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Abstract. This paper deals with the design and implementation of a
highly miniaturized, multi-sensor context recognition system. It repre-
sents an optimal trade-off between power consumption and recognition
performance rather than straightforward maximization of the recognition
rate.
We present a thumb-sized, 8 gram platform that combines sound, accel-
eration and light sensing with processing power, wireless communication
and a battery. Based on this platform we make an experimental evalu-
ation of design choices present in such multi-sensor context recognition
systems. We introduce a design method to achieve an optimal power con-
sumption vs. recognition rate trade-off through variations of the sampling
rate, feature selection and choice of classifiers. Power consumption anal-
ysis indicates that our system can operate for 300 hours without having
to recharge the battery.
An important and somewhat surprising result of our analysis is that the
addition of a sensor may be a power efficient way to improve the overall
system performance.

1 Introduction
Wearable Computing encompasses a wide variety of systems ranging from smart
badges, through intelligent textiles to backpack worn high end computers. One
important part of the wearable computing vision is that of miniaturized sensor
networks seamlessly integrated in different parts of the user’s outfit including
parts of the clothing and accessories such as jewelry, watches, keychains, glasses
etc. It has been shown by many researches that such body worn sensor net-
works can provide valuable information about user context and activity. This
information can enhance the usefulness and usability of a variety of mobile de-
vices [1]. Examples include assessing the user interruptability [2], improving user
interfaces, and providing a proactive services such as automatic delivery of ap-
propriate manuals to a maintenance worker. Thus body worn sensor networks
can be considered as essential infrastructure needed to enhance the functionality
of a whole range of mobile and wearable devices and applications.
Seamless integration in clothing and accessories invariably means that the

sensor nodes have to be small and unobtrusive. Placing a sensor inside of a ring
effectively means that only a couple of cubic millimeters of space is available for
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the system. Since in most cases a wired connection to an external power source is
not desirable (cables running from a ring are unacceptable for most situations),
this space has to accommodate not only the electronics, but also the battery
and/or a power generation system. Thus reducing the power consumption of
the system is a major design objective. In fact without the ability to run the
sensor nodes at sub-milliwatt power levels the whole concept of body worn sensor
networks is not feasible.

1.1 Paper Scope and Contributions
The design and implementation of low power, miniaturized sensor systems is one
of the main research areas of our group. Previous work included the implemen-
tation of experimental sensor systems [3, 4], analysis and design of the electronic
packaging concepts [5] and the development of systematic design methodologies
for such systems [6]. Investigations on the influence of different system parame-
ters (e.g. sampling rate, resolution) on context recognition accuracy [7, 8] have
also been made. A key idea developed through our work was to include power
consumption concerns at all layers of system design: starting with the hardware
and going up to the choice of features and classification methods. For the latter
this means that the purpose is not just to achieve the best possible recognition
rate, but rather the best trade-off between power consumption and recognition
rate. In most cases, the trade-off has to be determined empirically for a specific
application domain as part of system training.
In [7, 9] we have applied such a power consumption oriented system design to

a sound based context sensor. In this paper we extend this approach to a highly
miniaturized multi-sensor activity recognition node. First, we present a thumb-
sized, 8.2 gram hardware platform that contains two accelerometers, a visible
light sensor and a microphone, processing logic, a low power wireless transceiver
and a rechargeable battery (Sect. 2). With all components constantly running
at full power it consumes just about 8.5mW and can run off the integrated
battery for 57 hours. Secondly, we present a detailed experimental investigation
of opportunities for power savings in embedded context recognition systems.
Based on an office/household scenario we show how an optimal trade-off between
recognition rate and power consumption can be found (Sect. 3.2 – 3.5). The
analysis includes the optimization of the sampling rate, the computed features
and the classifiers. The final system has an average power consumption of 1.6mW
leading to a battery life time of 300 hours, as shown in Sect. 4.
An interesting and important result of our study is to show that with ap-

propriate feature choice, an additional sensor (in our case the light sensor) can
improve the recognition rate with nearly no cost in terms of power. This em-
phasizes the point that designing for low power needs an integrated approach
ranging from hardware specification to the tuning of classification algorithms.

