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Distributed Sensor Localization
in Euclidean Spaces: Dynamic Environments

Usman A. Khan, Soummya Kar, Bruno Sinopoli and José M. F. Moura

Abstract— In [1], we presented an algorithm to localize
sensors in m-dimensional Euclidean space R

n with unknown
locations assuming the following: 1) there are (m + 1) sensors
that know their absolute coordinates–the anchors; 2) each
sensor communicates with m + 1 of its neighbors; and 3) the
sensors lie in the convex hull of the anchors. The localization
algorithm is a generalization of consensus–it is a weighted
linear, iterative, and distributed algorithm. The weights are the
barycentric coordinates of a sensor with respect to its neighbors,
which are computed by the generalized volumes obtained from
the intersensor distances in the Cayley-Menger determinants.
This paper expands on this work to take advantage of when
the number of anchors available possibly exceeds m + 1, a
sensor can communicate with all sensors within its radius
of communication, and when the network communication
topology may be dynamic as, for example, when the network
neighborhood structure changes over time. The paper shows
that the algorithm converges to the exact sensor locations in
the absence of noise.

I. INTRODUCTION

Localization is a fundamental problem in sensor networks.
In applications where the sensors are deployed randomly,
information about their locations is key to place the sen-
sor measurements in a proper geographical context. For
this purpose, adding a GPS receiver to each sensor has
several disadvantages: they are prohibitively expensive; not
robust to jamming for military applications; and the satellite
reception is restricted in the indoor environments. In [1],
we presented a distributed sensor localization algorithm in
the m−dimensional Euclidean space, R

m (m ≥ 1), that
requires a minimal number, m + 1, of anchors who know
their locations exactly1. We assume that the sensors lie in
the convex hull of the anchors. The resulting distributed
localization algorithm is iterative and we show that the
iterations converge to the exact sensor locations. At each
sensor, the iterations involve a convex combination of the
location estimates at the neighboring sensors. The weights of
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1It is well-known that resolving the location of an arbitrary sensor
(in R

m) using the sensor-anchor distances requires the sensor to communi-
cate to at least m + 1 anchors. In [1], we take this result one step further
and show that in a sensor network where each sensor is only connected to
a few neighboring sensors (that may not include any anchor) and only the
distances with these neighbors are known at the sensors, the locations of any
arbitrary number, M � m, of sensors can be resolved with at least m + 1
anchors.

the convex combinations are computed using the barycentric
coordinates, [2], [3], and the Cayley-Menger determinants,
[4]. We note that the inclusion of an arbitrary number of
anchors and arbitrary neighborhood sizes for each sensor
generally leads to faster convergence of the localization
algorithm, as shown by our detailed simulations.

The setup we assume in this paper (underwater, on the
surface, or in freespace) suits most practical applications,
for example: (i) M UAVs in R

3 lying in the convex hull
of a minimal of m + 1 = 4 beacons. The beacons are
the anchors and the M UAVs are the sensors. Each UAV
communicates to its neighboring m + 1 UAVs and only
knows its distance to these neighbors. (ii) In a battlefield,
M soldiers with unknown locations are positioned in the
convex hull of m+1 base stations. The base stations serve as
anchors and each base station communicates only with a few
soldiers. The soldiers communicate with m+1−neighboring
soldiers with respect to whom they know their mutual
distances. Other applications include localizing sensors in a
sensor network, packages in a shipping facility, unmanned
aircrafts, objects in a warehousing/manufacturing facility,
and animals to study their behavior and their interactions.
A comprehensive study of several applications is in [5]. In
all these cases, it is reasonable to assume that all the objects
lie in the convex hull of the m + 1 anchors and that the
communications are local, i.e., they can only communicate
with a few neighboring objects. A distributed localization
algorithm is essential for such scenarios with the sensors
interacting with neighboring sensors to iteratively learn their
own location. In this work, we further extend these results to
dynamic network topologies and more than m + 1 anchors
and neighbors.

Work on distributed localization algorithms include [6],
[7], [8], [9], [10], [11], [12]. In [1], we provide a brief review
of localization algorithms; we refer the reader to [1] and the
references there in.

The algorithm we present here is of the class of consensus
algorithms, see [13]. Consensus is a distributed iterative
algorithm, [14], which has received considerable attention
recently. Many applications reduce to consensus like dy-
namic load balancing, [15], multiagent coordination, [16],
distributed detection, [17], [18], for a recent review see [19].
In particular, in distributed detection, consensus extends the
parallel architecture traditionally used, [20], [21], [22], for
a review of early work on parallel fusion see [23], and for
more recent work, see our own and the references therein,
[24], [25], [26], to arbitrary network topologies.

