Hk Cov(ẽk)
−1T̃k)

−1 ≤ α

n∏
j=1

(|λj|+ ε)2ij .

Now we claim that the following lemma is true:
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Lemma 1: If a system satisfies assumptions (H1)− (H3), then P ′k,1 is bounded by

P ′k,1 ≤ α2(
n∑
j=1

(Ak−kj)HCHCAk−kj + A−kH(A−k))−1, (29)

where α2 ∈ R is constant independent of ij .

Proof: We will bound Cov(ẽk) by a diagonal matrix. Since we assume that wk, vk, x0 are

mutually independent, it is easy to prove that

Cov(ek) = GkFkCov



wk−1,1

...

w0,1


FH

k G
H
k +Cov




vk
...

v1

x̄0,1 − x0,1



+Cov




C2xk,2

...

C2x1,2

0



 .

Let us consider the first term. Notice that

F−1k =


A1

−Il
. . .
. . . A1

−Il A1

 .

Therefore,

(FkF
H
k )−1 =


AH1 A1 + I −A1

−AH1
. . . . . .
. . . AH1 A1 + I −A1

−AH1 AH1 A1

 .

By Gershgorin’s Circle Theorem [20], we know that all the eigenvalues of (FkF
H
k )−1 are located

inside one of the following circles:|ζ − |λi|2− 1| = |λi|, |ζ − |λi|2− 1| = 2|λi|, |ζ − |λi|2| = |λi|,

where ζs are the eigenvalues of (FkF
H
k )−1.

Since |λ1| ≥ |λ2| ≥ · · · ≥ |λl| > 1, for each eigenvalue of (FkF
H
k )−1, the following holds:

ζ ≥ min{|λi|2 + 1− |λi|, |λi|2 + 1− 2|λi|, |λi|2 − |λi|}, (30)

Thus, 0 < (|λl| − 1)2 ≤ ζ , which in turn gives

FkF
H
k ≤

1

(|λl| − 1)2
Ilk.
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Since we assume that Q = α1In, we can prove that

GkFkCov



wk−1,1

...

w0, 1


FH

k G
H
k = α1GkFkF

H
k G

H
k ≤

α1

(|λl| − 1)2
GkG

H
k .

From the definition,

α1

(|λl| − 1)2
GkG

H
k =

α1

(|λl| − 1)2
diag(0, C1C

H
1 , . . . , C1C

H
1 , Il),

which is uniformly bounded by α3Imk+l.

Now let us consider the second term, since R = α1Im, it is trivial to see that

Cov




vk
...

v1

x̄0,1 − x0,1



 = α1Imk+l.

Now consider the last term, let us write xk,2 as
xk,2

...

x1,2

x0,2

 =


In−l · · · Ak−12 Ak2

... . . . ...
...

0 · · · In−l A2

0 · · · 0 In−l




wk−1,2

...

w0,2

x0,2

 .
As a result,

Cov




xk,2

...

x1,2

x0,2



 = α1


In−l · · · Ak−12 Ak2

... . . . ...
...

0 · · · In−l A2

0 · · · 0 In−l




In−l · · · Ak−12 Ak2

... . . . ...
...

0 · · · In−l A2

0 · · · 0 In−l



H

≤ α1

(1− |λl+1|)2
I(n−l)(k+1),

where the proof of the last inequality is similar to the proof of FkFH
k ≤ (|λl| − 1)−2Ilk and is

omitted. Therefore it is easy to see that

Cov




C2xk,2

...

C2x1,2

0



 ≤ α4Imk+l,
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where α4 is a constant. As a result, we have proved that

Cov(ek) ≤ α2Imk+l,

where α2 = α3 + α1 + α4. Moreover

Cov(ẽk) = ΓkCov(ek)Γ
H
k ≤ α2Iml+l.

The above bound is independent of i1, . . . , il+1, which proves

P ′k,1 = (T̃Hk Cov(ẽk)
−1T̃k)

−1 ≤ α2(
l∑

j=1

(Ak−kj)HCHCAk−kj + A−kHA−k)−1.

We will manipulate
∑n

j=1(A
−ij)HCHCA−ij to prove the upper bound by using cofactors for

matrix inversion. Before continue, we need the following lemmas.

Lemma 2: For a non-degenerate system, it is possible to find a set of row vectors L1, L2, . . . , Ll,

such that LiC = [li,0, . . . , li,l], where li,i = 1 and li,a = 0 if |λi| = |λa| and i 6= a.

Proof: It is simple to show that the lemma holds by using Gaussian Elimination for every

quasi-equiblock.

Lemma 3: Consider that |λ1| ≥ |λ2| · · · ≥ |λl|, li,i = 1 and li,a = 0 if i 6= a and |λi| = |λa|.

Let i1 = k − k1 and ij = kj−1 − kj for 2 ≤ j ≤ l. Define

D =

∣∣∣∣∣∣∣∣∣∣∣

l1,1λ
k1−k
1 l1,2λ

k1−k
2 · · · l1,lλ

k1−k
l

l2,1λ
k2−k
1 l2,2λ

k2−k
2 · · · l2,lλ

k2−k
l

...
... . . . ...

ll,1λ
kl−k
1 ll,2λ

kl−k
2 · · · ll,lλ

kl−k
l

∣∣∣∣∣∣∣∣∣∣∣
.

Then D is asymptotic to
∏l

j=1 λ
kj−k
j , i.e.

lim
i1,i2,...,il→+∞

D∏l
j=1 λ

kj−k
j

= 1. (31)

Proof of Lemma 3: The determinant D has l! terms, which have the form sgn(σ)
∏l

j=1 lj,ajλ
kj−k
aj .

