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Abstract— This paper considers the problem of tracking an
unknown number of targets using a wireless sensor network for
surveillance. In particular, we consider the case in which each
sensor reports only a binary value indicating whether an object
is detected near the reporting sensor or not. Since the number
of targets and initial states of targets are unknown in advance,
the task of tracking with coarse measurements from binary
sensors is extremely challenging. This paper develops an efficient
multi-sensor fusion algorithm which converts binary detections
into finer position reports using spatial correlation. The fused
measurements are then used by the Markov chain Monte Carlo
data association (MCMCDA) algorithm to track an unknown
number of targets. The algorithm has been successfully applied
in real-time to track an unknown number of human subjects
moving through an outdoor field monitored by a wireless sensor
network. To our knowledge, this paper presents the first large-
scale demonstration of multi-target tracking using a wireless
sensor network without relying on classification.

I. INTRODUCTION

In wireless ad-hoc sensor networks, a large number of
small and cheap sensor-rich devices forms an ad-hoc network
to monitor changes in our environment [1–3]. Each device,
called a sensor node, is capable of sensing, computation and
communication. It is envisioned that an abundant number of
spatially spread sensors will enable us to monitor changes in
our environment [2]. In particular, wireless sensor networks
are useful in applications that require locating and tracking
moving targets. Typical examples include search-and-rescue
operations, civil surveillance systems, inventory systems for
moving parts in a warehouse, and search-and-capture mis-
sions in military scenarios. The problems appearing in these
applications can be cast as multi-target tracking problems.
However, while sensor networks can provide observability
over a large area, they cannot provide consistent, high-quality
measurements in a timely manner due to packet losses,
communication delays, and false detections. This has been the
main challenge in developing a real-time surveillance system
using sensor networks.

The capability of each sensor node is limited by constraints
such as a limited supply of power, manufacturing costs, and
limited package sizes. Consequently, each sensor node has
short communication and sensing ranges, a limited amount of
memory and limited computational power. Considering these
limitations, the well known multi-target tracking algorithms
such as joint probabilistic data association filter (JPDAF)

[4] and multiple hypothesis tracker (MHT) [5, 6] are not
feasible for sensor networks due to their time and space
complexities. As a result, many new tracking algorithms have
been developed recently.

Most of the algorithms developed for sensor networks
are designed for single-target tracking [7–11] and some
of these algorithms are applied to track multiple targets
using classification [7, 10] or heuristics, such as the nearest-
neighbor filter (NNF) [11]. A few algorithms are designed
for multi-target tracking [12, 13] but the complexity of the
data association problem inherent to multi-target tracking
is avoided by classification. When tracking targets of a
similar type or when reliable classification information is not
available, the classification-based tracking algorithm behaves
as the NNF. Considering the fact that the complexity of
the data association problem is NP-hard [14], a heuristic
approach breaks down under difficult circumstances.

In this paper, we develop algorithms for a real-time
surveillance system using a sensor network of binary sensors
and describe the demonstration of the system. Each sensor
reports only a binary value indicating whether an object is
detected near the reporting sensor or not. We develop an
autonomous tracking system which can initiate and terminate
tracks of multiple targets based on Markov chain Monte
Carlo data association (MCMCDA) [15]. MCMCDA can
track an unknown number of targets in real-time and is robust
against false detections and missing detections [15], making
it ideal for our application. But since the binary detection
measurements provide coarse measurements, it is difficult
to use them directly to initiate, maintain, disambiguate,
and terminate tracks of multiple targets. Taking advantage
of spatial correlation, we develop an efficient multi-sensor
fusion algorithm which converts binary detections into finer
position reports. Since we do not know the number of targets
in advance, the fusion algorithm can provide incorrect and
inconsistent position reports. However, the inconsistency in
position reports are later fixed by MCMCDA using spatio-
temporal correlation.