We organize the rest of the paper as follows. Section II
overviews the localization algorithm presented in [1]. Sec-
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tion III discusses the problem formulation we adopt here.
Section IV discusses network topology dynamics, whereas
Sections V and VI consider the algorithm when more
than m + 1 anchors and more than m + 1 neighbors are
available, respectively. Section VII presents simulation stud-
ies and Section IX concludes the paper.

II. BACKGROUND

In this section, we summarize the distributed localiza-
tion algorithm in [1]. We introduce the following notation.
In R

m (m ≥ 1), let Ω be the set of M sensors with unknown
location and let κ be the set of m + 1 anchors (that know
their locations exactly) such that

C(Ω) ⊂ C(κ), (1)

where C(·) denotes the convex hull formed by the elements
of the set in its argument. The previous statement is another
way of stating that the M sensors lie in the convex hull
of m+1 anchors. Let Θ be the set of all of the nodes in the
network, i.e., Θ = Ω ∪ κ. We assume that for each p ∈ Ω
there exists a triangulation set2, Θp ⊂ Θ, such that

|Θp| = m + 1 (2)

p ∈ C(Θp) (3)

AΘp
> 0, (4)

where AΘp
is the generalized volume of the convex hull

of Θp.
The location of a sensor, p ∈ Ω, is now written as a convex

combination of the locations of the elements in Θp

cp =
∑

j∈Θp

apjcj , (5)

where cp = [c1,p, . . . , cm,p] is the (location) coordinate row
of the pth sensor and apj are the barycentric coordinates [2],
[3]. We have the following properties on apj .

apj ∈ [0, 1], ∀ j, (6)∑
j∈Θp

apj = 1. (7)

The barycentric coordinates, apj , are computed by

apj =
AΘp∪{p}−{j}

AΘp

. (8)

It can be noted that, with the above equation for apj ,
the properties in (6) and (7) are satisfied. The barycentric
coordinates, apj , are the ratios of the generalized volumes
of two sets, see (8), and are computed using only the distance
information among the elements in the set, Θp∪{p}, by using
the Cayley-Menger determinants [4], see Appendix I.

2The identification of a triangulation set is an important step in the
algorithm. A convex hull inclusion test is provided in [1] to test if a
sensor lies in the convex hull of m + 1 arbitrarily chosen sensors from
its neighbors. Probabilistic bounds on the communication radius and the
sensor deployment density are also provided in [1] to guarantee a successful
triangulation with arbitrary high probability.

In (5), since the elements in Θp that lie in Ω also do not
know their exact locations, we write the following iterative
algorithm for the location of sensor p.

cp(t + 1) =

{
cp(t), p ∈ κ,∑

j∈Θp
apjcj(t), p ∈ Ω.

(9)

We now write the iterative algorithm given in (9) in matrix
form. We have

C(t + 1) = YC(t), (10)

where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

...
cm+1

cm+2

...
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

and n = m+1+M . The first m+1 rows of C correspond to
the anchors and hence keep their coordinates and the last M
rows are updated according to (9). The iteration matrix, Y,
is partitioned as

Y =

[
Im+1 0

B P

]
, (12)

where Im+1 is an (m + 1) × (m + 1) identity matrix, B

is M × (m + 1) matrix and P is an M × M matrix. Each
row in the iteration matrix, Y, sums to 1 and each element
lies in the interval [0, 1]. The iteration matrix, Y, can be
thought of as a transition probability matrix of an absorbing
Markov chain and it can also be seen that the matrix P is a
substochastic matrix, i.e., ρ(P) < 1, where ρ(·) denotes the
spectral norm of a matrix, see [1] for details.

A. Convergence

The iterative algorithm in (10) can be written as

C(t + 1) = Y
t+1

C(0),

=

[
Im+1 0∑t

k=1 P
k
B P

t+1

]
C(0),

→

[
Im+1 0

(IM − P)−1
B 0

]
C(0), (13)

as t goes to infinity. The last equation follows from Lemma 4
provided in Appendix II. It can be noted that the iterative
algorithm converges to a representation of each node in the
network in terms of only the anchors. It is shown in [1] that
this representation is the exact representation of the sensors
with unknown locations in terms of the anchors, i.e.,

C(t + 1) → C
∗, (14)

where C
∗ is the exact coordinate matrix of the sensors

plus the anchors. Furthermore, it can also be seen that
the algorithm converges for any initial condition on the
sensors in Ω. The proof is carried out using a coordinate
transformation method [1]. In this paper, we give an alternate
proof of the above iterative algorithm.
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III. PROBLEM FORMULATION

In this paper, we generalize our results in [1] to the
following cases. (i) In [1], we required the iteration matrix,
Y, to be fixed in the algorithm. This assumption corresponds
to static network topology. Here, we let the network topology
to be dynamic, and hence a different iteration matrix can be
chosen at each time step, t, of the algorithm. (ii) |κ| > m+1,
i.e., the number of anchors can be greater than m+1. (iii) We
also give a different proof (from [1]) for the convergence of
the iterative algorithm. (iv) |Θp| > m+1, i.e., the number of
neighboring sensors that a particular sensor used to express
its own coordinates can be more than m + 1.

