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Abstract— This paper concerns the management of energy
in data centers using a cyber-physical model that supports
the coordinated control of both computational and thermal
(cooling) resources. On the basis of the structure of the proposed
model and practical issues related to the data center layout
and distribution of information, we propose a hierarchical
optimization scheme in which the higher level chooses goals for
regulation at the lower level. Linear programming is applied to
solve sequences of one-step look-ahead problems at both the top
level and in the lower-level controllers to solve. The approach
is illustrated with simulation results.

I. INTRODUCTION

This paper presents a hierarchical control strategy moti-
vated by the problem of energy management in data centers.
Data center power consumption has drastically increased in
the past few years. According to a report of the Environ-
mental Protection Agency (EPA) published in 2007 [8], data
center peak load power consumption was 7GW in 2006
and, at the current rate, it is expected to increase up to
12GW by 2011 leading to a cost of $7.4 billion per year.
As computational density has increased at all levels, the rate
at which heat must be removed has increased, leading to
nearly equal costs for operating the information systems and
cooling systems [1], [5].

A good data center workload allocation strategy should
consider both the payoff induced by quality of service (QoS)
and the cost of powering the servers and computer room
air conditioners (CRACs). Higher QoS levels typically lead
to higher rates that can be charged to customers. Servers
typically have multiple power states with a direct relationship
between the power consumed and the QoS offered by the
server. Higher power states also lead to increased heat
generation. CRAC units must keep the air temperature at
the inlets of servers below specified limits to protect the
equipment [2], [3], [4]. As the heat that must be removed
by CRAC units increases, their average power consumption
also increases, leading to higher cooling costs.

The hierarchical control strategy proposed in this paper
minimizes the total cost of power consumption minus the
pay-off associated to the QoS obtained by each server [4].
In the proposed strategy, local rack controllers manage the
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amount of resources allocated for executing user requests
and local CRAC controllers determine the supplied air
temperature of each rack. A central coordinator provides
inputs to local controllers in order to guarantee the inlet air
temperature does not exceed the specified operating limits. In
general, a model predictive control (MPC) approach can be
applied at each layer of the hierarchy [6]. A one-step look-
ahead controller at both levels of the hierarchy is considered
in this paper. This is effective when the transients are fast
relative to the optimization period.

The following section presents a model of the computa-
tional and thermal dynamics in a data center. Section III
discusses the structure and size of this model for a typical
data center, providing the motivation for the proposed hier-
archical control strategy. Section IV proposes a hierarchical
control strategy that uses aggregated information at the
higher level that would typically be available for coordinating
rack controllers in a data center. The effectiveness of the pro-
posed approach is evaluated through simulation experiments
presented in Section V. The concluding section summarizes
the contributions of this paper and identifies directions for
future research.

II. A CONTROL-ORIENTED DATA CENTER MODEL

Let N be the number of servers in a data center, R the
number of racks, and C the number of CRAC units. Typically
N is a few orders of magnitude larger than C. Let J be the
number of different computational services that a data center
can provide. During the kth interval, the average arrival
rate of user requests in class j is denoted with λj(k). In
the rest of the paper, user requests will be called jobs. A
scheduler balances the load among different servers so that
λj(k) =

∑N
i=1 λ

j
i (k), where λji (k) represents the average

rate of arrival of jobs in class j at the ith server during
the kth interval. We consider the case where the scheduling
policy is fixed and the scheduler takes a negligible amount
of time to route jobs to servers.

Let ρji (k) represent the average fraction of the total
computational resources assigned to jobs in class j by the
ith server during the kth interval. For all i = 1, . . . , N ,
j = 1, . . . , C and for all k ∈ Z ρji (k) ∈ [0, 1] and∑J
j=1 ρ

j
i (k) ≤ 1.

Let µji (k) be the largest average execution rate of jobs
in class j that can be obtained at the ith server during the
kth interval. We consider the case where µji (k) = µjiρ

j
i (k),



where µji is a positive coefficient for all i = 1, . . . , N and
for all j = 1, . . . , J .

