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Abstract—Signals and datasets that arise in physical and ~Methods for Laplacian-based graph signal analysis emerged
engineering applications, as well as social, genetics, biolecular,  from research on the spectral graph theory [12] and manifold
and many other domains, are becoming increasingly larger ah discovery and embedding [13], [14]. Implicitly or expligit

more complex. In contrast to traditional time and image sigrals, . ) . . . . .
data in these domains are supported by arbitrary graphs. Sigal " these works graphs discretize continuous high-dimesio

processing on graphs extends concepts and techniques frommanifolds fromR*: graph vertices sample a manifold and
traditional signal processing to data indexed by generic giphs. connect to nearest neighbors as determined by their gendesi
This paper studies the concepts of low and high frequencies distances over the underlying manifold. In this settingg th
on graphs, and low-, high- and band-pass graph signals and 4r55h | aplacian operator is the discrete counterpart to the

graph filters. In traditional signal processing, these conepts . . .
are easily defined because of a natural frequency ordering #t  continuous Laplace-Beltrami operator on a manifold [12],

has a physical interpretation. For signals residing on graps, [15].
in general, there is no obvious frequency ordering. We propse This connection is propagated conceptually to Laplacian-

a definition of total variation for graph signals that naturally  pased methods for signal processing on graphs. For example,
leads to a frequency ordering on graphs and defines low-, high e graph Fourier transform defined and considered in [8],

and band-pass graph signals and filters. We study the desigrf o
graph filters with specified frequency response, and illustate our as well as [16], [17], [18], [19], [20], [21], expands graph

approach with applications to sensor malfunction detectia and ~ Signals in the eigenbasis of the graph Laplacian. This |edsal
data classification. the classical Fourier transform that expands signals iné t

. . . basis of complex exponentials that are eigenfunctions ef th
Keywords: Signal processing on graphs, total variation, low . . .

: - . o one-dimensional Laplace operator — the negative secoret ord
pass, high pass, band pass, filter design, regularization.

derivative operator [8]. The frequencies are the eigemslu
of the Laplace operator. Since the operator is symmetric
|. INTRODUCTION and positive semi-definite, graph frequencies are reaiedal
and hence totally ordered. So, just like for time signalg, th
Signals indexed by graphs arise in many applicationgetions of low and high frequencies are easily defined in
including the analysis of preferences and opinions in $ociis model. However, due to the symmetry and positive semi-
and economic networks [1], [2], [3]; research in collabtvet {efiniteness of the operator, the Laplacian-based methreds a
activities, such as paper co-authorship and citationst¢lcs only applicable to undirected graphs with real, non-negati
and relevance of documents in the World Wide Web [5J/veights.
[6]; customer preferences for service providers; measenesn | [9], [10], [11] we take a different route. Our approach
from sensor networks; interactions in molecular and gefe motivated by the algebraic signal processing (ASP) theor
regulatory networks; and many others. introduced in [22], [23], [24], [25], [26]; see also [27], 8P
Signal processing on graptextends the classical discretg29], [30], [31] for additional developments. In ASP, thefsh
signal processing (DSP) theory for time signals and imagks [s the elementary non-trivial filter that generates, under a
to signals indexed by vertices of a graph. There are two bagi§propriate notion of shift invariance, all linear shiftariant
approaches to signal processing on graphs. The first one Usgss for a given class of signals. The key insight in [9] to
the graph Laplacian matrix as its basic building block (seepjild the theory of signal processing on graphs is to idgntif
recent review [8] and references therein). The second approthe shift operator. We adopted the weighted adjacency xatri
adopts the adjacency matrix of the underlying graph as @$the graph as the shift operator and then developed agpropr
fundamental building block [9], [10], [11]. Both framewak ate concepts of-transform, impulse and frequency response,
define fundamental signal processing concepts on graphs, fgtering, convolution, and Fourier transform. In partiaglthe
the difference in their foundation leads to different deioms graph Fourier transform in this framework expands a graph
and techniques for signal analysis and processing. signal into a basis of eigenvectors of the adjacency matrix,
and the corresponding spectrum is given by the eigenvalues o
Copyright (c) 2014 IEEE. Personal use of this material ismited.  the adjacency matrix. This contrasts with the Laplaciaseda
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obtained from the IEEE by sending a request to pubs-pemmnis@ieee.org. approach, where Fourier transform and spectrum are defined
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with the value at vertex given approximately by a weightedgraph signal. Once we have an ordering of the frequencies
linear combination of the input signal values at neighbotssed on the graph total variation function, we define the
of n [9]. With appropriate edge weights, the graph shift canotions of low and high frequencies, as well as low-, highd a
be interpreted as a (minimum mean square) first-order lindznd-pass graph signals and graph filters. We demonstgdte th
predictor [23], [9]. Another interpretation of the graphdil these concepts can be used effectively in sensor netwohlk-ana
comes from Markov chain theory [32], where the adjacensis and semi-supervised learning. In our experiments, e sh
matrix represents the one-step transition probabilityrixat that naturally occurring graph signals, such as measursmen
of the chain governing its dynamics. Finally, the graphtshibf physical quantities collected by sensor networks orlabe
can also be seen as a stencil approximation of the first-oradmobjects in a dataset, tend to be low-frequency graph Egna
derivative on the graph while anomalies in sensor measurements or missing datks labe
The last interpretation of the graph shift contrasts witban amplify high-frequency parts of the signals. We demon-
the corresponding interpretation of the graph Laplaciae: tstrate how these anomalies can be detected using appsdpriat
adjacency matrix is associated with a first-order differeesigned high-pass graph filters, and how unknown parts of
tial operator, while the Laplacian, if viewed as a shift, igraph signals can be recovered with appropriately designed
associated with a second-order differential operator.hi@ tregularization techniques. In particular, our experirsesttow
one-dimensional case, the eigenfunctions for both, the fitbat classifiers designed using the graph shift matrix lead t
order and second order differential operators, are compleigher classification accuracy than classifiers based on the

exponentials, since graph Laplacian matrices, combinatorial or normalized.
14 - - Summary of the paper. In Section Il, we present the
— Mt = fePmilt, (1) notation and review from [9] the basics of discrete signal pr
2mj dt cessing on graphs (DQPR In Section Ill, we define the local

