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Abstract— This paper is concerned with control applications
over lossy data networks. Sensor data is transmitted to an
estimation-control unit over a network, and control commands
are issued to subsystems over the same network. Sensor and
control packets may be randomly lost according to a Bernoulli
process. In this context, the discrete-time Linear Quadratic
Gaussian (LQG) optimal control problem is considered.

It is known that in the scenario described above, and for
protocols for which there is no acknowledgement of successful
delivery of control packets (e.g. UDP-like protocols), the
LQG optimal controller is in general nonlinear. However, the
simplicity of a linear sub-optimal solution is attractive for a
variety of applications. Accordingly, this paper characterizes
the optimal linear static controller and compares its perfor-
mance to the case when there is acknowledgement of delivery
of packets.

I. INTRODUCTION

Today, an increasing number of applications demands

remote control of plants over unreliable networks. The

recent development of sensor web technology [1] enables

the development of wireless sensor networks that can be

immediately used for estimation and control. In these sys-

tems issues of communication delay, data loss, and time-

synchronization play critical roles. Communication and con-

trol become tightly coupled and these two issues cannot be

addressed independently. The goal of this paper is to provide

some partial answers to the question of how control loop

performance is affected by communication constraints and

what are the basic system-theoretic implications of using

unreliable networks for control. This requires a generaliza-

tion of classical control techniques that explicitly takes into

account the stochastic nature of the communication channel.

We consider a generalized formulation of the Linear

Quadratic Gaussian (LQG) optimal control problem by

modeling the arrival of both observations and control pack-

ets as random processes whose parameters are related to the

characteristics of the communication channel. Accordingly,

two independent Bernoulli processes are considered, with

parameters γ and ν, that govern packet losses between

the sensors and the estimation-control unit, and between

the latter and the actuation points (see Figure 1). In our

analysis, we distinguish between two classes of protocols.

The distinction resides simply in the availability of packet

acknowledgements. Adopting the framework proposed by

Fig. 1. Overview of the system. We study the statistical convergence
properties of the expected state covariance of the discrete time LQG control
system, when both the observation and the control signal, transmitted over
an unreliable communication channel, can be lost at each time step with
probability 1 − γ̄ and 1 − ν̄ respectively.

Imer et al. [2], we will refer therefore to TCP-like protocols

if packet acknowledgements are available and to UDP-like

protocols otherwise.

Our previous results on this topic [3], [4], [5] are sum-

marized in Figure 2. We have shown the existence of a

critical domain of values for the parameters of the Bernoulli

arrival processes, ν and γ, outside which a transition to

instability occurs and the optimal controller fails to stabilize

the system. In particular, we have shown that under TCP-

like protocols the critical arrival probabilities for the control

and observation channel are independent of each other. This

is another consequence of the fact that the separation prin-

ciple holds for these protocols. A more involved situation

regards UDP-like protocols. In this case the critical arrival

probabilities for the control and observation channels are

coupled. The stability domain and the performance of the

optimal controller degrade considerably as compared with

TCP-like protocols as shown in Figure 2.

We have also shown that for the TCP-like case the

classic separation principle holds, and consequently the

controller and estimator can be designed independently.

Moreover, the optimal controller is a linear function of the

state. In sharp contrast, for the UDP-like case, the optimal
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controller is in general non-linear. In this case, a natural

sub-optimal solution is to use the optimal static linear gain.

This is particularly attractive for sensor networks, where

simplicity of implementation and complexity issues are a

primary concern. Accordingly, in this paper we focus on

the performance of this UDP controller and compare it with

the optimal one in the TCP case.

First, we formulate the problem of finding the optimal

linear controller as a non-convex optimization problem.

Then, we write, using Lagrange multipliers, a solution to

a necessary condition for the optimum. Using a result of

De Koning [6], we determine when such condition is also

sufficient. We provide some numerical convergence results

for the scalar case, and finally we show that the performance

of the obtained solution is comparable to the one of the

optimal controller in the TCP case.

0 1
0

1

γ

ν

TCP−stable

UDP−stable

unstable

ν*

γ*

Fig. 2. Region of stability for UDP-like and TCP-like optimal control
relative to measurement packet arrival probability γ, and the control packet
arrival probability ν.