Data center payoff depends on service availability and
service responsiveness, so we use the average job sojourn
time as a measure of QoS.1 In the rest of the paper we use
the term QoS cost, the negative of the QoS payoff, rather than
QoS payoff, since we formulate the optimization problem in
terms of minimizing cost rather than maximizing profit.

The proposed control approach approximates the average
job sojourn time with the difference, at every time k, between
µji (k) and λji (k). The idea behind the proposed approxima-
tion stems from the analysis of the expected sojourn time in
the M/M/1 queuing systems: when the expected service rate
µ is larger than the expected arrival rate λ, then the expected
sojourn time is given by (µ − λ)−1 and it equals the long-
run average sojourn time of jobs in the queue. In such a
case, minimizing the average sojourn time is equivalent to
maximize the difference between µ and λ.

Let cjq,i(k) denote the QoS cost obtained at the ith server
during the kth interval for jobs in class j, that is,

cjq,i(k) = cjq,i(λ
j
i (k)− µjiρ

j
i (k)), (1)

where cjq,i is a non-negative constant. The total data center
QoS cost is defined as

cq(k) =

N∑
i=1

J∑
j=1

cjq,i(k) = cTq (λ(k)− diag{µ}ρ(k)), (2)

where cTq is the vector that collects the cjq,i coef-
ficients, λ(k) = [λ1

1(k), . . . , λJ1 (k), λ1
2(k), . . . , λJN (k)]T ,

µ = [µ1
1, . . . , µ

J
1 , µ

1
2, . . . , µ

J
N ]T , diag{µ} is the di-

agonal matrix obtained by placing the elements of
the vector µ along the main diagonal, and ρ(k) =
[ρ1

1(k), . . . , ρJ1 (k), ρ1
2(k), . . . , ρJN (k)]T .

Servers increase their power consumption as the amount
of computational resources used to execute jobs increases.
We assume the total power consumed by a the ith server
is given by the following quadratic relationship between the
power consumed by each job type and the arrival rate for
each job type

pi(k) = λTi (k)Cp,iρi(k), (3)

where ρi(k) = [ρ1
i (k), . . . , ρJi (k)]T , λi(k) =

[λ1
i (k), . . . , λJi (k)]T , and Cp,i is a J × J positive-definite

matrix.
We order the inlet and outlet temperatures of servers and

CRAC units using indices 1 to N for the inlet and the outlet
temperatures of serves, and indices N + 1 to N +C for the
inlet and the outlet temperatures of CRAC units. Let Tin,i(k)
and Tout,i(k) represent respectively the inlet and the outlet
air temperature of the ith server at the beginning of the kth

interval. As discussed in [3], [4], the evolution of Tout,i(k)
can be modeled as

Tout,i(k + 1) = (1− ki)Tout,i(k) + kiTin,i(k)+
cp,ipi(k),

(4)

1The job sojourn time of is defined as the difference between the time
when a job arrives at a server and the time when it leaves the data center.

where ki is the (discrete-time) thermal coefficient of the ith

server, cp,i is a non-negative coefficient, and pi(k) is the
average power consumption of the server during the kth

interval.
We consider the case where CRAC units have a colocated

controller. The input to the controller of the ith CRAC is
the reference temperature of the ith CRAC, Tref,i(k). Since a
CRAC unit can only be used to cool the air, we assume the
colocated controller will make Tout,i(k) tend to the reference
temperature only when Tout,i(k) is smaller than the CRAC
inlet air temperature. For CRAC units, the supplied air
temperature evolution is modeled as

Tout,i+N (k + 1) = (1− ki+N )Tout,i+N (k)+
ki+N min{Tref,i(k), Tin,i+N (k)}, (5)

which can be rewritten in terms of linear constraints as
Tout,i+N (k + 1) = (1− ki+N )Tout,i+N (k)+

ki+NTin,i+N (k) + ki+N∆Tref,i(k)
∆Tref,i(k) ≤ 0,

(6)

where ∆Tref,i(k) = Tref,i(k) − Tin,i+N (k) is a fictitious
reference signal that requires the colocated CRAC controller
to keep the supplied air temperature ∆Tref,i(k) below the
CRAC inlet air temperature.