Only a handful of tracking algorithms have been demon-
strated using a physical sensor network deployment. Most
often, the algorithms are used to track a single target [8,9,11]
while multiple targets are tracked using classification, e.g.,
[10]. To our knowledge, this paper presents the first large-
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scale demonstration of multi-target tracking using sensor
networks without relying on classification.

The remainder of this paper is structured as follows. The
multi-target tracking problem and its probabilistic model are
described in Section II. A multi-sensor fusion algorithm is
described in Section III. The MCMCDA algorithm for multi-
target tracking is presented in Section IV. The results from
the experiments are shown in Section V.

II. MULTI-TARGET TRACKING

Since the number of targets is unknown and time-varying,
we need a general formulation of the multi-target tracking
problem. Let T ∈ Z

+ be the duration of surveillance. Let
K be the number of targets that appear in the surveillance
region R during the surveillance period. Each target k moves
in R for some duration [tki , tkf ] ⊂ [1, T ]. Notice that the
exact values of K and {tki , tkf } are unknown. Each target
arises at a random position in R at tki , moves independently
around R until tkf and disappears. At each time, an existing
target persists with probability 1 − pz and disappears with
probability pz. The number of targets arising at each time over
R has a Poisson distribution with a parameter λbV where λb

is the birth rate of new targets per unit time, per unit volume,
and V is the volume of R. The initial position of a new target
is uniformly distributed over R.

Let F k : R
nx → R

nx be the discrete-time dynamics of
the target k, where nx is the dimension of the state variable,
and let xk(t) ∈ R

nx be the state of the target k at time t for
t = 1, . . . , T . The target k moves according to

xk(t+1) = F k(xk(t))+wk(t), for t = tki , . . . , tkf −1, (1)

where wk(t) ∈ R
nx are white noise processes. The white

noise process is included to model non-rectilinear motions
of targets. When a target is present, a noisy observation (or
measurement1) of the state of the target is measured with
a detection probability pd. There are also false alarms and
the number of false alarms has a Poisson distribution with a
parameter λfV , where λf is the false alarm rate per unit time,
per unit volume. Let n(t) be the number of observations at
time t, including both noisy observations and false alarms.
Let yj(t) ∈ R

ny be the j-th observation at time t for j =
1, . . . , n(t), where ny is the dimension of each observation
vector. Each target generates a unique observation at each
sampling time if it is detected. Let Hj : R

nx → R
ny be the

observation model. Then the observations are generated as
follows:

yj(t) =
{

Hj(xk(t)) + vj(t) if yj(t) is from xk(t)
uf(t) otherwise,

(2)
where vj(t) ∈ R

ny are white noise processes and uf(t) ∼
Unif(R) is a random process for false alarms. We assume
that the targets are indistinguishable in this paper, but if
observations include target type or attribute information,

1Note that the terms observation and measurement are used interchange-
ably in this paper.

Fig. 1. (a) An example of observations Y (each circle represents an
observation and numbers represent observation times). (b) An example of a
partition ω of Y

the state variable can be extended to include target type
information.

The main objective of the multi-target tracking problem
is to estimate K, {tki , tkf } and {xk(t) : tki ≤ t ≤ tkf }, for
k = 1, . . . ,K, from noisy observations.

Let Y (t) = {yj(t) : j = 1, . . . , n(t)} be all measurements
at time t and Y = {Y (t) : 1 ≤ t ≤ T} be all measurements
from t = 1 to t = T . Let Ω be a collection of partitions of
Y such that, for ω ∈ Ω,

1) ω = {τ0, τ1, . . . , τK};

2)
⋃K

k=0 τk = Y and τi ∩ τj = ∅ for i 	= j;
3) τ0 is a set of false alarms;
4) |τk ∩ Y (t)| ≤ 1 for k = 1, . . . ,K, t = 1, . . . , T ; and
5) |τk| ≥ 2 for k = 1, . . . ,K.