We now wish to mention some closely related research.

Study of stability of dynamical systems where components

are connected asynchronously via communication channels

has received considerable attention in the past few years and

our contribution can be put in the context of the previous

literature. In [7] and [8], the authors proposed to place an

estimator, i.e. a Kalman filter, at the sensor side of the

link without assuming any statistical model for the data

loss process. In [9], Smith et al. considered a suboptimal

but computationally efficient estimator that can be applied

when the arrival process is modeled as a Markov chain,

which is more general than a Bernoulli process. Drew et

al [10] analyze the problem of designing a controller over

a wireless LAN. Control design has been investigated in the

context of Cross Layer Design by Liu et al [11]. Finally,

Elia [12][13] proposed to model the plant and the con-

troller as deterministic time invariant discrete-time systems

connected to zero-mean stochastic structured uncertainty.

The variance of the stochastic perturbation is a function

of the Bernoulli parameters, and the controller design is

posed an an optimization problem to maximize mean-square

stability of the closed loop system. This approach allows

analysis of Multiple Input Multiple Output (MIMO) systems

with many different controller and receiver compensation

schemes [12], however, it does not include process and

observation noise and the controller is restricted to be time-

invariant, hence sub-optimal. The remainder of this paper

is organized as follows. Section 2 provides the problem

formulation. In Section 3 we summarize our previous results

that are needed to understand the new contribution. In

Section 4 we consider the optimization problem leading to

the optimal linear UDP controller and discusses a solution

to a weaker, necessary solution for optimality. Section 5

shows the results and compares them to the optimal TCP

controller (which is always linear). Finally, Section 6 draws

conclusions and outlines the agenda for future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system with

intermittent observation and control packets:

xk+1 = Axk + Buk + wk (1)

ua
k = νkuc

k (2)

yk = γkCxk + vk, (3)

where ua
k is the control input to the actuator, uc

k is the de-
sired control input computed by the controller, (x0, wk, vk)
are Gaussian, uncorrelated, white, with mean (x̄0, 0, 0)
and covariance (P0, Q, R) respectively, and (γk, νk) are
i.i.d. Bernoulli random variables with P (γk = 1) = γ̄ and
P (νk = 1) = ν̄. The stochastic variable νk models the loss
of packets between the controller and the actuator: if the
packet is correctly delivered then ua

k = uc
k, otherwise if it

is lost then the actuator does nothing, i.e. ua
k = 0. This

compensation scheme is summarized by Equation (2). The
stochastic variable γk models the packet loss between the
sensor and the controller: if the packet is delivered then
yk = Cxk + vk, otherwise if it is lost then the controller
reads pure noise, i.e. yk = vk. This observation model is
summarized by Equation (3). A different observation for-
malism was proposed in [14], where the missing observation
was modeled as an observation for which the measurement
noise had infinite covariance. It is possible to show that
both models are equivalent, but the one considered in this
paper has the advantage to give rise to simpler analysis. This
arises from the fact that when no packet is delivered, then
the optimal estimator does not use the observation yk at all,
therefore its value is irrelevant. Let us define the following
information sets:

Ik =

(
Fk

∆
= {yk, γk, νk−1}, TCP-like

Gk
∆
= {yk, γk}, UDP-like

(4)

where yk = (yk, yk−1, . . . , y1), γk = (γk, γk−1, . . . , γ1), and
νk = (νk, νk−1, . . . , ν1). Consider also the following cost
function:

JN (uN−1, x̄0, P0) =

= E

h
x′

NWNxN +
PN−1

k=0(x
′
kWkxk+νku′

kUkuk)
˛̨̨
uN−1, x̄0,P0

i
(5)

where uN−1 = (uN−1, uN−2, . . . , u1). Note that we are

weighting the input only if it is successfully received at

the plant. In fact, if it is not received, the plant applies zero

input and therefore there is no energy expenditure.
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We now look for a control input sequence u∗N−1

as a function of the admissible information set Ik, i.e.

uk = gk(Ik), that minimizes the functional defined in Equa-

tion (5), i.e.