Interpreting the Laplacian as a shift introduces an even-syand total variation for graph signals. In Section IV, we use t
metry assumption into the corresponding signal model, apdoposed total variation to impose an ordering on frequency
for one-dimensional signals [25], this model assumes thegamponents from lowest to highest. In Section V, we discuss
the signals are defined on lines of an image (undirected lilmv-, high-, and band-pass graph filters and their design. In
graphs) rather than on a time line (directed line graphsg Tlection VI, we illustrate these concepts with applicatitms
use of the adjacency matrix as the graph shift does not impeserupted measurement detection in sensor networks aad dat
such assumptions, and the corresponding framework candhgssification, and provide experimental results for weatid
used for arbitrary signals indexed by general graphs, diges datasets. Finally, Section VII concludes the paper.

whether these graphs have undirected or directed edges with

real or complex, non-negative or negative weights. II. DISCRETESIGNAL PROCESSING ONGRAPHS

This paper is concerned with defining low and high fre- |, yhis section, we briefly review notation and concepts of

quencies and low-, high-, and band-pass graph signals qnd psp, framework that are relevant to this paper. A complete
filters on generic graphs. In traditional discrete signa-priniroduction to the theory can be found in [9], [10], [11].
cessing (DSP), these concepts have an intuitive intetfeta

since the frequency contents of time series and digital @rag _

are described by complex or real sinusoids that oscillate &t Graph Signals

different rates [33]. The oscillation rates provide a pbgki  Signal processing on graphs is concerned with the analysis
notion of “low” and “high” frequencies: low-frequency com-and processing of datasets in which data elements can be
ponents oscillate less and high-frequency ones oscillateem connected to each other according to some relational proper
However, these concepts do not have a similar interpretatidhis relation is expressed though a gra@gh= (V, A), where

on graphs, and it is not obvious how to order graph frequencié = {vo,...,vn—1} is a set of nodes and is a weighted
to describe the low- and high-frequency contents of a graphjacency matrix of the graph. Each data element correspond
signal. to nodew,, (we also say the data elementimslexedby v,,),

We present an ordering of the graph frequencies thatdsd each weighf,, ,, € C of a directed edge from,, to
based on how “oscillatory” the spectral components are with reflects the degree of relation of theth data element to
respect to the indexing graph, i.e., how much they chantfee nth one. Nodev,, is an in-neighbor ofu,, and v, is an
from a node to neighboring nodes. To quantify this amouraut-neighbor ofv,, if A,, ,, # 0. All in-neighbors ofv,, form
we introduce thegraph total variationfunction that measures its in-neighborhoodand we denote a set of their indices as
how much signal samples (values of a graph signal at a nodé) = {m | A,, ., # 0}. If the graph is undirected, the relation
vary in comparison to neighboring samples. This approachgees both waysA., ., = A, ,,, and the nodes are neighbors.
analogous to the classical DSP theory, where the osciflatio Using this graph, we refer to the dataset agr@ph signa)
in time and image signals are also quantified by appropyiatehich is defined as a map
defined total variations [33]. In Laplacian-based grapmaig s : V—=C,
processing [8], the authors choose to order frequenciesdbas Un, > Sp. )

on a quadratic form rather than on the total variation of the
We assume that each dataset elemgris a complex number.

1This analogy is more intuitive to understand if the grapheigutar. Since each signal is isomorphic to a complex-valued vector



with N elements, we write graph signals as vectors C. Graph Fourier Transform

S = [80 S1 ... SN_I}T cCh, In general, a Fourier transform performs the expansion of a
signal into aFourier basisof signals that are invariant to filter-
ing. In the DSR framework, a graph Fourier basis corresponds
to the Jordan basis of the graph adjacency makix(the
Jordan decomposition is reviewed in Appendix A). Following
the DSP notation, distinct eigenvalugs, A1, ..., Ap;—1 Of
, the adjacency matriA are called thegraph frequenciesand
B. Graph Filters form the spectrumof the graph, and the Jordan eigenvectors
In general, ayraph filteris a systenH(-) that takes a graph that correspond to a frequency, are called thefrequency
signals as an input, processes it, and produces another gra@finponentsorresponding to thenth frequency. Since mul-
signals = H(s) as an output. A basic non-trivial filter definedipje eigenvectors can correspond to the same eigenvaiue, i

on a graphG = (V,A), called thegraph shiff is a local general, a graph frequency can have multiple graph frequenc
operation that replaces a signal valygat nodev, with the  components associated with it.

However, we emphasize that each elemegntis indexed by
node v,, of a given representation grapi = (V,A), as
defined by (2). The spac® of graph signals (2) is isomorphic
to CV, and its dimension igim S = N.

linear combination of values at the neighbors of nede As reviewed in Appendix A, Jordan eigenvectors form the
5, = Z Ay S ©) columns of the matrixV in the Jordan decomposition (47)
meN, A=VJIV'.

Hence, the output of the graph shift is given by the prOdUFi[ence, thegraph Fourier transformof a graph signas is
of the input signal with the adjacency matrix of the graph:

s=[50 ... sn1]" =As. (@) s=Fs, ®
The graph shift is the basic building block in DSP where ' = vlis the grfslph Fourier transform matrix.
All linear, shift-invariant graph filters in DSB are polyno- The valuess, of the signal's graph Fourier transform (8)

mials in the adjacency matriA of the form [9] characterize thérequency contendf the signals.
L Theinverse graph Fourier transforrs given by
h(A) = hoI+h1A + ...+ h AL (5)
_pla_vse
The output of the filter (5) is the signal s=F 's=Vs. ()
s =H(s) = h(A)s. It reconstructs the original signal from its frequency @oris

8%/ constructing a linear combination of frequency compdsien

Linear, shift-invariant graph filters possess a number weighted by the signal’'s Fourier transform coefficients.

useful properties. They have at mdst< N tapshy, where
Na = degma(z) is the degree of the minimal polynomial
ma(xz) of A. If a graph filter (5) is invertible, i.e., matrix D. Frequency Response

h(A) is non-singular, then its inverse is also a graph filter The graph Fourier transform (8) also allows us to charac-

— -1 _ i
g(A) = h(A)"" on the same grapl = (V, A). Finally, the terize the effect of a filter on the frequency content of an

space of graph f"t‘?fs is agigebra i.e., a vector space that ISinput signal. As follows from (5) and (8), as well as (47) in
simultaneously a ring.