As discussed in [7], the inlet air temperature of servers and
CRAC units can be approximated by a linear combination
of the output temperatures of all other servers and the air
temperatures supplied by the CRAC units

Tin,i(k) =

N∑
j=1

γi,jTout,j(k) +

C∑
j=1

γi,j+NTout,j+N (k), (7)

where γi,j is the coefficient that relates Tout,j(k) to Tin,i(k),
and Tout,j+N (k) is the supplied air temperature of the jth

CRAC at time k.
Define C = {N + 1, . . . , N + C} as the set of indexes

of CRAC units and let Ri be the set of indexes of servers
located in the ith rack, Tout,[Ri](k) be the vector of the outlet
temperatures of the servers in the ith rack, and ni be the
number of servers in the ith rack. Constraints on the server
inlet air temperature are given as

Tin,[Ri](k) ≤ Tin,[Ri], i = 1, . . . , R. (8)

The γi,j coefficients can be collected in the matrix Γ
defined as [Γ]i,j = γi,j for all i, j = 1, . . . , N + C. These
parameters need to be determined empirically, but this is
usually not possible because temperatures are generally not
measured in enough places in a data center to provide
sufficient data to construct the complete, detailed model. It
is also the case that the thermal interaction of servers located
far apart from each other is negligible, i.e., γi,j is negligibly
small when i, j correspond to locations significantly distant
from each other. Therefore, it is common practice in data
center applications, to consider a reduced order version
of (8), where the model parameters are defined only for
locations where a temperature sensor have been placed. For
the reduced-order model, let Tout,Ri(k) and Tin,Ri(k) be, re-
spectively, the vector of the outlet and the inlet temperatures



collected at the ith rack at the beginning of the kth interval.
For example, the two vectors can represent the measured
temperature at the bottom, middle, and top level of the rack.
For every rack, the value of its inlet and outlet temperature
vector is given by a convex combination of the inlet and
outlet temperatures of a server

Tin,Ri(k) = Gin,iTin,[Ri](k), (9)

Tout,Ri(k) = Gout,iTout,[Ri](k), (10)

where the values of the matrices Gin,i and Gout,i depend
on the position of the temperature sensors and on the server
air flows. We assume that Gin,i and Gout,i are full row rank
matrices.

Let v be the rack index where the ith server is located.
Eq. (7) can be approximated as

Tin,i(k)=
∑
j∈Rv

γi,jTout,j(k) +
∑
j∈C

γi,jTout,j(k)+

R∑
j=1

j 6=v

γi,RjTout,Rj (k),
(11)

where γi,Rj is the vector which represents the relative global
effect of the jth rack on the ith server.

We consider each rack and each CRAC unit as a different
subsystem of the data center and let xi(k) be the state of
the ith subsystem. In particular, for i = 1, . . . , R (racks)
xi(k) = Tout,[Ri](k) and zi(k) = Tout,Ri(k), while for i =
R+ 1, . . . , R+C (CRACs), xi(k) = Tout,i(k) and zi(k) =
Tout,i(k). The overall state of the data center is then

x(k) =
[
xT1 (k), . . . ,xTR+C(k)

]T
(12)

and the dynamics of both servers and CRAC units can be
written as

xi(k+1)=Aixi(k)+Bi(k)ui(k)+

R+C∑
j=1

j 6=i

Bi,jzj(k)

zi(k) = Gixi(k),

(13)

where for i = 1, . . . , R

Ai = I − diag{k[Ri]}+ diag{k[Ri]}Γ[Ri,Ri], (14)

Bi(k) = diagB{cp,iλTi (k)Cp,i}, (15)

Bi,j = diag{k[Ri]}Γ[Ri],j , (16)

ui(k) = [ρTi1 , . . . ,ρ
T
ini

]T , (17)

Gi = Gout,i. (18)

In the above equations, the operator diagB{Xi} converts the
sequence of {Xi} matrices in the block diagonal matrix X
such that its ith diagonal block is Xi. For i = R+1, . . . , R+
C, we have

Ai = 1− ki(1− γi,i), (19)

Bi(k) = ki, (20)

Bi,j = kidiag{γi,j}, (21)

ui(k) = ∆Tref,i(k), (22)

Gi = 1, (23)

where the vector γi,j represents the effect of the jth rack on
the ith CRAC unit for j = 1, . . . , R, while it represents the
effect of the (R − j)th CRAC unit on the ith one for j =
R+ 1, . . . , R+C. Therefore, we can write γi,j = γi,Rj for
j = 1, . . . , R and γi,j = γi,N−R+j for j = R+1, . . . , R+C.