J∗
N (x̄0, P0)

∆= min
uk=gk(Ik)

JN (uN−1, x̄0, P0), (6)

where Ik = {Fk,Gk} is one of the sets defined in

Equation (4). The set F corresponds to the information

provided under an acknowledgement-based communication

protocols (TCP-like) in which successful or unsuccessful

packet delivery at the receiver is acknowledged to the

sender within the same sampling time period. The set G
corresponds to the information available at the controller

under communication protocols in which the sender receives

no feedback about the delivery of the transmitted packet

to the receiver (UDP-like). The UDP-like schemes are

simpler to implement than the TCP-like schemes from a

communication standpoint. However the price to pay is a

less rich set of information.

III. PREVIOUS WORK

Before introducing new results, it is necessary to review

recently published results [3], [4], [5], for both the TCP-like

and the UDP-like case.

A. TCP-like case: estimator and controller design

The LQG control problem for the TCP-like case has been

solved in full generality in [3].

Finite Horizon LQG. The main results are summarized

below:

• The separation Principle holds under TCP-like com-

munication, since the optimal estimator is independent

of the control input uk.

• The optimal estimator gain Kk is time-varying and

stochastic since it depends on the past observation

arrival sequence {γj}k
j=1.

• The Optimal LQG controller is a linear function of

estimated state x̂k|k, i.e. uk = Lkx̂k|k.

• The final cost cannot be computed explicitly, since it

depends on the realization of νt and γt, but can be

analytically bounded.

Infinite Horizon LQG. Consider the system (1)-(3) with

the following additional hypothesis: WN = Wk = W and

Uk = U . Moreover, let (A,B) and (A,Q
1
2 ) be controllable,

and let (A,C) and (A,W
1
2 ) be observable. There exist

critical arrival probabilities νc and γc , such that, for ν̄ > νc

and γ̄ > γc:

(a) The infinite horizon optimal controller gain is con-

stant:

lim
k→∞

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (7)

(b) The infinite horizon optimal estimator gain Kk is

stochastic and time-varying since it depends on the

past observation arrival sequence {γj}k
j=1.

(c) The expected minimum cost can be bounded by two

deterministic sequences:

1
N

Jmin
N ≤ 1

N
J∗

N ≤ 1
N

Jmax
N (8)

where Jmin
N , Jmax

N converge to the following values:

Jmax
∞

∆
= limN→+∞ 1

N
Jmax

N

= trace((A′S∞A + W − S∞)( bP∞−
+γ̄ bP∞C′(C bP∞C′+R)−1C bP∞))+trace(S∞Q)

Jmin
∞

∆
= limN→+∞ 1

N
Jmin

N

= (1 − γ̄)trace
“
(A′S∞A + W − S∞) eP∞

”
+

+trace(S∞Q),

and the matrices S∞, P∞, P∞ are the positive definite

solutions of the following equations:

S∞ = A′S∞A+W− ν̄ A′S∞B(B′S∞B+U)−1B′S∞A

P∞ = AP∞A′+Q−γ̄ AP∞C ′(CP∞C ′+R)−1CP∞A′

P∞ = (1 − γ̄)AP∞A′ + Q

The critical probability νc can be numerically computed via

the solution of a quasi-convex LMIs optimization problem,

as shown in [3]. Also the following analytical bounds are

provided:
pmin ≤ νc, γc ≤ pmax

pmin
∆= 1 − 1

maxi |λu
i (A)|2

pmax
∆= 1 − 1Q

i |λu
i (A)|2 ,

where λu
i (A) are the unstable eigenvalues of A. Moreover,

νc = pmin when B is square and invertible [15] , and

νc = pmax when B is rank one [13]. Dually, γc = pmin

when C is square and invertible, and γc = pmax when C
is rank one.

B. UDP-like case: estimator and controller design
As stated above, the LQG optimal control problem for

the UDP-like case presents analytical complications. The

lack of acknowledgement of the arrival of a control packet

has dramatic effects on the controller design. Complete

derivations for this case are presented in [4]. Here is a

summary of them:

• The innovation step in the design of the estimator now

explicitly depends on the input uk ;

• the separation principle is not valid anymore in this

setting.