IV. DYNAMIC NETWORK TOPOLOGY

In case of dynamic network topology, each sensor, p,
chooses a different neighborhood Θp(t) at each iteration t
of the iterative algorithm, such that (2)–(4) holds for Θp(t).
In this case, the coordinates of the pth sensor can be written
as

cp(t + 1) =

{
cp(t), p ∈ κ,∑

j∈Θp(t) apj(t)cj(t), p ∈ Ω.
(15)

Lemma 1: The localization algorithm (15) converges to
the exact sensor locations, C

∗.
Proof: The resulting localization algorithm (15) is

where the iteration matrix, Y, becomes a function of time,
Y(t), and can be written as

C(t + 1) = Y(t)C(t),

=
t∏

l=0

Y(l)C(0). (16)

Consider the matrices, Υt, given by the product in (16),
i.e.,

Υt =

t∏
l=0

Y(l) (17)

where each Y(l) can be partitioned as shown in (12). It
follows from the structure of the matrices, Y(l), that

Υt =

[
Im+1 0

Bt Pt

]
. . .

[
Im+1 0

B0 P0

]
,

=

[
Im+1 0

Jt

∏t

l=0 Pl

]
. (18)

Let the exact coordinate matrix, C
∗, be partitioned into

the exact coordinates of the anchors, C
∗
κ, and the exact

coordinates of the sensors, C
∗
Ω, as

C
∗ =

[
C

∗
κ

C
∗
Ω

]
. (19)

Since, C
∗ is the fixed point of each Y(l) in the product

matrix, Υt, i.e.,[
C

∗
κ

C
∗
Ω

]
= Y(l)

[
C

∗
κ

C
∗
Ω

]
, ∀l, (20)

it follows that C
∗ is the fixed point of the product matrix,

Υt, in (17).

In particular,

JtC
∗
κ +

(
t∏

l=0

Pl

)
C

∗
Ω = C

∗
Ω, ∀t. (21)

Since the matrix Pl is substochastic for any l = 0, . . . , t
(see [1]), we have

lim
t→∞

t∏
l=0

Pl = 0. (22)

Therefore, it follows from (21), that limt→∞ JtC
∗
κ exists

and, in particular,

lim
t→∞

JtC
∗
κ = C

∗
Ω. (23)

Now let

C(0) =

[
C

∗
κ

CΩ

]
, (24)

be the actual initial state of the algorithm where CΩ is any
arbitrary initial guess of the sensor locations. Then,

lim
t→∞

C(t) = lim
t→∞

Υt

[
C

∗
κ

CΩ

]
,

= lim
t→∞

[
C

∗
κ

JtC
∗
κ +

(∏t

l=0 Pl

)
CΩ

]
,

=

[
C

∗
κ,

C
∗
Ω

]
. (25)

V. MORE THAN m + 1 ANCHORS

In this section, we study the case where the number of
anchors is greater than m + 1, i.e., |κ| = K > m + 1.
This happens when, for instance, M sensors do not lie in
the convex hull of m + 1 anchors, but, lie in the convex
hull of K > m + 1 anchors. The iterative procedure has the
same form as (10), however, the total number of sensors plus
anchors becomes K +M . The coordinate matrix, C, has the
dimension (K + M)×m and the iteration matrix, YK , has
the dimension (K + M)× (K + M) that can be partitioned
as

YK =

[
IK 0

B P

]
, (26)

where IK is a K×K identity matrix, B is an M×K matrix
and P is an M × M matrix.