Let ce(k) represent the average electricity cost over the k
interval. The total server electricity cost is given by

cp(k) = ce(k)

N∑
i=1

pi(k) = e(k)Tρ(k), (24)

where ce is the electricity cost.
CRAC unit power consumption is in general a nonlinear

function of CRAC inlet and outlet temperatures reflecting
the fact that power efficiency increases as the outlet air
temperature [2]. In order to force the CRAC units to keep
their outlet temperature at the highest value that does not
violate the temperature constraints of servers, we consider
the following cost

cTref(k) = cTTref
∆Tref, (25)

where cTTref
≤ 0.

The total data center operating cost can now be expressed
as

cq(k) + cp(k) + cTref(k) =
cTq λ(k)− cTq diag{µ}ρ(k)+
eT (k)ρ(k) + cTTref

(k)∆Tref(k).
(26)

Constraints on each of the ui(k) variables can be written
as

0 ≤ ui(k) ≤ 1, i = 1, . . . , R, (27)

1Tui(k) ≤ 1, i = 1, . . . , R, (28)

ui(k) ≤ 0, i = R+ 1, . . . , R+ C. (29)

For all i = 1, . . . , R, constraints on the vector of the rack
inlet air temperatures can be written as

GiΓ[Ri],[Ri]xi(k) +Gi

R+C∑
j=1

j 6=i

Bi,jzj(k) ≤ Tin,Ri . (30)

III. CONTROL OF A DATA CENTER: THE
DIMENSIONALITY CHALLENGE

As seen in Section II, a data center can be modeled as a
linear system composed of S linear time-varying subsystems
of the form

xi(k+1) = Aixi(k)+Bi(k)ui(k)+Bi,zz(k)
zi(k) = Gixi(k),

(31)

where xi(k) ∈ Rni ,ui(k) ∈ Rpi , and zi(k) ∈ Rmi are
respectively the state, the input, and the output of the ith

subsystem. In particular, for the data center model described
in the previous section, we have mi < ni and pi = niJ for
i = 1, . . . , R (racks). The dimension of the output of each
rack-related subsystem is much smaller than the dimension



of the input. The matrix Bi,z accounts for all of the Bi,j
matrices and Bi,i is zero for all i = 1, . . . , S. The vector
z(k) =

[
zT1 (k), . . . ,zTS (k)

]T
is the vector of all subsystem

outputs.
The system in (31) is subject to the following input and

output linear constraints

ui ≤ ui(k) ≤ ui (32)
Hiui(k) ≤ 1 (33)

Fixi(k) + Fi,zz(k) ≤ zi, (34)

where Fi ∈ Rmz,i×ni ,mz,i < ni and Fi,z ∈ Rmz,i×mi .
Since we focus on the optimization of a discrete-time

linear system subject to constraints on the input, model
predictive control (MPC) is a natural control approach. As-
suming that the state of the overall system at time k enforces
(34), at each time step we want to solve the following
optimization problem

min
U1,τ

S∑
i=1

τ−1∑
j=0

cTi,u(k)ûi(k + j|k)

s.t.
ui ≤ ûi(k + j|k) ≤ ui, j = 0, ..., τ − 1, i = 1, ...S
Hiûi(k + j|k) ≤ 1, j = 0, ..., τ − 1, i = 1, ...S
Fix̂i(k + j|k) + Fi,zẑ(k + j|k) ≤ zi,

j = 1, ..., τ, i = 1, ..., S

U1,τ =
{
û1(k|k), . . . , ûS(k + τ − 1|k)

}
(35)

where the predicted variables are

x̂i(k + j + 1|k) = Aix̂i(k + j|k)+
Bi(k + j)ûi(k + j|k) +Bi,zẑ(k + j|k)

ẑi(k + j|k) = Gix̂i(k + j|k)
(36)

and it is assumed x̂i(k|k) = xi(k).
Data centers are large-scale systems. In such a scenario

it could be too complex to collect data from all the sensors
and compute all the control actions with a single controller
that closes the loop at each sampling step. In the proposed
hierarchical strategy: (i) a central coordinator specifies the
external behavior z(k) of each subsystems minimizing a
global cost function; (ii) local regulators, one for each sub-
system, optimize the local cost functions with the additional
constraint of ensuring that their own external behavior zi(k)
is coherent with the value specified by the coordinator.