An example of a partition is shown in Figure 1 and ω is
also known as a joint association event in literature. Here,
K is the number of tracks for the given partition ω ∈ Ω and
|τk| denotes the cardinality of the set τk. We call τk a track
when there is no confusion although the actual track is the
set of estimated states from the observations τk. Note that a
track is assumed to contain at least two observations since
we cannot distinguish a track with a single observation from
a false alarm, assuming λf > 0. Notice that the definition
of Ω can be adjusted for special cases, in which pd = 1 or
λf = 0.

Let e(t − 1) be the number of targets at time t − 1, z(t)
be the number of targets terminated at time t and c(t) =
e(t − 1) − z(t) be the number of targets from time t − 1
that have not terminated at time t. Let a(t) be the number
of new targets at time t, d(t) be the number of actual target
detections at time t and g(t) = c(t) + a(t) − d(t) be the
number of undetected targets. Finally, let f(t) = n(t)− d(t)
be the number of false alarms. Using the Bayes rule, it can
be shown that the posterior of ω is:

P (ω|Y ) ∝
P (Y |ω)

∏T
t=1 p

z(t)
z (1 − pz)c(t)p

d(t)
d (1 − pd)g(t)λ

a(t)
b λ

f(t)
f
(3)

where P (Y |ω) is the likelihood of observations Y given ω,
which can be computed based on the chosen dynamic and
measurement models, e.g., [15].

There are two major approaches to solve the multi-target
tracking problem [16]: maximum a posteriori (MAP) and
Bayesian approaches. The MAP approach finds a partition of
observations such that P (ω|Y ) is maximized and estimates
the states of the targets based on this partition. A Bayesian
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Fig. 2. (left) Sensing regions of two sensors 1 and 2. Ri is the sensing
region of sensor i. (right) A partition of the overall sensing region R1 ∪R2

into non-overlapping cells S1, S2 and S3, where S1 = R1 \ R2, S2 =
R2 \ R1 and S3 = R1 ∩ R2.

approach, called minimum mean square error (MMSE), finds
estimates which minimizes the expected square error. For
instance, E(xk(t)|Y ) is the MMSE estimate for the state
xk(t) of target k. However, when the number of targets is
not fixed, a unique labeling of each target is required to find
E(xk(t)|Y ) under the MMSE approach. In this paper, we
take the MAP approach to the multi-target tracking problem
for its convenience.

III. MULTI-SENSOR FUSION ALGORITHM

In order to obtain finer position reports from binary de-
tections, we use spatial correlation among detections from
neighboring sensors. The idea behind the fusion algorithm
is to compute the likelihood of a target given detections
assuming there is a single target. This is only an approx-
imation since there can be more than one target. However,
any inconsistencies caused by this approximation are fixed by
the MCMCDA algorithm using spatio-temporal correlation.

For each sensor i, let Ri be the sensing region of i. Ri

can be an arbitrary shape but we assume that it is known to
the system in advance. Let yi ∈ {0, 1} be the detection made
by sensor i, such that sensor i reports yi = 1 if it detects
a moving object in Ri, and yi = 0 otherwise. Let pi be the
detection probability and qi be the false detection probability
of sensor i. Let x be the position of an object. For the purpose
of illustration, suppose that there are two sensors, sensor 1
and sensor 2, and R1 ∩ R2 	= ∅ (see Figure 2 (left)). The
overall sensing region R1 ∪ R2 can be partitioned into a set
of non-overlapping cells (or blocks) as shown in Figure 2
(right). The likelihoods can be computed as follows:

P (y1, y2|x ∈ S1) = py1
1 (1 − p1)1−y1qy2

2 (1 − q2)1−y2

P (y1, y2|x ∈ S2) = qy1
1 (1 − q1)1−y1py2

2 (1 − p2)1−y2

P (y1, y2|x ∈ S3) = py1
1 (1 − p1)1−y1py2

2 (1 − p2)1−y2 ,
(4)

where S1 = R1 \ R2, S2 = R2 \ R1 and S3 = R1 ∩ R2

(see Figure 2 (right)). Hence, for any deployment we can first
partition the surveillance region into a set of non-overlapping
cells. Then, given detection data, we can compute the likeli-
hood of each cell as shown in the previous example.