1.2 Related Work
Many research groups have built their own sensor boards that contains one or
more sensors. Examples include the Smart-Its [10], Smart Badge [11], Ubisensor
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[12] or the TEA Device [13]. However the focus is usually not on small and
low-power hardware.
Accelerometers are most commonly used for activity recognition. Widely

studied activities are walking patterns like walking, standing, sitting or climb-
ing/descending stairs [4, 14–16] More than 20 daily life human activities were rec-
ognized using features from multiple accelerometers heterogeneously distributed
over the wearer’s body by L. Bao et.al. [17]. They compared the performance of
several algorithms with respect to recognition rates without major emphasis on
power consumption in the system. Combining the data from acceleration sensors
with an additional sensor such as a microphone was studied in [18], where major
emphasis was on the recognizing the tasks with improved accuracy.
Energy and performance considerations at different hardware layers in minia-

turized sensor nodes were investigated in the Smart Dust project [19]. However,
algorithms for context recognition tasks and their complexity were not consid-
ered. System design approaches to power aware mobile computers were analyzed
in [20]. An other systematic high level approach for designing distributed wear-
able systems can be found in [6]. First ideas for a more hardware oriented ap-
proach, that tries to minimize the complexity of the algorithms in respect of the
hardware resources, were reported in earlier papers by our group [8, 9].
This paper presents a more advanced stage of the methodology. It describes

the steps required to obtain an optimized algorithm which respects the recog-
nition rate vs. power consumption trade-off. We explicitly analyze the use of a
cheap sensor (in terms of power consumption) to improve the overall recognition
rate without increasing the power consumption considerably – something that
to the best of our knowledge has not been analyzed before.

2 Low Power Hardware Design

As described in the introduction, the main goals of our design were lowest possi-
ble power consumption and miniaturization of the platform. Together with our
experience on the usefulness of different sensor types for context recognition,
this has determined the choice of hardware. The system layout is show in Fig. 1.
The two accelerometers and the microphone were included since in the past they
had proven to be useful for user activity recognition [18, 9]. The light sensor was
added as a power-wise very cheap sensor on the assumption that it might allow
us to reduce the amount of data and feature complexity needed from the other
more power hungry devices. Moreover, the system is also an intermediate step
towards the implementation of a future ultra low-power sensor button, presented
by our group in [5]. Therefore the same sensors as in this design study were used.

Hardware description: We have compared different candidates before consider-
ing the final specification in Table 1. The analog signals from the microphone
and the accelerometers are low pass filtered with a 3 dB cut-off frequency of
fc = 1.4 kHz and fc = 50Hz, respectively and fed into a 12 bit 8-channel ana-
log to digital converter (ADC) which is controlled by the microcontroller. The
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Fig. 1. Overall system architecture of the sensor button

microcontroller does some local preprocessing and forwards the data to the wire-
less transceiver. In a second version of the board we replaced the microcontroller
with the slightly larger, but more powerful model MSP430F1611. The required
space can be compensated, since it already includes an 12 bit ADC. The clock
for the microcontroller (max. 4.5MHz) is generated by an internal digital con-
trolled oscillator (DCO). The DCO is adjusted and stabilized by an external
32 kHz clock crystal. This allows very energy efficient low-power modes.
The nRF2401 transceiver was chosen for it’s small size and because it’s one

of the most energy efficient on the market: due to a special burst transmit mode
it requires 26 nJ/bit for transmitting and 57 nJ/bit for receiving [12]. Moreover,
the required antenna space for a 2.4GHz system is rather small (9× 15mm2 in
our case). The whole device is powered by a lithium-polymer battery which has

Table 1. Components of the sensor board

Component Final Specifications

Accelerometers ADXL311(Analog Devices)

Microphone SP0103 (Knowles Acoustics)

Visible light sensor SFH3410(Osram)

RF Transceiver nRF2401(Nordic Semiconductors)

Microcontroller MSP430F123(Texas Instruments)

Analog-Digital-Converter AD7888 (Analog Devices), 12bit

Battery LPP402025(Varta Microbattery)
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a high capacity of 130mAh and a good form factor (20× 20×3.8mm3) and fits
under our PCB board. To get good power efficiency, a step-down converter is
used instead of a linear regulator. It provides a voltage between 2.7 to 2.8 Volts.
Overall, the system has a size of 27× 32mm2, a thickness of 9mm and weights

8.2 grams, including battery (see Fig. 2).