IV. A HIERARCHICAL CONTROL STRATEGY

This section discusses the optimization problem in (35) for
the case τ = 1. Although it may seem restrictive, optimizing
only over the one step ahead prediction can be an appropriate
solution when the predictive values of future job arrival rate
have a large variability and hence the predictive cost values
have weak relevance compared to the current estimated one.

The one-step optimization problem is given by

min
U1

S∑
i=1

cTi,u(k)ûi(k|k)

s.t.
ui ≤ ûi(k|k) ≤ ui, i = 1, ...S
Hiûi(k|k) ≤ 1

FiBi(k)ûi(k|k) +

S∑
j=1

j 6=i

Fi,zjGjBj(k)ûj(k|k) + ki(k) ≤ zi,

i = 1, ..., S

U1 =
{
û1(k|k), . . . , ûS(k|k)

}
,

(37)
where Fi,zj is the part of matrix Fi,z related to the sub-vector
ûj(k|k) and the vector ki(k) is given by

ki(k) = FiAixi(k) + FiBi,zz(k)+
S∑
j=1

j 6=i

Fi,zj

(
GjAjxj(k) +

S∑
h=1

h6=j

GjBj,hGhxh(k)
)
.

The relevant feature of the optimization problem in (37)
is that the only part of the ith subsystem which affects
all of the other subsystems is GiBiûi(k|k). Therefore, the
contribution of the ith subsystem to the evolution of all of
the other subsystems lives in a space of dimension mi which
is much smaller than the dimension of the ith system input.

Assume that for every i and k, GiBi(k) is a full row
rank matrix. For each of the i subsystems we define a
pi × mi matrix Mi(k) such that GiBi(k)Mi(k) = I . We
can now consider a new two-stage optimization, where at
first, the optimization is performed over a set of much
smaller dimension and then each local regulator solves its
own optimization problem with the additional constraint that
its local action has to lead to the same output chosen at the
upper level of the hierarchy.

The first part of the two-stage optimization problem is

min
V1

S∑
i=1

cTi,u(k)Mi(k)v̂i(k|k)

s.t.
ui ≤Miv̂i(k|k) ≤ ui, i = 1, ...S
HiMi(k)v̂i(k|k) ≤ 1 i = 1, ...S
FiBi(k)Mi(k)v̂i(k|k) + Fi,zv̂(k|k) + ki(k) ≤ zi.

i = 1, ..., S,
V1 = {v̂1(k|k), . . . , v̂S(k|k)}

(38)

where v̂∗(k|k) = [v̂∗T1 (k|k), . . . , v̂∗TS (k|k)]T . The vector
v̂∗(k|k), solution of (38), is then broadcasted to each of the
ith subsystems, which solve problems of the following form:

min
ûi(k|k)

cTi,u(k)ûi(k|k)

s.t.
ui ≤ ûi(k|k) ≤ ui,
Hiûi(k|k) ≤ 1

FiBi(k)ûi(k|k) +
S∑
l=1

l 6=i

Fi,zl v̂l(k|k) + ki(k) ≤ zi,

v̂∗i (k|k) = GiBi(k)ûi(k|k),

(39)



where the last constraint ensures the coherence of the opti-
mization of each subsystem.

Proposition 1: The following properties hold true: (i) the
minimum cost of (38) is always greater than or equal to the
minimum cost of (37); (ii) if the optimization problem (38)
is feasible, then (39) is feasible for all i = 1, . . . , S; (iii) the
minimum cost of the ith sub-problem in (39) is smaller than
or equal to cTi,u(k)Mi(k)v̂?i (k|k), where v̂?i (k|k) is the ith

sub-vector of the solution to (38); (iv) if (39) is feasible
for every i, then the sum of the minimum costs of the
optimization problem of each subsystem is grater than or
equal to the minimum cost of (37).