These properties guarantee that multiplyiadoy any non- Appendix A,
zero constant does not change the set of corresponding,linea 35— p(A)s=F '1(J)Fs < Fs=h(J)s. (10)
shift-invariant graph filters. In particular, we can defirme t
normalized graph shift matrix Hence, the frequency content of the output signal is obthine
norm 1 by multiplying the frequency content of the input signal by
AT = A, (6) the block diagonal matrix
|/\max|
where Anax denotes the eigenvalue ok with the largest h(Jry0(o))
magnitude, i.e., h(J) =
[Amax| = [Am| (7)

. , P 1py, 1 (Av—1))
forall 0 < m < M —1. The normalized matrix (6) ensures the ) ) )
numerical stability of computing with graph filteig Anom) ~ We call this matrlx_thegraph frequency respons# the filter
as it prevents excessive scaling of the shifted signal,esiné(A). and denote it as
[|[A"™s|| /||s|]| < 1. In this paper, we use the graph shift ——

A" instead ofA where appropriate. h(A) = h(J). (11)

2Filters arelinear if for a linear combination of inputs they produce the Notice that (10) extends theonvolution theoremfrom
same linear combination of outputs. Filters afeft-invariant if the result of classical signal processing [7] to graphs, since filtering a

consecutive processing of a signal by multiple graph fildwes not depend ; ; i ; ;
on the order of processing; i.e., shift-invariant filtersnzoute with each other. S|gnal ona graph IS eqUIvalent in the frequency domain to

3The minimal polynomial ofA is the unique monic polynomial of the multiplying the signal’s spectrum by the frequency resgons
smallest degree that annihilatds, i.e., ma (A) = 0 [34], [35]. of the filter.
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compares how the signal varies with time or space. These
concepts lie at the heart of many applications of DSP, in-
cluding signal regularization and denoising [33], [36],aige

Fig. 1. Traditional graph representation for a finite digerperiodic time compress!or_\ [37] and others. . .
series of lengthV. The variation (16) compares two consecutive signal samples

) ) ] and calculates a cumulative magnitude of the signal change

E. Consistency with the Classical DSP over time. In terms of the time shift (13), we can say that
The DSR; framework is consistent with the classical DSRhe total variation compares a sigrsto its shifted version:

theory. Finite (or periodic) time series can be represebted the smaller the difference between the original signal dwed t
the directed cycle graph shown in Fig. 1, see [24], [9]. Thehifted one, the lower the signal’s variation. Using thelicyc
direction of the edges represents the flow of time from past permutation matrix (12), we can write (16) as
future, and the edge from the last vertex_; to vy captures
the periodic signal extensiony = sg for time series. The TV(s) = [ls = Csl|; - (17)

adjacency matrix of the graph in Fig. 1 is thé x N cyclic The total variation (17) measures the difference between th
permutation matrix signal samples at each vertex and at its neighbor on the graph

1 that represents finite time series in Fig. 1.
1 The DSR; generalizes the DSP theory from lines and
A=C= ) ) (12) regular lattices to arbitrary graphs. Hence, we extend {47)

an arbitrary graptG = (V, A) by defining the total variation

1 on a graph as a measure of similarity between a graph signal
Substituting (12) into the graph shift (4) yields the staddaand its shifted version (4):
time delay Definition 1 (Total Variation on Graphs)The total varia-
Sn = Sn-1 mod N- (13) tion on a graph(TV) of a graph signas is defined as
The matrix (12) is diagonalizable. Its eigendecomposition TVa(s) =||ls — A™Ms||; . (18)

which coincides with the Jordan decomposition (47), is o . )
e P (47) The definition uses the normalized adjacency maAfR™ to

e IN guarantee that the shifted signal is properly scaled for-com
C= 1 DFT}! . DFTy, parison with the original signal, as discussed in SectieB. |l
N ' _jamv-) The intuition behind Definition 1 is supported by the
v underlying mathematical model. Similarly to the calculus
whereDF Ty is the discrete Fourier transform matrix. Thuspn discrete signals that defines the discretized derivattve
as expected, the graph Fourier transform for signals intlex€,(s) = s, — s,—1 [33], in DSR; the derivative (and the
by the graph in Fig. 1 i¥ = DFT, and the corresponding gradient) of a graph signal at thah vertex is defined by the
frequencies afe for 0 < n < N, graph shiftA"™ as

_i2m,
e INT, (14) ﬁ =V,(s) =5, — Z Anormg (19)

m
dv n,m
n meN,

'%wlocal variation of the signal at vertex,, is the magnitude
ﬂ »(s)| of the corresponding gradient, and tte¢al variation

e

I1l. TOTAL VARIATION ON GRAPHS
In this section, we define he total variation on graph sign

th?t 'SI ba;edl gré;h?h(;())tnfept.o{.gra_?c Sr}'ft'd_ te sianal is the sum of local variations for all vertices [33], [8]. In
n classica ' al variation(TV) of a discrete signa Rl%rticular, if we define the discrejeDirichlet form

is defined as the sum of magnitudes of differences between t
consecutive signal samples [33]:

1 N—-1
Sp(s) == D IVals)I”, 20
TV(s) = 3 [0 = 01 - (15) (s)=~ ; Vo (s)] (20)

o . o N then forp = 1 the form
For a finite time series, the periodicity condition, =

. . . N—-1
Sn mo ields a modified definition
S o Sifs) = 3 |Vals)] 1)
— n=0
TV(S) = Z ‘Sn — Sp—1 mod N‘- (16) N—1
n=0 = Sp — Z AN,
The total variation (15) and (16) for time series or space n=0 meN,
signals, such as images, has an intuitive interpretation: i = |ls —A™™s||

“In DSP, the ratioZZn in the exponent (14) sometimes is also calledlefines the total variation of the graph sigsallt coincides
frequency. In this case, the frequencies afereal numbers betweed and  \yith Definition 1.
27. However, to remain consistent with the discussion in tlaisgp, we refer . . ..
to the exponentials (14) as frequencies, and view them agleanmumbers The total variation defined thrOUgh theDirichlet form (21)

of magnitudel residing on the unit circle in the complex plane. depends on the definition of the signal gradient at a graph



vertex. For finite time DSP, the gradient is defined by thB. Frequency Ordering

discretized derivativeV,,(s) = s, — s,—1 [33] and yields  the (otal variation of the Fourier basis, given by (23)
the total variation (17). The DgPextends the notion of the 54 (24), allows us to order the graph frequency components
shift to (3), which leads to the gradient (19) and the totg} the order of increasing variation. Following DSP conven-
variation (18). . . tion, we call frequency components with smaller variations

‘Remark. In [8], the frequencies are ordered using a Zg,y frequencies and components with higher variatibigh
Dirichlet form, i.e., a quadratic function. frequencies.