Additional Hardware: The back side of the hardware provides a 10 pin connector
which allows to stack the sensor board with an extension board. So far, we have
implemented a programming board, a second wireless board with a RFMDR3001
transceiver and a board which contains a RS-232 to USB converter. This last
board allows a transfer rate of up to 921.6 kBaud to a PC.

Fig. 2. Picture of the hardware. Left: top view; Right: bottom view with battery

3 Power-Optimized Recognition-Method Design

Given a fixed hardware platform, the next stage in the design of a power opti-
mized system is the choice of the recognition method. The parameters that can
be modified to reduce power consumption include the choice of sensors, their
sampling rate, the type of features extracted from the signal and choice of clas-
sifier. The aim of the design process is to find out how these parameters affect the
recognition performance and then select a point where acceptable performance
is achieved with minimal power consumption.
As a consequence the first step in our investigation is to inspect the sensor

data and to check whether a reduction in bit resolution or sampling frequency is
possible. Next, different combinations of features and classifiers are evaluated for
their recognition performance. In a third step, the computational complexity of
the features are compared to each other. Finally, by combining the two metrics –
recognition rate vs. computational complexity – the optimal recognition method
is chosen.

3.1 Experimental Scenario and Setup

Since we had studied sound based recognition in much detail in previous research
[9] we have concentrated on acceleration and light for this work. In particular, we
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wanted to find out if and how a cheap (in terms of power consumption) sensor like
a photo diode can contribute in improving the recognition performance. Thus we
have chosen a scenario where there was reason to believe that both acceleration
and light information would be useful. This consisted of the following set of 6
daily office or household activities:

– fast typing on a keyboard
– moving a computer mouse
– writing on a whiteboard
– lifting a cup and drinking from it
– opening a cupboard
– opening a drawer

Three test subjects with the sensor board mounted on their right wrist were
asked to perform each of the activities at least 20 times. The experiment was
then repeated on another day with the same 3 test subjects under similar condi-
tions. The last activity ‘opening a drawer’ was intentionally excluded from the
feature and classifier optimization process in Sect. 3.3. This activity was used
to performed a cross check on the selected features in the end. Using smaller
data sets reduces the significance of the results (e.g. which features are impor-
tant). Since the goal is to give insight into different design options rather than
to present globally valid results, our small set is justified.
Accelerometers were sampled at 100Hz and the light sensor at 5Hz. The

unprocessed data was recorded on a laptop using the RS-232 to USB mod-
ule. The collected data was pre-segmented and labeled by hand. All further
post-processing and classification was done on a PC using Matlab and Weka
Toolbox [21].

3.2 Reducing the Amount of Input Data

Although this step is very obvious, it is often forgotten and recognition algo-
rithms unnecessarily need to deal with high resolution, high sampling-frequency
signals from multiple (often redundant) data sources.

Sampling Frequency and Bit Resolution: In our case a first visual inspection
on the acceleration data showed that no significant information is contained in
frequency above 15 to 20Hz. This complies with the result in [8]. Following
the Nyquist criteria, first trials were made with resampled signals at fs acc =
40Hz. The sampling rate of the light sensor was kept at 5Hz. Similarly, we
tried different bit resolutions, but in our case 12 bit proved to be useful, since
amplitude of the acceleration signals are quite different for different classes (e.g.
for typing on a keyboard and for opening a cupboard).

Number of Data Streams: To further simplify the algorithms, only one axis of
the accelerometers was used. Namely, the axis pointing in the direction of the
thumb – perpendicular to the arm, in the plain of the hand.
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3.3 Finding an Optimal Set of Features and Classifiers

The next step deals with finding features and classifiers that give a high recog-
nition accuracy. Although very complex features are ruled out, the complexity
is in general not taken into account yet.