An example of detections of two targets by a 10 × 10
sensor grid is shown in Figure 3 (left). In this example,
the sensing region is assumed to be a disk with radius of
7.62m (10 ft). We have assumed pi = 0.7 and qi = 0.05
for all i. From the detections shown in Figure 3 (left),
its likelihood can be computed using equations similar to
(4) for each non-overlapping cell (see Figure 3 (middle)).

Notice that it is a time-consuming task to find all non-
overlapping cells for arbitrary sensing region shapes and
sensor deployments. Hence, we quantized the surveillance
region and the likelihoods are computed for a finite number
of points as shown in Figure 3 (middle).

There are two parts in this likelihood computation: the
detection part (terms involving pi) and the false detection
part (terms involving qi). Hereafter, we call the detection
part of the likelihood as the detection-likelihood and the
false detection part of the likelihood as the false-detection-
likelihood. Notice that the computation of the false-detection-
likelihood requires measurements from all sensors. However,
for a large wireless sensor network, it is not feasible to
exchange detection data with all other sensors. Instead, we
use a threshold test to avoid computing the false-detection-
likelihood and distribute the likelihood computation. The
detection-likelihood of a cell is computed if there are at
least nd detections, where nd is a user-defined threshold.
Using nd = 3, the detection-likelihood of the detections from
Figure 3 (left) can be computed as shown in Figure 3 (right).
The computation of the detection-likelihood can be done in
a distributed manner. Assign a set of non-overlapping cells
to each sensor such that no two sensors share the same cell
and each cell is assigned to a sensor whose sensing region
includes the cell. For each sensor i, let {Si1 , . . . , Sim(i)} be
a set of non-overlapping cells, where m(i) is the number of
cells assigned to sensor i. Then, if sensor i reports a detection,
it computes the likelihoods of each cells in {Si1 , . . . , Sim(i)}
based on its own measurements and the measurements from
neighboring sensors. A neighboring sensor is a sensor whose
sensing region intersects the sensing region of sensor i.

Based on the detection-likelihoods, we compute target
position reports by clustering. Let S = {S1, . . . , Sm} be a
set of cells whose detection-likelihoods are computed, i.e.,
the number of detections for each Si is at least nd. First,
randomly pick Sj from S and remove Sj from S. Then
cluster around Sj the remaining cells in S whose set-distance
to Sj is less than the sensing radius. The cells clustered with
Sj are then removed from S. Now repeat the procedure until
S is empty. Let {Ck : 1 ≤ k ≤ Kcl} be the clusters formed
by this procedure, where Kcl is the total number of clusters.
For each cluster Ck, its center of mass is computed to obtain a
a fused position report, i.e., an estimated position of a target.
An example of position reports is shown in Figure 3 (right).

IV. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION

Markov chain Monte Carlo (MCMC) plays a significant
role in many fields such as physics, statistics, economics, and
engineering [17]. In some cases, MCMC is the only known
general algorithm that finds a good approximate solution to
a complex problem in polynomial time [18]. MCMC tech-
niques have been applied to complex probability distribution
integration problems, counting problems such as #P-complete
problems, and combinatorial optimization problems [17,18].

MCMC is a general method to generate samples from a
distribution π on a space Ω by constructing a Markov chain
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Fig. 3. (a) Detections of two targets by a 10 × 10 sensor grid (targets in (red) ×, detections in (blue) disks, and sensor positions in small dots). (b)
Likelihood of detections. (c) Detection-likelihood of detections with threshold nd = 3. Estimated positions of targets are shown in (black) circles. (Figures
are best viewed in color.)