Here, we determine the frequency ordering induced by
the total variation (24) for graphs that have diagonaligabl

In this SeCtion, we use the total variation (18) to introdane adjacency matrices, i.e., 0n|y have proper eigen\/ectd‘[S T
ordering on frequencies that leads to the definition of low amrdering can be similarly extended to graphs with non-

high frequencies on graphs. We demonstrate that this oglergiagonalizable adjacency matrices using the variation (23
is unique for graphs with real spectra and not unique forlgsapgeneralized eigenvecto?s.

IV. Low AND HIGH FREQUENCIES ONGRAPHS

with complex spectra. The following theorem establishes the relative ordering of
o . _ two distinct real frequencies.
A. Variation of the Graph Fourier Basis Theorem 1:Consider two distinct real eigenvalues

As discussed in Section II, the graph Fourier basis fo¥n, A, € R of the adjacency matrixA with corresponding
an arbitrary graph is given by the Jordan basis of the aeigenvectors,, andv,. If the eigenvalues are ordered as
jacency matrixA. Consider an eigenvalug of A, and let

vV = vg,V1,...,vg_1 be a Jordan chain of generalized eigen- Am < Ans (26)
vectors that corresponds to this eigenvalue. Let the itglicathen the total variations of their eigenvectors satisfy
function
. {o, r=0 TVG(Vin) > TVa(va). (27)
1, =
L 1<r<R Proof: Since the eigenvalues are real, it follows from (26)

Specify Whethewr is a proper eigenvector ot ora genera|- that the difference between the total variations of the two
ized one. Then we can write the condition (43) on generaliz&igenvectors satisfies
eigenvectors (see Appendix A) as

Am An
TVg(vy) —TVg(v,) = [1 - | -1 - 2=
Using (22), we write the total variation (18) of the gener- (@) (1 _ ) - (1 _ M )
alized eigenvectow, as ) L)\max| | Amax{
TVG(VT) — ||VT _ AnOFmVTHl (23) = m > 0,

1
= ||vp— WAVT which yields (27). Here, equality (a) follows from (7). =

max 1 As follows from Theorem 1, if a graph has a real spectrum
= ’ v, — Lvr _ I_Tvr_l and its frequencies are ordered as

| Amax| | Amax 1

In particular, wherw, is a proper eigenvector of, i.e.r = 0 Ao > AL > > An (28)
andvy = v, we haveip = 0. In this case, it follows from (23) then )\, represents the lowest frequency ang;_; is the

that the total variation of the eigenvectoris highest frequency. Moreover, the ordering (28) is a unique
A ordering of all frequencies from lowest to highest. This-fre
TVa(v) = ‘1 " Do vl - (24)  quency ordering for matrices with real spectra is visualiire
Fig. 2(a).

When a frequency component is a proper eigenvector o
the adjacency matriXA, its total variation (24) is determined
b_y the corresponding eigenvalue, since we can scale mplex eigenvalues.
eigenvectors to have the samgnorm. Moreover, all proper Theorem 2:Consider two distinct complex eigenvalues
eigenvectors corresponding to the same eigenvalue have he)\ € C of the adjacency matria. Let v,, andv,, be

n . m n

same total variation. However, when a frequency componqﬂ’ﬁ corresponding eigenvectors. The total variations es¢h
is not a proper eigenvector, we must use (23) to compare éﬁ@envectors satisfy

variation with other frequency components. Finally, itdols

The next theorem extends Theorem 1 and establishes the
gjative ordering of two distinct frequencies correspougdio

from (7) for ||v||, = 1 that TVa(vin) < TVa(vy) (29)
TVG(V) =1]1—-— | <14+ |—|<2. (25) 5Some real-world datasets are described by graphs with rgoilizable
|)\max| o |)\max| - adjacency matrices and thus require a proper ordering ofuénecy com-

H h | L f lized . onents that correspond to generalized eigenvectors. Ampgle of such a
ence, the total variation of a normalized proper eigerorec ataset is the directed graph of hyperlink references tvpslitical blogs

is a real number betwedhand 2. used in Section VI-B.
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Am and\y _,, have the same total variations since they lie on the samle circ
centered around.

Hence, the frequencies, and\y_,, have the same variation,
and the induced order from lowest to highest frequencies is
Fig. 2. Frequency ordering from low frequencies (LF) to hfgéguencies Ao, )\1’./\N_1’ A2 AN=2; .- V.VIth the lowest frequency Co.rre_
(HF) for graphs with real and complex spectra. sponding to\y = 1 and the highest frequency corresponding to
Any/2 = —1forevenN or A(y.1)/2 for odd N. This ordering
is visualized in Fig. 3, and it is the conventional frequency
if the eigenvalue),, is located closer to the valuyémay on ordering in DSP [7].
the complex plane than the eigenvalue
Proof: This result follows immediately from the interpre-
tation of the total variation (24) as a distance function loa t
complex plane. Sinc&max # 0 (otherwiseA would have been  Here we compare our ordering of the frequencies based
a zero matrix), multiplying both sides of (29) b¥max| Yields on the total variation with an ordering based on using the 2-

(b) Ordering of a complex spectrum

C. Frequency Ordering Based on Quadratic Form

the equivalent inequality Dirichlet form, p = 2, like in [8]. Takingp = 2 in (20), we
get
[ Amend = A < [|Amax] = Anl- (30)
N-1

The expressions on both sides of (30) are the distances from Sa(s) = 1 Z |Va(s)]?
Am @nd X, to |Amax On the complex plane. [ ] 2 n=0

As follows from Theorem 2, frequencies of a graph with a _ 1 I|s — Aromg||2 (31)
complex spectrum are ordered by their distance fQmhy- 2 2
As a result, in contrast to the graphs with real spectra, _ 1 sH (1— Anorm)H (I—A"™) g
the induced ordering of complex frequencies from lowest to 2 '

h_ighest is not unique, ;in_ce distinc_t complex fre_quenci:m CThis quadratic form defines the seminorm

yield the same total variation for their corresponding frexcy

components. In particular, all eigenvalues lying on a eimaf Isll¢ = V/Sa(s), (32)

radiusp centered at point\max| 0n the complex plane have the

same total variatiom/|Amay- It also follows from (7) that all since (I — Arem) (1 _ Anom) s a positive-semidefinite ma-

graph frequencies,, can lie only inside and on the boundaryirix. The rationale in [8] is that the quadratic form is small

of the circle with radius\max|]. The frequency ordering for when signal values are close to the corresponding linear

adjacency matrices with complex spectra is visualized fombinations of their neighbors’ values, and large othgewi