Lemma 2: The iterative localization algorithm with K >
m+1 anchors resulting into the iteration matrix, YK , in (26)
converges to the exact sensor locations, C

∗.
Proof: Since C

∗ is the fixed point of the (10), we have[
C

∗
κ

C
∗
Ω

]
=

[
IK 0

B P

] [
C

∗
κ

C
∗
Ω

]
, (27)

⇒ C
∗
Ω = BC

∗
κ + PC

∗
Ω, (28)

which gives
C

∗
Ω = (IM − P)

−1
BC

∗
κ. (29)

Since P is a substochastic matrix with ρ(P) < 1, the
eigenvalues of P lie in [0, 1), the eigenvalues of IM − P

lie in (0, 1] and hence IM − P is invertible.
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Using Lemma 4 again, it can be shown that

lim
t→∞

Y
t+1
K =

[
IK 0

(IM − P)−1
B 0

]
. (30)

Hence the iterative algorithm converges to

lim
t→∞

C
t+1 = (IM − P)−1

BC
∗
κ = C

∗
Ω. (31)

This completes the proof for the case when we have more
than m + 1 anchors.

The proof for K = m + 1 can be formulated as a special
case of the above arguments and, hence, the above argument
provides an alternative proof for the localization algorithm
presented in [1].

VI. MORE THAN m + 1 NEIGHBORS

Motivated by wireless sensor networks (WSNs), where
each sensor broadcasts its data in a communication radius
and every other sensor that lies in its communication radius
can receive its data, we consider the case when a sensor can
have more than m + 1 neighboring nodes. Let Θ̂p denote
the set of sensors or anchors that lie in the communication
radius, Rp, of sensor p, i.e.,

Θ̂p = {j : dpj < Rp}, (32)

where dpj is the Euclidean distance between node p and
node j. Let Θp = {Θi

p} ⊆ Θ̂p be the collection of subsets
of Θ̂p such that for each element, Θi

p ∈ Θp, (2)–(4) holds.
If Θp = ∅, the pth sensor increases its communication
radius, Rp, until |Θp| ≥ 1 (note that |∅| = 0). In this fashion,
each sensor can adaptively choose its communication radius,
Rp, large enough such that |Θp| ≥ 1.

The coordinates of sensor p’s location can now be ex-
pressed uniquely in terms of any element, Θi

p ∈ Θp,
by using (5). Furthermore, each sensor p can express its
coordinates in terms of all the elements in Θp as a convex
combination of each of them, i.e.,

cp =
∑

i

wi
p

∑
j∈Θi

p

ai
pjcj , p ∈ Ω, (33)

where wi
p ≥ 0 ∀i and

∑
i wi

p = 1. An iterative procedure
obtained on (33) is given by

cp(t + 1) =

{
cp(t), p ∈ κ,∑

i wi
p

∑
j∈Θi

p
ai

pjcj(t), p ∈ Ω. (34)

Lemma 3: The distributed localization algorithm in (34)
converges to the exact sensor locations, C

∗.
Proof: The distributed localization algorithm in (34)

can be written in matrix form as

C(t + 1) = ỸC(t). (35)

As shown in (33), we again note that the way we have derived
the iteration matrix, Ỹ, the matrix of exact coordinates, C

∗,
still remains the fixed point of the algorithm, i.e.,[

C
∗
κ

C
∗
Ω

]
=

[
Im+1 0

B̃ P̃

] [
C

∗
κ

C
∗
Ω

]
, (36)

⇒ C
∗
Ω = B̃C

∗

κ + P̃C
∗

Ω, (37)
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Fig. 1. For a fixed sensor, its 3 different neighborhoods are shown.
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Fig. 2. Performance comparison of the dynamic scheme with T = 20
static (fixed) topologies.

which gives

C
∗
Ω =

(
IM − P̃

)−1

B̃C
∗

κ. (38)

It is straightforward to show that P̃ is a substochastic matrix
since it is a convex combination of substochastic matrices.

Using Lemma 4 again, it can be shown that

lim
t→∞

Ỹ
t+1 =

[
Im+1 0

(IM − P̃)−1
B̃ 0

]
. (39)

Hence the iterative algorithm converges to

lim
t→∞

C
t+1 = (IM − P̃)−1

B̃C
∗
κ = C

∗
Ω. (40)

VII. SIMULATIONS

In this section, we present numerical experiments.

A. Case 1: Dynamic Network Topology

We simulate an n = 20 node network in m =
2−Euclidean space, where we have K = m+1 = 3 anchors
(with known locations) and M = 17 sensors (with unknown
locations). We formulate T = 20 different iteration matrices,
Y(l), where l = 1, . . . , 20 and at each iteration, t, of the
algorithm we randomly choose one out of the 20 iteration
matrices. The dynamical network topology for a particular
sensor is shown in Fig. 1 where 3 different neighborhoods
are shown. Fig. 2 compares the performance of the dynamic
scheme with T = 20 static networks.
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Fig. 3. (a) The overall sensor network with K = 4 > m+1 anchors such
that C(Ω) ⊂ C(κ). (b) Dividing the overall network into two subproblems
where we have m + 1 = 3 anchors for each of the subproblems.
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Fig. 4. Performance comparison between the aggregated performance of
the two subproblems and the scheme with K = 4 anchors.