σ = (a1, a2, . . . , al) is a permutation of the set {1, 2, . . . , l} and sgn(σ) = ±1 is the sign of

permutation. Rewrite (31) as

D∏l
j=1 λ

kj−k
j

=
∑
σ

sgn(σ)

∏l
j=1 lj,ajλ

kj−k
aj∏l

j=1 λ
kj−k
j

=
∑
σ

sgn(σ)
l∏

j=1

lj,aj

(∏l
j=1 λaj

)−i1
· · ·
(∏l

j=l λaj

)−il
(∏l

j=1 λj

)−i1
· · ·
(∏l

j=l λj

)−il
=
∑
σ

sgn(σ)
l∏

j=1

lj,aj

l∏
b=1

(∏l
j=b λaj∏l
j=b λj

)−ij
.
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Now we can just analyze each term of the summation. Since |λ1| ≥ · · · ≥ |λl|, |
∏l

j=b λaj | ≥

|
∏l

j=b λj|. First consider that there exist some js such that |λaj | 6= |λj| and define j∗ to be the

largest, which means |λaj∗ | 6= |λj∗| and |λaj | = |λj| for all j greater than j∗. Since |λj∗| is the

smallest among |λ1|, . . . , |λj|, we know that |λaj∗ | > |λj∗ |. Thus,∣∣∣∣∣
∏l

j=j∗ λaj∏l
j=j∗ λj

∣∣∣∣∣ > 1,

lim
i1,i2,...,il→∞

∣∣∣∣∣∣
l∏

j=1

lj,aj

l∏
b=1

(∏l
j=b λaj∏l
j=b λj

)−ij ∣∣∣∣∣∣ ≤ |
l∏

j=1

la,aj | lim
ij∗→∞

∣∣∣∣∣
∏l

j=j∗ λaj∏l
j=j∗ λj

∣∣∣∣∣
−ij∗

= 0.

Then consider that if for all j, |λaj | = |λj|, but (a1, . . . , al) 6= (1, 2, . . . , l). Thus, there exists

j∗ such that aj∗ 6= j∗. Hence lj∗,aj∗ = 0. Therefore, these terms are always 0.

The only term left is

sgn(σ)
l∏

j=1

lj,j

l∏
b=1

(∏l
j=b λj∏l
j=b λj

)−ij
= 1.

Thus, we can conclude that

lim
i1,i2,...,il→∞

D∏l
j=1 λ

kj−k
j

= 1.

Because the system is non-degenerate, by Lemma 2, we know that there exist L1, L2, · · · , Ll,

such that LiC = [li,1, . . . , li,l] is a row vector, li,i = 1 and li,a = 0 if i 6= a and |λi| = |λa|.

Define matrices

U ,


l1,1λ

−i1
1 l1,2λ

−i1
2 · · · l1,lλ

−i1
l

l2,1λ
−i2
1 l2,2λ

−i2
2 · · · l2,lλ

−i2
l

...
... . . . ...

ll,1λ
−il
1 ll,2λ

−il
2 · · · ll,lλ

−il
l

 , O , U−1. (32)

Define α5 = max(λmax(L
H
1 L1), . . . , λmax(L

H
l Ll)). Thus, LHi Li ≤ α5Im, and

l∑
j=1

A−ijHCHCA−ij ≥
l∑

j=1

1

α5

A−ijHCHLHj LjCA
−ij

=
1

α5

[
A−i1HCHLH1 · · · A−ilHCHLH1

]
L1CA

−i1

...

LlCA
−il

 =
1

α5

UHU,

(33)
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and (
l∑

j=1

A(kj−k)HCHCAkj−k

)−1
≤ α5

(
UHU

)−1
= α5OO

H ≤ α5trace(OO
H)Il

= α5

∑
a,b

Oa,b(O
H)b,aIl = α5

∑
a,b

Oa,b × conj(Oa,b)Il = α5

∑
a,b

|Oa,b|2Il,
(34)

where conj() means complex conjugation.

Now by Lemma 3, we can compute the cofactor matrix of U and hence O = U−1. Define the

minor Ma,b of U as the (l− 1)× (l− 1) matrix that results from deleting row a and column b.

Thus

Oa,b =
(−1)a+b det(Mb,a)

det(U)
. (35)

By Lemma 3, we know that

lim
i1,i2,...,il→∞

det(U)∏l
j=1 λ

kj−k
j

= 1.

Since Ma,b has the same structure as U , it is easy to show that

det(Ma,b) ≤ ρa,b

l∏
j=2

|λkj−1−k
j |,

where ρa,b is a constant. Thus,

lim sup
i1,...,il→∞

(∑l
j=1A

kj−kHCHCAkj−k
)−1

∏l
j=1 |λj|2ij

≤ lim sup
i1,...,il→∞

α5

∑
a,b |Oa,b|2∏l

j=1 |λj|2ij
Il

= lim sup
i1,...,il→∞

α5

(∑
a,b

∣∣∣∣det(Ma,b)

det(U)

∣∣∣∣2 / l∏
j=1

|λj|2ij
)
Il

≤ α5

∑
a,b

ρ2a,b

∣∣∣∣∣
∏l

j=2 |λ
kj−1−k
j |∏l

j=1 λ
kj−k
j

∣∣∣∣∣
2

/
l∏

j=1

|λj|2il

 Il = α5

∑
i,j

ρ2i,jIl.

(36)

Hence, there exists α6 > 0 such that(
l∑

j=1

Akj−kHCHCAkj−k

)−1
≤ α6

l∏
j=1

|λj|2ijIl,

Combining with Lemma 1 we can finish the proof.
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