• the LQG optimal control feedback uk = g∗k(Gk) with

horizon N ≥ 2 that minimizes the functional (5) under

UDP-like communication is, in general, a nonlinear
function of information set Gk.

• In the particular case where the full state can be

observed whenever the observation packet arrives, i.e.

C is invertible and R = 0, the LQG controller is linear

in the state, although the separation principle does not

hold.

Our experience in the design of control systems over wire-

less sensor networks has taught us that it may be extremely
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difficult to design and implement a TCP-like protocol on

such infrastructure. Therefore, there arises the need to

design an easily computable controller that, although sub-

optimal, can guarantee “acceptable” performance in UDP-

like scenarios. The rest of paper will deal with finding such

regulator in the class of linear static controllers.

IV. A LINEAR STATIC CONTROLLER FOR UDP-LIKE

NETWORKED SYSTEMS

We want to find optimal static gains L, K for the LQG

controller and estimator respectively. The estimator equa-

tions are:

x̂k+1 = Ax̂k + ν̄Buk + γkK(yk − ŷk)
uk = −Lx̂k (9)

ŷk = Cx̂k, (10)

After some simple algebra the close loop dynamics can be

written as,[
xk+1

x̂k+1

]
=

[
A −νkBL

γkKC A − ν̄BL − γkKC

] [
xk

x̂k

]
+

+
[

wk

γkKvk

]

If we define the vector zk = [xk x̂k]T ∈ R
2n, the the pre-

vious equation can be written in a more compact form as:

zk+1 = Gγk,νk
(K,L)zk + dk (11)

Now let

Pk
∆= E

[[
xk

x̂k

] [
xT

k x̂T
k

]]
=

[
P 11

k P 12
k

P 12
k

T
P 22

k

]
.

where Pk is the covariance of the vector zk. Its evolution

is given by:

Pk+1 = E[Gγk,νk
(K, L)zkzT

k GT
γk,νk

(K, L)] + E[dkdT
k ]

= Eν,γ [Gγk,νk
(K, L)PkGT

γk,νk
(K,L)] + D(K)

= G(K, L, Pk) + D(K) (12)

where:

D(K) =

»
Q 0
0 γ̄KRKT

–
(13)

G(K, L, P ) = γ̄ν̄G11PGT
11+γ̄(1−ν̄)G10PGT

10+

+ (1−γ̄)ν̄G01PG01
T +(1−γ̄)(1−ν̄)G00PG00

T

G11 =

»
A −BL

KC A − ν̄BL − KC

–
G10 =

»
A 0

γ̄KC A − ν̄BL − γ̄KC

–
G01 =

»
A −ν̄BL
0 A − ν̄BL

–
G00 =

»
A 0
0 A − ν̄BL

–
We next define the following cost:

ck = E
[
xT

k Wxk + ν̄uT
k Uuk

]
= Trace

([
W 0
0 ν̄LT UL

]
Pk

)

= Trace
(
N(L)Pk

)
, (14)

where:

N(L) =
[

W 0
0 ν̄LT UL

]
(15)

Clearly, if Pk converges to a finite value P∞, then does

the cost, i.e. ck converges to c∞. . Therefore, our objective

to minimize this cost function with respect to K, L. The

optimization problem can be written as follows:

MinK,L Tr
(
PN(L)

)
s.t. P = G(K,L, P ) + D(K), P ≥ 0

(16)

This is a non convex optimization problem, and in the next

section we will find necessary conditions for the existence

of an optimum.