Features: The features that were considered are shown in Table 2. While there are
more complex features around that can be used for context recognition [16, 22,
23], only simple features were considered in order to keep the overall complexity
of the algorithms at a minimum. As it will be shown, still good recognition rates
can be achieved with a selection of these features. The features were applied
to a 4 second window of the data-stream without looking for a segmentation
or a start of an activity. Since our test subjects have repeated the activities
continuously (with short breaks in between), this seamed a valid approach.

Table 2. List of simple features considered in time and frequency domain

Feature Symbols used

ti
m
e

Mean meanacc, meanli

Standard deviation stdacc, stdli

Variance varacc, varli
Fluctuation of amplitude flucacc, flucli

Zero Crossing Rate zcracc, zcrli
Mean Crossing Rate mcracc, mcrli
Gradient gradacc, gradli

Mean of gradient mgradacc, mgradli

Short time average energy energacc, energli

fr
eq
u
en
cy

Bandwidth BWacc, BWli

Frequency Centroid FCacc, FCli

Spectral flux FLUC-Sacc, FLUC-Sli

Spectral Rolloff Frequency SRFacc, SRFli

Band Energy Ratio BERacc, BERli

Optimal Feature Set: An initial test showed poor recognition results (around
50%) with the frequency domain features alone. Subsequently, it was decided to
use only time domain features. A mixture between time and frequency domain
features would have been possible but for complexity reasons (Sect. 3.4) this
idea was abandoned.
Different feature sets were defined using the Weka toolbox [21]. Starting with

a full set that contained all features, subsets were calculated that are highly
correlated with the class and show a low intercorrelation between the individual
features. Table 3 shows the resulting feature sets.

Classifiers and Metrics for Performance Evaluation: It was assumed that each
activity is equally probable and therefore an overall recognition rate is a useful
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Table 3. Optimized Feature sets

Feature Set No. of Features Features

F1 9 meanacc, flucacc, mcracc, stdacc, meanli

mgradacc, flucli, mcrli, stdli

F2 5 meanacc, flucacc, mcracc, stdacc, meanli

F3 4 meanacc, flucacc, mcracc, meanli

F4 3 meanacc, flucacc, meanli

F5 3 meanacc, flucacc, mcracc

F6 2 meanacc, flucacc,

and meaningful metrics for the performance comparison of classifiers. Otherwise,
other metrics like recall, precision or false positives need to be considered [24].
The optimized feature sets were tested with different classifiers: the C4.5 decision
tree [25], a k-Nearest Neighbor (k-NN) classifier (with k = 5), Bayes Net and
Naive Bayes classifier [21] with 10 fold cross-validation. The results are shown
in Fig. 3. C4.5 and k-NN provide the best results which is consistent with work
from other groups [17].
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Fig. 3. Classifier performance for time domain feature sets at fs acc = 40Hz

Validation of the Original Assumptions: To validate the original assumption
that 40Hz sampling frequency of the acceleration signal is high enough to give
good results, we calculated the recognition rate for feature sets F1 to F6 for
sampling frequencies fs acc from 5 to 100Hz with the C4.5 classifier. The results
are depicted in Fig. 4. First, it can be seen that even lower sampling frequencies
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than 40Hz would have been possible without huge loss in recognition rate. On
the other hand, a maxima at 40Hz can be observed for feature sets F2 and F3.
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Fig. 4. Recognition rate for different feature sets vs. sampling frequency

Fig. 4 shows that at one point the recognition rate saturates and even taking
larger feature sets does not increase the recognition rate considerably (F1, F2,
F3). Furthermore, the figure confirms our hypothesis, that by adding a feature
from a different sensor (in our case meanli) the recognition rate can be greatly
improved (indicated with arrows). Comparing the plots for F4, F5 and F6 it can
be seen that the feature from the light sensor even adds more information than
an additional feature from the accelerometer. Further simulations showed that
no maximal recognition rate can be achieved with only acceleration features.
Higher recognition values always contained light sensor features.