Fig. 2(b). We introduce an ordering of the graph Fourier basis
Consistency with DSP theory. The frequency ordering from lowest to highest frequencies based on the graph shift

induced by the total variation (18) is consistent with dieals quadratic form. As we demonstrate next, this ordering coin-

DSP. Recall from (14) that the cycle graph in Fig. 1, whichides with the ordering induced by the total variation.

represents finite time series, has a complex spectrum The quadratic form (31) of an eigenvecteorthat corre-

om sponds to the eigenvalueis
Ap=e IW"

1 2
for 0 < n < N. Hence, the total variation of theth frequency Se(v) = 3 [[v — A™My|[5
component is N
= 1= . 33
TVG(VH) = ’1 — e*j%Tn ‘ |/\max| ||V||2 ( )
2mn Consider two real eigenvalues, and \,, with correspond-

2mn .
‘1_(308 N ‘Jr‘sm N | ing eigenvectorsv,, and v,. If these eigenvalues satisfy



Am < A, then it follows from (33) that frequencies\,, are lower frequencies thaxq. The frequency

T T responses of these filters are defined as
o) Satu) = i
1 m 5
|)\max| ) |)\max| ) h(Am) — 1 _ g()\m) _ ) )\ > )\cut (34)
_ (1 Am ) ( An ) 0, Am < Acut
| Amax] | Amax As we demonstrate next, the design of such filters, as well
_ An = Am (A + An — 2[Amaxl) > 0. @S any low-, high-, and band-pass graph filters, is a linear
Amax2 7" " problem.

Hence, Sz(v,,) > Sa(vy), and we obtain a reformulation
of Theorem 1 for the graph shift quadratic form. As a corB. Frequency Response Design for Graph Filters

sequence, a_rranging frgquency cqmponents in the incmasinA graph filter can be defined through its frequency response
order of their graph shift quadratic form leads to the Sa”)ﬁ)\ ) atits distinct frequencies,,, m = 0, ..., M —1. Since
ordering (27) from lowest to highest as the total variation. a graph filter (5) is a polynomial of degre‘ie th7e construction

A similar ref_ormulation of Theorem 2 for thg graph shift)¢2 fier with frequency responge(\,.) = a,. corresponds
quadratic form is demonstrated analogously, which leadls¢o 1 inverse polynomial interpolation, i.e., solving a systef

same ordering of complex frequencies as the ordering irtucg; |inaar equations With + 1 unknownsh by
by the total variation. Y

ho+hido+ ... +hi)y = ao,
V. FILTER DESIGN ho+hid+...+h M =
When a graph signal is processed by a graph filter, its : (35)
frequency content changes according to the frequency re-
quency g g guency ho+ Aot 4o+ ik, = ani.

sponse (11) of the filter. Similarly to classical DSP, we can
characterize graph filters as low-, high-, and band-passdilt This system can be written as
based on their frequency response.

1 )\0 e )\é ho (7))
1 )\1 . )\1L hl (651
A. Low-, High-, and Band-pass Graph Filters . . .= : . (36)
Following the DSP convention, we call filtetew-passif 1 Ay A e a1

they do not significantly affect the frequency content of Jow

frequency signals but attenuate, i.e., reduce, the maimitirhe system matrix in (36) is a full-rank/ x (L + 1) Van-

of high-frequency signals. Analogouslyigh-passfilters pass dermonde matrix [34], [35]. Hence, the system has infinitely

high-frequency signals while attenuating low-frequenog®i many exact solutions it/ < L and one unique exact solution

and band-passfilters pass signals with frequency contenif M = L+ 1.

within a specified frequency band while attenuating all the When M > L + 1, the system is overdetermined and
The action of a graph filteli(A) of the form (5) on the fre- does not have an exact solution. This is a frequent case in

quency content of a graph sigrsals completely specified by practice, since the number of coefficients in the graph filter

its frequency response (11). For simplicity of presentatioe may be restricted by computational efficiency or numerical

discuss here graphs with diagonalizable adjacency matricetability requirements. In this case, we can find an appratem

for which (11) is a diagonal matrix with(),,) on the main solution, for example, in the least-squares sense.

diagonal,0 < m < M. In this case, the Fourier transform As an example of filter construction, consider a network

coefficients of the filtered signal of 150 weather stations that measure daily temperature near
_ major cities across the United States [38]. We represestthe
s=h(A)s stations with a directed-nearest neighbor graph, in which

are the Fourier transform coefficients of the input sign&V€ry Sensor corresponds to a vertex and is connected to six
multiplied element-wise by the frequency response of tielosest sensors by directed edges. The edge weight between
connected vertices,, andwv,, is

filter:
—~ —d?
h(Xo) h(Ao)so A, = c . (37
> . @ . ! —_Ad2 A2
Fs= - S = : : \/Zke/\/n ™ Ygen, €
h(An—1) h(Anr—1)8N-1

whered,, ,,, denotes the geodesical distance betweennthe
Hence, to attenuate the frequency content of a signal irssidand mth sensors. A daily snapshot of dl0 measurements
specific part of the spectrum, we should design a filteA) forms a signal indexed by this graph, such as the example
that for corresponding frequencies, satisfiesh()\,,,) = 0. signal shown in Fig. 4.

Consider an example of ideal low-pass and high-pass filtersFig. 5 shows the frequency responses of the low- and high-
h(A) andg(A). Let the cut-off frequency\¢,: equal to the pass filters for this graph that have degiee= 10. These
median of the bandwidth, i.e., be such that exactly half déifters are least-squares approximations of the ideal lavd a
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Fig. 6. The frequency content of the graph signal in Fig. €gBencies are
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Fig. 4. Temperature measured b$0 weather stations across the United N/ \ \/
States on February 1, 2003 7%/%/ < ( 7%&\' ) <K
Ls <\l/ / 41/ /
| A

W

—High-pass (a) True measurement (b) Corrupted measurement

0.5

Fig. 7. A subgraph of the sensor graph in Fig. 4 showing ther(e and
(b) corrupted measurement by the sensor located in Coldspdings, CO.

2

0 \J/\

~ ~ a malfunctioning sensor solely from the data it generates. W
bow fequencies High fequencies illustrate here how the DSPframework can be used to devise
a simple solution to this problem.