A. Necessary conditions

Using Lagrange multipliers the optimization problem can
be rewritten as:

MinK,L,P,Λ J = Tr
`
PN(L)

´
+Tr

“
Λ

`
Ḡ(K, L, P )+D(K)

´−P
”

s.t. P ≥ 0, Λ ≥ 0.
(17)

According to the minimum matrix principle [16], necessary

conditions for the optimum are:

∂J

∂Λ
= 0,

∂J

∂P
= 0,

∂J

∂K
= 0,

∂J

∂L
= 0. (18)

The first two conditions above can be written respectively

as:

P = G(K,L, P ) + D(K), P ≥ 0 (19)

Λ = G(K,L,Λ) + N(L), Λ ≥ 0 (20)

where

G(K, L, P ) = γ̄ν̄GT
11PG11+γ̄(1−ν̄)GT

10PG10+

+(1−γ̄)ν̄GT
01PG01+(1−γ̄)(1−ν̄)GT

00PG00(21)

Note that the operator G(K, L, P ) is simply the dual of

G(K, L, P ). Let use consider the following partition of P
and Λ and new matrices:

P =
[

P1 P12

PT
12 P2

]
, Λ =

[
Λ1 Λ12

ΛT
12 Λ2

]

Λ = Λ1−Λ2, Λ = Λ2, P = P1−P2, P = P2

As shown in [17], the minimality assumption implies that:

Λ12 = −Λ < 0, P12 = P > 0 (22)

An immediate result is that limk→∞ E[(xk − x̂k)x̂T
k ] =

P12 − P2 = 0, i.e. the estimate is asymptotically uncor-
related with the error estimate, similarly to the standard
Kalman filtering. If we substitute Eqn. (22) back into Eqn.
(19) and (20), and after performing some straightforward
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algebraic manipulations we get:

P = γ̄(A − KC)P (A − KC)T + (1 − γ̄)APAT +

+ν̄(1 − ν̄)P + Q + γ̄KRKT
(23)

= Φ1(P , P , K)

P = (A−ν̄BL)P (A−ν̄BL)T +γ̄K(CPCT +R)KT
(24)

= Φ2(P , P , K)

Λ = ν̄(A − BL)T Λ(A − BL) + (1 − ν̄)AT ΛA +

+W + ν̄(LT `
U + (1 − ν̄)BT ΛB

´
L (25)

= Φ3(Λ, Λ, K)

Λ = ν̄(A−BL)T Λ(A−BL)+ (1 − ν̄)AT ΛA +

+ν̄LT `
BT ΛB + (1 − ν̄)BT ΛB + U

´
(26)

= Φ4(Λ, Λ, K)

Similarly, if we use Eqn. (22) into the last two partial
derivatives of Eqn. (18), and after after performing some
straightforward algebraic manipulations, we get:

K = APCT `
CPCT + R

´†
(27)

= Φ5(P )

L =
`
BT ΛB + (1 − ν̄)BT ΛB + U

´†
BT ΛA (28)

= Φ6(Λ, Λ)

where the symbol † represents the Moore-Penrose pseu-

doinverse. An iterative solution to the set of Equations (23)-

(28) shown above will provide necessary conditions for

optimality. Clearly, if there exists only one minimum, the

condition becomes also sufficient. Note that if ν̄ = γ̄ = 1
and we substitute Eqn. (27) into Eqn. (23), and Eqn. (28)

into Eqn. (25), we obtain the standard Algebraic Riccati

equations for the Kalman filter and LQ optimal controller,

respectively. Next section provide an iterative algorithm that

converges to solution of the optimization problem if such a

solution is finite.

B. Iterative solution and sufficient conditions
As described above, the six coupled nonlinear Equa-

tions (23)-(28), define a set of necessary conditions. A

natural choice to try to find a fixed point is to use an iterative

solution as the following:

P k+1 = Φ1(P k, P k, Kk) (29)

P k+1 = Φ2(P k, P k, Kk) (30)

Λk+1 = Φ3(Λk,Λk, Lk) (31)

Λk+1 = Φ4(Λk,Λk, Lk) (32)

Kk = Φ5(P k) (33)

Lk = Φ6(Λk,Λk) (34)

For ease of notation, if we substitute the last two equations

for the gains Kk, Lk into the previous four, the iterative

update can be written in a more compact for as follows:

(P k+1, P k+1,Λk+1, Λk+1) = Φ(P k, P k,Λk, Λk) (35)