B. Case 2: More than m + 1 anchors

We simulate an n = 60 node network in m =
2−Euclidean space, where we have K = 4 > m + 1
anchors (with known locations) and M = 56 sensors (with
unknown locations). Fig. 3(a) shows the overall network
where the M = 56 sensors lie in the convex hull of K = 4
anchors. Fig. 3(b) divides the original problem into two
subproblems, each of which is solving the unknown sensors
with m + 1 = 3 anchors. Fig. 4 compares the combined
performance of the two subproblems with the performance
of the scheme where we used more anchors.

C. Case 3: More than m + 1 neighbors

We simulate an n = 20 node network in m =
2−Euclidean space, where we have K = m + 1 = 3
anchors (with known locations) and M = 17 sensors (with
unknown locations). The neighborhood, Θi

p, of the pth sensor
is chosen adaptively by increasing the communication radius,
Rp, of the pth sensor as discussed in Section VI. Adaptive
choice of the communication radius is shown in Fig. 5(a)
for three arbitrarily chosen sensors. Fig. 5(b) shows the
resulting communication network where it can be verified
that each sensor is now connected to more than m + 1
neighbors. Performance comparison of fixed m+1 neighbors
for each T = 20 different neighborhoods with the scheme
where all the neighborhoods are combined using a weighting
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(a)

0 20 40 60 80 100
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100

(b)

Fig. 5. (a) Adaptively choosing the communication radius, Rp shown for
three arbitrarily chosen sensors. (b) Resulting network where each sensor
is connected to more than m + 1 = 3 neighbors.
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1

 

 

m+1 neighbors
more than m+1 neighbors

Fig. 6. Performance of the fixed m + 1 neighbors with more than m + 1
neighbors.

sequence is shown in Fig. 6. The combining weights are
chosen to be 1/Np, where Np = |Θp|.

VIII. REMARKS

It is a straightforward generalization to combine all of
the three scenarios presented in this paper. The resulting
algorithm gives a comprehensive distributed localization
algorithm that deals with random network topologies, any
number, K ≥ m + 1, of anchors and incorporates all
the sensors in the neighborhood of each sensor to achieve
sensor localization. In practical wireless sensor network
applications, the sensing environment is, in general, random,
leading to communication link failures among the sensors,
randomness in the system parameters, and quantized data
exchange due to bandwidth restrictions. In other work, we
have considered noisy and quantized communications in con-
sensus, with possibly random link failures, [27], [28] using
stochastic approximation to prove almost sure convergence.
Similar generalizations can be considered for the set-up
presented here. Under broad assumptions of environment
uncertainty, the distributed localization algorithm can be
extended to account for these random phenomena, see [1],
which treats the scenario when noisy inter-sensor distance
measurements are available and inter-sensor communication
is imperfect.
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IX. CONCLUSIONS

In this paper, we extended our work on distributed sensor
localization in [1] and presented a comprehensive generaliza-
tion to our approach. This contribution provides a complete
framework to apply the localization algorithm to existing
wireless sensor applications. The convergence results are
proved in all cases and the convergence is shown to be exact.
In particular, we provide the following results: (i) Choosing
the sensor network communication topology dynamically
improves the worst case performance; (ii) Increasing the
number of anchors increases the convergence of the algo-
rithm. (iii) Increasing the number of neighbors significantly
improves the worst case performance. We further provide
extensive simulations to support the theoretical claims.

APPENDIX I
CAYLEY-MENGER DETERMINANT

The Cayley-Menger determinant provides the generalized
volume, Aκ, of C(κ) [4]. Let 1m+1 denote a column vector
of m + 1 1s, the Cayley-Menger determinant is given by

A2
κ =

1

sm+1

∣∣∣∣ 0 1
T
m+1

1m+1 Γ

∣∣∣∣ , (41)

where Γ = {d2
lj}, l, j ∈ κ, is the matrix of squared distances,

dlj , among the m + 1 points in κ and

sm =
2m(m!)2

(−1)m+1
, m = {0, 1, 2, . . .}. (42)

APPENDIX II
A MATRIX RESULT

Lemma 4: If a matrix, P, is such that

ρ(P) < 1, (43)

where ρ(·) denotes the spectral norm, then

lim
t→∞

P
t+1 = 0, (44)

lim
t→∞

t∑
k=0

P
k
B = (IM − P)

−1
B. (45)

Proof: See [1].
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