M with states ω ∈ Ω and stationary distribution π(ω). We
now describe an MCMC algorithm known as the Metropolis-
Hastings algorithm [19]. If we are at state ω ∈ Ω, we propose
ω′ ∈ Ω following the proposal distribution q(ω, ω′). The
move is accepted with an acceptance probability A(ω, ω′)
where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (5)

otherwise the sampler stays at ω, so that the detailed balance
is satisfied. If we make sure that M is irreducible and
aperiodic, then M converges to its stationary distribution by
the ergodic theorem [20].

Algorithm 1 MCMCDA (MAP)

Input: Y, nmc, ωinit

Output: ω̂
1: ω = ωinit; ω̂ = ωinit;

2: for n = 1 to nmc do
3: propose ω′ based on ω (see Figure 4)

4: sample U from Unif[0, 1]
5: ω = ω′ if U < A(ω, ω′)
6: ω̂ = ω if p(ω|Y )/p(ω̂|Y ) > 1
7: end for

The MCMC data association (MCMCDA) algorithm is
described in Algorithm 1. MCMCDA is an MCMC algorithm
whose state space is Ω, as described in Section II, and whose
stationary distribution is the posterior (3). The acceptance
probability A(ω, ω′) is defined in (5) where π(ω) = P (ω|Y )
from (3). The proposal distribution for MCMCDA consists
of five types of moves (a total of eight moves). They are (1)
a birth/death move pair; (2) a split/merge move pair; (3) an
extension/reduction move pair; (4) a track update move; and
(5) a track switch move. The MCMCDA moves are illustrated
in Figure 4. For a detailed description of each move, see [15].
The inputs for MCMCDA are the set of all observations Y ,
the number of samples nmc, the initial state ωinit. The output ω̂

approximates the MAP estimate arg max P (ω|Y ). For given
ω̂, the states of the targets can be easily computed by running
any filtering algorithm since the associations between the
targets and the measurements are now completely known.
In the experiment, the online version of MCMCDA [15] is
used.

It has been shown that MCMCDA is an optimal Bayesian
filter in the limit, i.e., given a bounded function X : Ω → R

n,
X̂ → EπX as nmc → ∞ [16]. In addition, in terms
of time and memory, MCMCDA is more computationally
efficient than MHT and outperforms MHT with heuristics
(i.e., pruning, gating, clustering, N -scan-back logic and k-
best hypotheses) under extreme conditions, such as a large
number of targets in a dense environment, low detection
probabilities, and high false alarm rates [15]. In addition,
the algorithm is robust against transmission failures, commu-
nication delays and sensor localization error. In simulation,
there is no performance loss up to an average localization
error of 0.7 times the separation between sensors, and the
algorithm tolerates up to 50% lost-to-total packet ratio and
90% delayed-to-total packet ratio [21].

V. EXPERIMENTS

Multi-target tracking was demonstrated at the Defense
Advanced Research Projects Agency (DARPA) Network Em-
bedded Systems Technology (NEST) final experiment on
August 30, 2005. The experiment was performed using an
outdoor sensor network testbed consisting of 557 Trio motes
[22] (see Figure 5). 144 of these nodes were used for the
tracking experiment. However, six out of the 144 nodes used
in the experiment were not functioning on the day of the
demo. The 144 nodes used for the tracking experiment were
deployed at approximately 5 meter spacing in a 12×12 grid.

Each sensor node includes a microphone, x-y axis mag-
netometers, and four passive infrared (PIR) motion sensors.
But we found that the PIR sensors were the most effective
for sensing human subjects moving through the sensor field.
The magnetometer sensor had limited range and the acoustic
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Fig. 4. Graphical illustration of MCMCDA moves (associations are
indicated by dotted lines and hollow circles are false alarms). Each move
proposes a new joint association event ω′ which is a modification of the
current joint association event ω. The birth move proposes ω′ by forming
a new track from the set of false alarms ((a) → (b)). The death move
proposes ω′ by combining one of the existing tracks into the set of false
alarms ((b) → (a)). The split move splits a track from ω into two tracks
((c) → (d)) while the merge move combines two tracks in ω into a
single track ((d) → (c)). The extension move extends an existing track
in ω ((e) → (f)) and the reduction move reduces an existing track in ω
((f) → (e)). The track update move chooses a track in ω and assigns
different measurements from the set of false alarms ((g) ↔ (h)). The track
switch move chooses two track from ω and switches some measurement-
to-track associations ((i) ↔ (j)). A move is chosen randomly from the
distribution ξK(m), where K is the number of tracks of the current partition
ω and m is used to index a move, such that m = 1 for a birth move, m = 2
for a death move and so on. For more detail, see [15].