Many physical quantities represent graph signals with kmal
variation with respect to the graph of sensors. As an ilfustr
tion, consider the temperature across the United States mea
sured by150 weather stations located near major cities [38].
high-pass filters (34). The frequency response in (35) fer tAn example temperature measurement is shown in Fig. 4, and
low-pass filter iso,,, = 1 for frequencies lower thane,; and the construction of the corresponding weather station lgrap
0 otherwise; and vice versa for the high-pass filter. By desigig discussed in Section V-B. The graph Fourier transform of

Fig. 5. Frequency responses of low-pass and high-pass fitiethe sensor
graph in Fig. 4. The length of the filters is restricted to 1@ffioients.

the constructed filters satisfy the relation [39] this temperature snapshot is shown in Fig. 6, with frequeenci
ordered from lowest to highest. Most of the signal's energy
h(A) =1y —g(A). (38) s concentrated in the low frequencies. This suggests kteat t

If we require thath(A) and g(A) do not have the sameSignal varies slowly across the graph, i.e., that citiested
number of coefficients or if we use an approximation metrfdose to each other have similar temperatures.

other than least squares, the constructed polynomialsnaill A sensor malfunction may cause an unusual difference
satisfy (38). between its measurements and the measurements of nearby

stations. Fig. 7 shows an example of an (artificially) cotedp
V1. APPLICATIONS measurement, where the station located near Coloradog3prin
. . : o CO, reports a temperature that contains an err@0alegrees
In this section, we apply the theory discussed in this papgr . .

SR \@emperature at each sensor is color-coded using the same
to graphs and datasets that arise in different contexts. S g -
. olor scheme as in Fig. 4). The true measurement in Fig. 7(a)
demonstrate how the DgRramework extends standard S|gnaF o . . " .
Is very similar to measurements at neighboring cities, avhil

processing techniques of band-pass filtering and signai- reg o corrupted measurement in Fig. 7(b) differs signifigant
larization to solve interesting problems in sensor netivark from its neighbors '

and data classification. Such difference in temperature at closely located cities
results in the increased presence of higher frequencidsein t

A. Malfunction Detection in Sensor Networks corrupted signal. By high-pass filtering the signal and then
Today, sensors are ubiquitous. They are usually cheapthoesholding the filtered output, we can detect this anomaly
manufacture and deploy, so networks of sensors are used t&xperiment. We consider the problem of detecting a cor-

measure and monitor a wide range of physical quantities frammpted measurement from a single temperature station. We

structural integrity of buildings to air pollution. Howeyeghe simulate a signal corruption by changing the measurement of

sheer quantity of sensors and the area of their deploymemne sensor b0 degrees; such an error is reasonably small

may make it challenging to check that every sensor is opnd is hard to detect by direct inspection of measurements of
erating correctly. As an alternative, it is desirable toedet each station separately. To detect the malfunction, weaeixtr



20 - 20 ¢ of the data. For example, image and video databases may be
classified based on their contents; documents are grougled wi
respect to their topics; and customers may be distinguished

| based on their shopping preferences. In all cases, eactetlata

71 element is assigned a label from a pre-defined group of labels
N MMNMWWJ W\\[ﬂ\,\/U “M MJW’ Large datasets often cannot be classified manually. In this
L"jffq High frequencies . Low frequencies High frequencics case, a common approach is to classify only a subset of ele-
ments and then use a known structure of the dataset to predict
the labels for the remaining elements. A key assumption in
this approach is that similar elements tend to be in the same
class. In this case, the labels tend to form a signal with lsmal
variation over the graph of similarities. Hence, inforroati
about similarity between dataset elements provides means f
. inferring unknown labels from known ones.
/\N\NWMMMM Consider a grapl¥ = (V, A) with N vertices that represent
o 0 Moo ran e N data elements. We assume that two elements are similar to
bow frequencies - High frequencies Lowfiequencies - High frequencies e ach other if the corresponding vertices are connecteldeif t
(c) Tampa, FL (d) Atlantic City, NJ connection is directed, the similarity is assumed only ie th
direction of the edge. We define a sige&"™ on this graph

20 7 20 7 that captures known labels. For a two-class problem, thisasi
is defined as

(a) True signal (b) Colorado Springs, CO

20 20

+1, nth element belongs to class 1,
(known) 1, nth element belongs to class 2,

[ st _ _
,MWM MEL! WWW% 0, class is unknown.
0 WMo Amoa A 0

Low frequencies High frequencies Low frequencies High frequencies The pl’edlcted |abe|S for a” data elementS are found as the
(€) Reno, NV (f) Portland, OR signal that varies the least on the gra@h= (V, A). That is,

we find the predicted labels as the solution to the optinirati
Fig. 8. The magnitudes of spectral coefficients of the oaband corrupted problem
temperature measurements after high-pass filtering: @}rtre signal from

Fig. 4; (b)-(f) signals obtained from the true signal by opting the glpredicted) argmin Sy(s) (39)
measurement of a single station located at the indicatgd cit sERN
subject to
|Cstrov — Cs||3 <e, (40)

the high-frequency component of the resulting graph signal

using the high-pass filter in Fig. 5 and then threshold itnéo \whereC is a N x N diagonal matrix such that

or more Fourier transform coefficients exceed the threshold

value, we conclude that a sensor is malfunctioning. Theotfut- c o {1, if s(known) _£

threshold is selected automatically as the maximum abesolut "™ 10, otherwise.

value of graph Fourier transform coefficients of the highgpa

filtered measurements from the previous three days. The parameterin (40) controls how well the known labels are
Results.We considered65 measurements collected duringPreserved. Alternatively, the problem (39) with conditi@®)

the year 2003 by all50 stations, and conducted0 x 365 = can be formulated and solved as

54,750 tests. The resulting average detection accuracy WalSpredicted) _ argmin (S(s) + | Cs€o _ Cs|2) . (41)

89%, so the proposed approach, despite its relative S|mpI|C|ty SCRN
correctly detected a corrupted measurement alftstes out L
of 10. Here, the parameten. controls the relative importance of

nditions (39) and (40). Once the predicted sigsfg{Pdicted

0
Fig. 8 illustrates the conducted experiment. It shows fr&
Iculated, the unlabeled data elements are assignéakst ¢
uency contents of high-pass filtered signals that contaora "> £
d y gnp g 1 if (predmd)> 0 and another class otherwise.