3.4 Reduction of Computational Complexity

Metrics for Complexity and Power: Although it is clear how to select features
and classifier based on it’s recognition performance, it’s difficult to choose a
specific algorithm that has low complexity with an emphasis on power consump-
tion. We address this problem by calculating the number of instructions for each
feature. Table 4 shows the computational complexity associated with some of
the features as a function of number of sampling points N , which is of course
proportional to the sampling frequency for a given time window. The instruc-
tion count for the frequency domain features does not include the complexity to
calculate an FFT.
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Table 4. Computational complexity based on instruction count for different features

Feature ADD MUL BRANCH other

ti
m
e

mean N − 1 1 0 0

fluc 2N − 1 N + 4 0 200

std 2N − 1 N + 4 0 0

mcr 5
4
N N N − 1 0

mgrad 2N + 1 0 0 0
fr
eq
u
en
cy FC 2N − 2 N 0 36

BW 5N − 4 5N 0 72

FLUC-S 2N − 2 N + 4 0 144

SRF 7
4
N − 1 7

4
N + 1 3

4
N 0

As far as classifiers are concerned, C4.5 is favored over k-NN since it is less
complex to compute [9]. In our case, the C4.5 trees resulted in only about 30
leaves which can be translated to roughly 120 instructions.
If the sensory data originates from different sensors, like in our case, the

computational complexity is not the only metrics that needs to be taken into
account. Size and power consumption of the sensors need to be considered as
well. However, in case of an accelerometer and a light sensor, the accelerometer
clearly dominates in both terms and we therefore neglect this metrics.

Overall Instruction Count: Certain assumptions have to be made, to get an
overall instruction count which can be considered proportional to the consumed
energy. Those assumptions depend very much on the chosen hardware architec-
ture. Energy per operation ranges from 10pJ for basic processors [19] and ASICs
to 1 nJ for low to medium performance CPUs [6]. Furthermore, a ratio between
energy per operation for additions, multiplications, etc. needs to be found. We
assumed that a multiplication needs 4 times more energy than an addition or a
branch instruction. This can be motivated by internal hardware design of simple
array multipliers which are composed of half-adders and full-adders [26]. Simu-
lations show a ratio of 1:3.6 for energy per operation between an adder and a
multiplier [27], therefore our assumption seems justified.
Based on Table 4 the computational complexity of the feature sets were

calculated. The fact, that certain features can be reused to calculate other ones
(e.g. mean for mean crossing rate) was taken into account here. Fig. 5 shows
the total number of instructions as a function of the sampling frequency of the
accelerometer. Since the light sensor is only sampled with 5Hz, processing it’s
data adds very little to the overhead complexity, so that the difference between
F6 and F4 or between F5 and F3 is not visible.

3.5 Trade-off: Recognition Rate vs. Instruction Count

Combining the results from Sect. 3.3 and 3.4 – especially Fig. 4 and Fig. 5 –
the recognition rate can be plotted against the overall instruction count, which
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this time also includes the complexity for the classifier – hence the change in
nomenclature from ‘F..’ to ‘Algo..’ in Fig. 6. With a large diversity of features
and classifiers, a pareto-front could be plotted (indicated by dotted line) and
the optimal point chosen. In this case it would be feature set F3 with a C4.5
classifier.
Here again, we see that an algorithm with includes information from the light

sensor wins in terms of recognition rate AND complexity. Clearly, a multi-sensor
platform such as ours is justified in context recognition tasks.

Confusion Matrix and Validation: With the algorithms fixed, the individual
recognition rates of the 5 activities can be computed from the confusion matrix,
given in Table 5 (with fs acc = 40Hz).

Table 5. Confusion matrix for Algo3 with 5 classes

a b c d e ← classified as Accuracy

345 5 0 2 27 a=mouse 91.03%
3 547 2 92 4 b=whiteboard 84.41%
3 4 532 31 4 c=drinking 92.68%
3 73 22 500 12 d=cupboard 88.20%
25 2 19 13 441 e=keyboard 87.65%

In order to verify that the feature set, that was chosen based on 5 classes,
works with more classes as well, the confusion matrix for all 6 activities is given
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1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
76

78

80

82

84

86

88

Overall instruction count

R
ec

og
ni

tio
n 

ra
te

 [%
]

Algo1 

Algo5 

Algo6 

Algo4

Algo3

Algo2

Fig. 6. Recognition Rate vs. Instruction Count for a C4.5 classifier and fs acc = 40Hz

in Table 6. Compared to the 5 classes the overall recognition rate drops from
87.65% to only 85.77%.