Fig. 5. Hardware for the sensor nodes. (left) Trio sensor node on a tripod.
On top is the microphone, buzzer, solar panel, and user and reset buttons.
On the sides are the windows for the passive infrared sensors. (right) A live
picture from the experiment.

sensor required complex signal processing to separate the
acoustic signatures of a moving target from background

noise. The PIR sensors provided an effective range of ap-
proximately 8 meters. The variability in the signal strength
of the PIR sensor reading prohibited extraction of ranging
information from the sensor, so the PIR sensors were used
as binary detectors.

Tracking was demonstrated on one, two, and three human
targets, with targets entering the field at different times. The
tracking algorithm used in the experiment is a combination
of the multi-sensor fusion algorithm described in Section III
and the online version of the MCMCDA algorithm [15]. In all
three experiments, the tracking algorithm correctly estimated
the number of targets and produced good tracks of targets.
Furthermore, the algorithm was robust to crossing tracks
and correctly disambiguated crossing targets in the two and
three target experiments without generating a spurious track.
The algorithm does this without classification labels on the
targets. Instead, the algorithm uses the dynamic models of
the targets and the past measurements to help determine their
trajectories.

Figure 6 shows the multi-target tracking results with three
people walking through the field. The three people entered
and exited the field around time 10 and 80, respectively.
During the experiment, the algorithm correctly rejected false
alarms and compensated for missing detections. There were
many false alarms during the span of the experiments, as
can be seen in Figure 7, before time 10 and after time 80.
Also, though not shown in the figures, the algorithm dy-
namically corrected previous track hypotheses as it received
more sensor readings. Figure 7 also gives a sense of the
burstiness of the traffic. The spike in traffic shortly after time
50 was approximately when two of the targets crossed. It
shows that the proposed algorithm is robust against missing
measurements, false measurements and the burstiness in the
network. For detail information about the experiment setup
and additional experimental results, we refer readers to our
companion paper [23].

VI. CONCLUSION

In this paper, we have considered a problem of tracking
an unknown number of targets using a wireless sensor
network with binary sensors for surveillance and presented
a tracking algorithm which combines the multi-sensor fusion
algorithm and the MCMCDA algorithm. The multi-sensor
fusion algorithm converts binary detections into finer ap-
proximate position reports using spatial correlation. However,
the inconsistency in these position reports are later fixed by
the MCMCDA algorithm using spatio-temporal correlation.
The combined algorithm has been successfully applied in
real-time to track an unknown number of human subjects
moving through an outdoor field monitored by a wireless
sensor network. Although, each sensor node provides noisy
and inconsistent measurements, this paper has shown that
the proper use of spatio-temporal correlation allows us to
find accurate and robust estimates of the states of a complex
dynamical system using wireless sensor networks.
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Fig. 6. Estimated tracks of targets from the experiment with three people
walking in the field. (upper left) Detection panel. Sensors are marked by
small dots and detections are shown in large disks. (lower left) Fusion panel
shows the fused likelihood. (right) Estimated Tracks and Pursuer-to-evader
Assignment panel shows the tracks estimated by the algorithm. (This figure
is best viewed in color.)

Fig. 7. Raster plot of the binary detection reports from the three target
tracking demo. Dots represent detections from nodes received at the base
station (node IDs on the y-axis).
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