Proof: Follows by construction.
Proposition 2: The condition

v̂?i (k|k) = Bi(k)Mi(k)ûi(k|k)

in (39) can be replaced by

Fj,ziMi(k)ûi(k|k) ≤ Fj,zi v̂?i (k|k) (40)

for all i, j = 1, . . . , S, i 6= j.
Proof: Let v̂(k|k)? be a solution of (38) and consider

ũ(k|k) = [ũT1 (k|k), . . . , ũTS (k|k)]T such that each sub-
vector ũTi (k|k) belongs to the feasible set of

min
ûi(k|k)

cTi,u(k)ûi(k|k)

s.t.
ui ≤ ûi(k|k) ≤ ui,
Hiûi(k|k) ≤ 1

FiBi(k)ûi(k|k) +
∑S

j=1

j 6=i
Fi,zj v̂

?
j (k|k) + ki(k) ≤ zi,

Fj,ziMi(k)ûi(k|k) ≤ Fj,zi v̂∗i (k|k)
for all i, j = 1, . . . , S, i 6= j.

(41)
Therefore, for all i = 1, . . . , S

FiBi(k)ũi(k|k) +

S∑
j=1

j 6=i

Fi,zjGjBjũ
?
j (k|k) + ki(k) ≤ zi.

(42)
This implies that the vector ũ(k|k) is a feasible point for
(37).

We now prove that the feasible set of (39) is con-
tained in the feasible set of (41). Let ū(k|k) =
[ūT1 (k|k), . . . , ūTS (k|k)]T such that each sub-vector ūTi (k|k)
is a feasible point for the ith problem in (39). Then we have

ui ≤ ûi(k|k) ≤ ui
Hiûi(k|k) ≤ 1

FiBi(k)ûi(k|k) +
S∑
j=1

j 6=i

Fi,zjGjBj(k)ûj(k|k) ≤ zi − ki(k)

v̂∗i (k|k) = GiBi(k)ûi(k|k)

and hence, every ūTi (k|k) is a feasible point for (41).
Proposition 3: Let ũi(k|k) and v̂i(k|k) be such that

GiBi(k)ũi(k|k) = v̂i(k|k), then there exists a vector ξi ∈
N (GiBi(k)) such that ũi(k|k) = Mi(k)v̂i(k|k)+ξi, where
N (GiBi(k)) is the right null space of GiBi(k).

Proof: Define ξi = ũi(k|k) − Mi(k)v̂i(k|k). Since
Mi(k) is the right inverse of GiBi(k) the result follows.

Proposition 4: Let Mi(k) be a right inverse matrix of
GiBi(k). The optimization problem in (37) is equivalent to
the following

min
V1,Ξ

S∑
i=1

(
cTi,u(k)Mi(k)v̂i(k|k) + cTi,u(k)ξi

)
s.t.
ui ≤Mi(k)v̂i(k|k) + ξi ≤ ui, i = 1, ...S
Hi(Mi(k)v̂i(k|k) + ξi) ≤ 1, i = 1, ...S
FiBi(k)Mi(k)v̂i(k|k) + FiBi(k)ξi+

S∑
j=1

j 6=i

Fi,zjGjBjMi(k)v̂i(k|k) ≤ zi − ki(k),

i = 1, ..., S
V1 = {v̂1(k|k), . . . , v̂S(k|k)}
Ξ = {ξ1, . . . , ξS}
ξi ∈ N (GiBi(k)) i = 1, . . . , S.

(43)

Proof: Due to Prop. 3, any feasible point û(k|k)
for (37) can be written as a feasible point [v̂(k|k)}, ξ] for
(43) with the same cost. Similarly for any feasible point
[v̂(k|k), ξ] exists a feasible point û(k|k) for (37) which leads
to the same cost.