rupted measurement from a sensor at five different locatidns lassical DSP, minimization-based hes to sianal
comparison with the high-pass component of the uncorrupteo’n classica minimization-based approaches 1o sigha

signal in Fig. 8(a) shows coefficients above thresholds tr{%cover:y an(; reconstrctjjitlon are ::a:jlle@nal regglag:zatlon q
lead to the detection of a corrupted signal. ave been used for signal denoising, deblurring an

recovery [42], [43], [44], [45]. In signal processing on gha,
- minimization problems similar to (39) and (41) formulated
B. Data Classification with the Laplacian quadratic form (see (52) in Appendix B)
Data classification is an important problem in machinare used for data classification [46], [47], [41], [48], ch&r
learning and data mining [40], [41]. Its objective is to &lifig terization of graph signal smoothness [18] and recovery [8]
each element of the dataset based on specified characterifthe problems (39) and (41) minimize the graph shift quadrati
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form (31) and represent an alternative approach to graplakig
regularization. 1
Experiments. We illustrate the application of graph signal
regularization to data classification by solving the mirzaai
tion problem (41) for two datasets. The first dataset is a
collection of images of handwritten digits and 9 from the
NIST database [49]. Since these digits look quite similar,.
their automatic recognition is a challenging task. For each
digit, we use1000 grayscale images of siz28 x 28. The
graph is constructed by viewing each image as a point in
282 = 784-dimensional vector space, computing Euclidean *° "4
distances between all images, and connecting each image 7‘,
with six nearest neighbors hjirectededges, so the resulting  °5

e
=)

=
Vi

-@-Graph shift (directed)

e
%

tion accuracy

1f1ca
e
N

mClass

-#-Graph shift (undirected)

—+-Laplacian (undirected)

—+=Normalized Laplacian (undirected)

05% 1% 2% 3% % 7%  10%  15%

graph is a directed six-nearest neighbor graph. We consider Percentage of initially known labels
unweighted graph&jfor which all non-zero edge weights are
set tol. Fig. 9. Classification accuracy of images of handwrittenitslig and 9

The second dataset is a collection of 1224 online pOlitiC&fing Fhe graph shift-bgsed reg_ul_ariz_ation and Laplabased regularization
blogs [5]. The blogs can be either “conservative” or “lidéra on weighted and unweighted similarity graphs.
The dataset is represented by a directed graph with vertices
corresponding to blogs and directed edges corresponding to
hyperlink references between blogs. For this dataset we als
use only the unweighted graph (since we cannot assign
similarity value to a hyperlink).

For both datasets, we consider trade-offs between the tw
parts of the objective function in (41) ranging froirto 100.
In particular, for each ratio of known labels5%, 1%, 2%,

3%, 5%, 7%, 10% and 15%, we run experiments foi99 07 g o
different values ofx € {1/100,1/99,...,1/2,1,2,...,100}, /// ~e-Graph shift (directed)
-®-Graph shift (undirected)

a total of 8 x 199 = 1592 experiments. In each experiment,  os _ _
// —e-Laplacian (undirected)

/aya

Classification aQuracy i

we calculate the average classification accuracy over 100
runs. After completing all experiments, we select the highe 5
average accuracy for each ratio of known labels.

For comparison, we consider the Laplacian quadratic
form (52), and solve the minimization problems

—+Normalized Laplacian (undirected)

05% 1% 2% 3% 5% 7%  10%  15%
Percentage of initially known labels

_ Fig. 10. Classification accuracy of political blogs using graph shift-based
slPredicted) — 4 remin (ST Ls+ af| C(S(k“OW”) — S)Hg) (42) regularization and Laplacian-based regularization onrameighted graph of
seRN hyperlink references.

for two definitions of the Laplacian: standard (49) and ndrma
ized (50). As before, the values of parametevary between
0.01 and 100. Since the Laplacian matrix can only be use
with undirected graphs, we convert the original directeabbs
for digits and blogs to undirected graphs by making all edgg
undirected. ; o

For a fair comparison with the Laplacian-based minimiz o_lfagsgziaf?:a:gges improves the accuracy of regularizatiosdas
tion (42), we also test our approach (41). on the same un,"Furthermore, the approach (41) that uses the graph shift-
rected graphs. These experiments provide an equal tes

. : ed regularization significantly outperforms the Laiplac
ground for the two metho_ds. In addition, b)_/ comparing re’t"UIBased approach (42) on undirected graphs for the standard
for our approach on directed and undirected graphs,

determi hether the directi ¢ h ed e ad fid normalized Laplacian matrices. In particular, for $mal
ietermine whetner the direction ot graph €dges provides atfii,g of known labels (undei%), the differences in average
tional valuable information that can improve the classifaa

accuracies can exce&d% for image recognition an@0% for
accuracy.

Results. A lassificat ies for the hand .tblog classification.
esufts. Average classitication accuracies for (e handwnt= pigq ssion, The following example illustrates how classi-

ten digits images dataset and the blog dataset are Show&tion based on signal regularization works. Fig. 11 shows

SWe have also considered weighted graphs with edge weightgose a SUbgfaph qﬂO randomly Se_IeCted bIOQS with their mutual
exp(—d2 ,.), whered, ., is the Euclidean distance between thth and hyperlinks. Fig. 11(a) contains true labels for these blogs

n,m

mth images. This is a common way of assigning edge weights fpfs  obtained from [5], while the labels in Fig. 11(b) are obtaine
that reflect similarity between objects [50], [51], [16]. $Réts obtained for

these weighted graphs were practically indistinguishdiden the results in by randomly SWitChing7 out of 40 labels to opposiFe values.
Fig. 9 and Fig. 10 obtained for unweighted graphs. The frequency content of the true and synthetic labels as

respectively, in Fig. 9 and Fig. 10. For both datasets, the
tal variation minimization approach (41) applied to diesl

raphs has produced the highest accuracies. This obgervati
@monstrates that using the information about the directio
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frequency response by finding least squares approximations
to solutions of systems of linear algebraic equations. We
applied these concepts and methodologies to the analysis
and learning of real-world datasets. We studied detection o
corrupted data in the dataset of temperature measurements
collected by a network of 150 weather stations across the U.S
during one year, and classification of handwritten digitges
(a) True labels (b) Synthetic labels from the NIST database [49] and hyperlinked documents [5].
The experiments showed that the techniques presented in
Fig. 11. A subgraph of0 blogs labels: blue corresponds to “liberal” blogsthis paper are promising in problems like detecting sensor
and red corresponds to “conservative” ones. Labels in (aj fa smoother malfunctions, graph signal regularization, and clasdificeof
graph signal than labels in (b). .
partially labeled data.

X \
—— .
— ——

~—
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APPENDIXA: JORDAN DECOMPOSITION

An arbitrary matrix A € CNY*N has M < N distinct
eigenvalues\, ..., A\ys—1. Each eigenvalue,,, hasD,, cor-
~True labels responding eigenvectoss,, o, . . ., V. p,, 1 that satisfy

-=Synthetic labels
(A — /\m IN)Vm,d =0.