Table 6. Confusion matrix for Algo3 with 6 classes

a b c d e f ← classified as Accuracy

343 4 0 4 27 1 a=mouse 90.50%
1 530 3 82 4 28 b=whiteboard 81.79%
2 1 525 31 5 10 c=drinking 91.46%
2 67 19 486 4 32 d=cupboard 79.67%
34 2 20 9 430 5 e=keyboard 86.00%
0 23 23 38 2 497 f= drawer 85.25%

4 Power Consumption Analysis

The power consumption of the system depends on the specification of the in-
dividual components and the modes in which they are operated, in particular
the speeds and duty cycles. The former is partly determined by our platform
design. The latter is a result of the recognition method designed in the previous
section. However it also depends on two other factors: the partitioning of the
computation between the sensor node and a remote node and the number of
classification steps that need to be performed per each second.
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In Fig. 7 the following three scenarios with respect to those factors have been
analyzed for their power consumption (all values at 2.7V supply voltage)

– A: All sensors (no local processing): If all sensors are active and sampled,
the microcontroller needs to run at approximately 4MHz. The data rate of
3.3 kbit/s requires the nRF transceiver to be on for 4.2% of the time and
therefore it requires only 0.46mA. Otherwise, i.e. in continuous operation,
the transmitter would consume 10.5mA at −5 dBm output power. We mea-
sured a current consumption of 2.6mA which complies with the calculated
value. Considering a 90% efficiency of the step-down converter, the total
power consumption is 8.5mW.

– B: Without microphone (no local processing): If the microphone is not used,
the power consumption is reduced due to the reduced clock frequency of
the microcontroller (1MHz) and the lower data rate at the transmitter
(0.3 kbit/s). The overall power consumption is estimated to be 3.0mW.

– C: One accelerometer + light sensor with Algo3: If algorithm 3 as described
in Sect. 3.5 is implemented, the power consumption can be reduced even
further. Only one accelerometer is needed and the transmitter needs only to
transmit the classification results. It therefore runs with 0.01% duty cycle.
The microcontroller runs at 350 kHz to calculate one classification per second
and consumes just 92µA. The overall power consumption in this case is com-
puted to 1.6mW. To calculate 5 classifications per second a microcontroller
frequency of about 1.5MHz is needed and the total power consumption would
be 2.5mW.

With the 3.7V, 130mAh battery that our board is equipped with, the sensor
board can be run for 57, 160 or 300 hours for scenarios A, B or C, respectively.
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5 Conclusion and Future Work

We have demonstrated the feasibility of multi-sensor context recognition a on
highly miniaturized (thumb-sized), wireless sensor platforms which consumes 2
to 3mW of power including wireless transmission. This is a first important step
in our work towards fully autonomous sensors nodes seamlessly integrated in the
user’s outfit. A key contribution of the paper was including power consumption
concerns in the recognition-method design and optimizing the system for the best
energy vs. recognition rate trade-off rather than maximizing the recognition rate
only. We have shown that adding a simple sensor can be a good way of improving
performance without increasing power consumption and might be preferable to
increasing classifier and/or features complexity.
Currently we are working on an improved version of the hardware platform

that contains a more powerful microcontroller. We then intend to conduct more
extensive experiments that use all three sensors on the board. Besides review-
ing features and classifiers that are suited for other applications as well, we will
look into methods to segment the incoming data stream to perform continuous
recognition, e.g. we are thinking of a cheap sensor waking up the more expensive
sensors. Furthermore, we will attempt to refine the power consumption metrics to
be able to compare more complex system. We are also looking into the network-
ing aspect and will carry out experiments with sensor boards distributed over
the wearer’s body. For this purpose we will extend the power-aware system-level
design methodology to a distributed sensor network.
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