Proposition 4 implies that there always exists a collection
of right inverse matrices Mi(k) of GiBi(k), i = 1, . . . , S
such that the minimum cost of (38) equals the minimum cost
of (39). Let M?

i (k) be the set of right inverse matrices of
GiBi(k) such that when Mi(k) ∈ M?

i (k) for i = 1, . . . , S
the minimum cost of (38) equals the minimum cost of
(39). In general, given a choice of matrices Mi(k), i =
1, . . . , S, we cannot test whether or not Mi(k) ∈ M?

i (k)
for i = 1, . . . , S. However, a partial characterization of the
set M?

i (k) is possible through Prop. 1: if the minimum cost
of (38) is strictly greater than the sum of the minimum costs
obtained for each of the (39) problems, then at least one of
the chosen Mi(k) matrices does not belong to the setM?

i (k).
A good selection of Mi(k) matrices is to choose the ones
for which the minimum cost of (38) equals the sum of the
minimum costs of (39).

V. SIMULATION RESULTS

We consider a data center composed of 6 racks, each
having 42 servers and 3 CRAC units. Racks and CRAC
units are placed as in Fig. 1. Servers are identical each
others and CRAC units are also identical each others. Also,
servers have a weak thermal interaction among them and a
strong thermal interaction with CRAC units. Jobs are divided
among 6 classes, and arrivals are evenly distributed among
servers, so that λji1(k) = λji2(k) for all i1, i2 = 1, . . . , 252
and j = 1, . . . , 6. We define this setup as the nominal model.

Figure 2 shows the three relative cost increases for 1000
different data center management problems. Different prob-
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Fig. 1. Data center layout.

lems were obtained starting from the nominal model and
perturbing the parameters randomly within 60%.

The plots in Fig. 2 are: the relative difference between
the cost computed by the coordinator controller and the cost
of a controller solving (37) (Coord), the relative difference
between the sum of the cost obtained by the local regulators
and the cost of a controller solving (37) (Reg), and finally,
the relative difference between the sum of the cost obtained
by the local regulators when solving the optimal problem
with weakened constraints discussed in Prop. 2 and the cost
of a controller solving (37) (Regrlx).

Figure 2 shows that the relative cost increase does not
change significantly over the different problems. Figure 3
presents the mean cost increase for different values of model
perturbation. Each mean point value is computed over 500
different simulations.

For the nominal model, our approach leads to the min-
imum optimal cost. We observed in our test a difference
between the minimum cost computed by the optimal al-
gorithm and our proposed approach on the order of 10−5.
The optimality of the proposed algorithm can be explained
as follows: the right inverse matrices Mi(k), i = 1, . . . , 6

used in the simulation assumed ûi(k|k) = v̂(k|k)
ni

. In the
simulated data center cases, this implies an even distribution
of the computational resources for different job classes,
i.e. ρj1i (k) = ρj2i (k). When the data center presents the
symmetries described in the nominal model, such a partition
of the server resources is the optimal one. In this case then,
the chosen inverse matrix set is able to minimize the cost
function of the optimal problem in (38) over all possible
choices of the inverse matrix set range.

As the value of the coefficient of perturbation increases,
the relative difference between the minimum cost found by
the coordinator and the one computed by a controller solving
(37) increases. When the sum of the costs is obtained by the
local regulators instead, their optimal solutions induce a cost
function increase of about 10%.

VI. DISCUSSION

This paper presents a control-oriented model of large-scale
data centers, including the coupling in the dynamics between
the computational resources (servers) and cooling resources
(CRAC units). To deal with the size and information distribu-
tion within a data center, a hierarchical strategy is proposed
in which a higher-level controller computes set-points for
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Fig. 2. Relative cost increase, 60% coefficient perturbation.
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Fig. 3. Relative cost increase for different values of the coefficient of
perturbation.

aggregated power states for servers in racks. The lower-
level controllers solve local optimization problems leading
to an improvement in the solution obtained using aggregated
variables at the higher level. Our simulations suggest that the
approach may be effective, but several research directions
should be pursued to fully evaluate the approach and to
extend it to more general situations. When the arrivals are
quite predictable, it will be useful to be able to optimize the
economic parameters over a long temporal horizon.
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