Moreover, each eigenvectet, 4 can generate dordan chain
of R, .4 > 1 generalized eigenvectoss,, 4., 0 <1 < Ry, 4,
wherev,, 40 = v 4, that satisfy

(A - )\m I)Vm,d,r = Vm,d,r—1- (43)

Low frequencies High frequencies

All eigenvectors and corresponding generalized eigeovect
are linearly independent.
Fig. 12. Magnitudes of the spectral coefficients for gragmais formed by For each eigenvecter,, 4 and its Jordan chain of size,, 4,
true and synthetic labels in Fig. 11. " ' . ] ; ’
we define aJordan blockmatrix of dimensionsR,, 4 X Ry, 4

as
signals on this subgraph are shown in Fig. 12. The true Am 1
labels form a signal that has more energy concentrated in A .
lower frequencies, i.e., has a smaller variation than tgeadi  Jr,,. ,(Am) = "o € Cltmaxfima  (44)
formed by the synthetic labels. This observation suppauts o R |
assumption that the solution to the regularization prok(¢m) Am
should correspond to correct label assignment. By construction, each eigenvalue, is associated withD,,,

Incidentally, this assumption also explains why the maxkgrqan blocks. each of dimensid, 4x R,, 4, where0 < d <
oge . N N n . 1 5 m,as —=
mum classification accuracy achieved in our experiments ji$  Next for each eigenvectar,, 4, we collect its Jordan
. . . m-e 1 m,an
96%, as seen in Fig. 10. We expect that every blog contaiRgain into aN x R . matrix
m,

more hyperlinks to blogs of its own type than to blogs of

the opposite type. However, after inspecting the entirasif Vid= [Vm,d.,o e Vm,d,Rm,dfl] . (45)
we discovered that0 blogs out of1224, i.e., 4% of the \ye concatenate all blocks,, 4, 0 < d < D,, and0 < m <
total dataset, do not obey this assumption. As a resitpf M, into one block matrix ' - -

all blogs are always misclassified, which results in maximum

achievable accuracy &6%. V=1[Voo ... Vu_1py.], (46)
so that the blockv,, 4 is at positionzzzo1 Dy, + d in this
VIl. CONCLUSIONS matrix. Then matrixA is written in its Jordan decomposition
In this paper, we defined the concepts of low-, highform as
and band-pass graph signals and graph filters. These def- A=VIV (47)

initions are not straightforward extensions of the consept . .
from the traditional discrete signal processing. Ratheg, WWhere the block-diagonal matrix
defined them using the concept of frequencies in digitalaign JRoo (M)

processing on graphs introduced in [9]. We proposed a novel j _ . (48)
definition of total variation of graph signals that measures '
the difference between a signal and its shifted version. We
then used the total variation to order the graph frequencisscalled theJordan normal formof A. The columns ofV,
and to define low- and high-pass graph signals and graiph, all eigenvectors and generalized eigenvectord pfare

filters. We demonstrated how to design filters with specifiezhlled theJordan basisof A.

JRM—I,DM71 (/\wal)



12

APPENDIXB: CONNECTION WITH LAPLACIAN-BASED
VARIATION

The Laplacian matrix for an undirected gragh= (V, A)

Bm = d — A\, Since the smallest eigenvalue bfis 5y = 0,
we also obtaiMmax = d.
The graph shift quadratic form (31) of the eigenveatgr

with real, non-negative edge weighs, ., is defined as satisfies
L=D-A, (49) 1 1 2
whereD is a diagonal matrix with diagonal elements Se(m) = 2 H (I _EA) o
2
N-1 2
1 Am
D, ;An,m 5 < y >
N 1
Alternatively, the (normalized) Laplacian matrix is definas = (d— )\m)2
L=Iy-D Y?AD /2, (50) 1,
= 2@
The Laplacian matrix (49) has real non-negative eigengalue 1 L) 2
0=LS0 < B < B2 <...<PBy_1and a complete set of = 52 (Sz (S)) (55)

corresponding orthonormal eigenvectars for 0 <n < N. _ o e o _ _ _ _
Similarly to the DSR definition of the graph Fourier SinceS-/(2d*) is a monotonically increasing function fgr>

transform (8), the Laplacian-based Fourier transform edpa 0. it follows from (55) that ordering the graph Fourier basjs
a graph signas into the eigenbasis d [8]. The total variation 0 < 7 < N, by increasing values of the quadratic form (31)

is defined as leads to the same order as (54). Hence, the notions of low
N1 1/2 and high frequencies, and frequency orderings from lowest

I 2 to highest coincide on regular graphs for the RS#hd the

TVL(s) = ;} ( ;/ Anm ($n = 5m) ) ’ (51) Laplacian-based approach. ]

and the graph Laplacian quadratic form is
s{(s) = sT L. (52)

In particular, the Laplacian quadratic form (51) of a Fourie
basis vector is

(1]
(2]
(3]

(4]

SS9 (u,) = B, (53)

It imposes the following order of the Laplacian Fourier asi [°]
from the lowest frequency to the highest:
Up,uq,...,UN-1- (54) [6]
For a general graph, the total variation (18) and the graph
shift quadratic form (31) are different from the (51) and X52 [
However, as we demonstrate in the following theorem, the
DSR; and the Laplacian-based approach to signal processiff
on graphs lead to the same graph Fourier basis, notions of low
and high frequencies, and frequency ordering on any regulam]
graph. 10]
Theorem 3:The quadratic forms (31) and (52) induce thé
same ordering on the graph Fourier basis for regular graphs.
Proof: Consider ad-regular graph with adjacency matrix[11]
A. Since the Laplacian matrix (49) can be defined only for
undirected graphs with real non-negative edge weights, yue]
also require thatA = AT and has only real non-negativel13]
entries. HenceA has real eigenvalues and a complete set
of orthonormal eigenvectors [34], and its Jordan decompogis)
tion (47) becomes the eigendecomposition
A=VAVT,
whereA is the diagonal matrix of eigenvalues. Since the graph
is d-regular, its Laplacian matrix (49) satisfies
L=dI-A=V({dI-A)VT.
Hence,LL andA have the same eigenvectars = v,,, i.e., the
same graph Fourier basis. The corresponding eigenvalees

[15]

[16]
[%17

7All vertices of a d-regular graph have the same degrée so that

[18]
SN A =d.
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