It was shown by De Koning in [6] that under some

standard hypotheses, the necessary conditions given by

Equations (23)-(28) are also sufficient and that the iterative

solution given by Equations (29)-(34) converges to the fixed

point solution. We adapt his results to our scenario in the

following theorem:
Theorem 1: Let us consider the close loop control sys-

tems defined by Equations (1)-(2) and (9)-(10), where νk

and γk are Bernoulli random variables with mean ν̄ and γ̄,

respectively. Assume that (A,B), (AT , CT ), (A,W
1
2 ) and

(AT , Q
1
2 ) are all stabilizzable, and U > 0, R > 0. Then,

the sequence defined by Equations (29)-(34) starting from

initial conditions P 0 = P 0 = Λ0 = Λ0 = 0 converges to

the unique solution of the optimization problem defined by

Eqn. (16), i.e.

lim
k→∞

Φk(0, 0, 0, 0) = (P
∗
, P ∗,Λ

∗
,Λ∗),

if and only if the sequence defined by Equations (29)-(34)

where W = Q = 0, V = R = 0 and initial conditions

P 0 = Λ0 = I and P 0 = Λ0 = 0 converge to zero, i.e.

lim
k→∞

Φk(I, 0, I, 0) = (0, 0, 0, 0)
The proof of the previous theorem is rather involved and

requires the use of the homotopic continuation method to

prove convergence, therefore it is omitted. We refer the

interested reader to [6] and [18] for details.
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ga
in
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Fig. 3. Convergence of the optimization problem. The iterative method
converges to a unique minimum

V. DISCUSSION

In the previous section we provided necessary and suf-

ficient conditions for the existence of an optimum, along

with an iterative method to compute it. This section shows

some numerical example and applications of the proposed

iterative algorithm.
For the sake of simplicity, consider a scalar version of the

system of Equations (1)-(3), with B = C = Q = R = W =
U = 1, A = 1.1, ν = γ = 0.8. Figure 3 shows a contour

plot of the infinite horizon cost as a function of the con-

troller an estimator gains. Note that the cost function is non-

convex, but that there is a unique minimum. The same figure

shows how the cost converges after just a few iteration
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Fig. 4. Comparison between the optimal TCP-like LQG controller and
the suboptimal UDP-like controller. There is little loss of performance in
choosing a suboptimal UDP controller, while saving much complexity in
protocol design.

steps, suggesting that the algorithm is also computationally

efficient. Figure 4, instead, shows a comparison between

the optimal TCP-like LQG controller and the suboptimal

UDP-like controller derived above, for different values of

ν, γ. The figure suggests that for sufficiently high arrival

rate, implementing an optimal controller over a TCP-like

network does not provide a significant advantage. This is

particularly useful to the designer, who can trade off high

complexity in the network design with a little performance

loss.

VI. CONCLUSION AND FUTURE WORK

In this paper we analyzed a generalized version of the

LQG control problem in the case where both observation

and control packets may be lost during transmission over a

communication channel. This situation arises frequently in

distributed systems where sensors, controllers and actuators

reside in different physical locations and have to rely on

data networks to exchange information. In this context

controller design heavily depends on the communication

protocol used. In fact, in TCP protocols, acknowledgements

of successful transmissions of control packets are provided

to the controller, while in UDP protocols, no such feedback

is provided. In the first case, the separation principle holds

and the optimal control is a linear function of the state.

As a consequence, controller and estimator design prob-

lems are decoupled. UDP-like protocols present a much

more complex problem. We have shown that the lack of

acknowledgement of control packets results in the failure

of the separation principle. Estimation and control are now

intimately coupled. We have shown that the LQG optimal

control is, in general, nonlinear in the estimated state. In

the particular case, where we have access to full state

information, the optimal controller is linear in the state.

To fully exploit UDP-like protocols it is necessary to have

a controller/estimator design methodology for the general

case when there is measurement noise and under partial

state observation. As UDP protocols are the only practical

solution in many cases where the channel is too unreliable to

guarantee successful delivery of acknowledgement, it would

prove extremely valuable to determine the optimal time-

invariant LQG controller. Among all possible choices we

focused on the class of linear controllers, for their simplicity

in implementation. After describing the optimization prob-

lem, we derived necessary and sufficient conditions for the

existence of a unique solution. Probably our most interesting

finding, for practical purposes, is that control performance

is not greatly affected by lack of optimality of the linear

controller.
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