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Abstract

We propose a novel algorithm for the compression of ECG signals, in particular QRS complexes.

The algorithm is based on the expansion of signals with compact support into a basis of discrete

Hermite functions. These functions can be constructed by sampling continuous Hermite functions at

specific sampling points. They form an orthogonal basis in the underlying signal space. The proposed

algorithm relies on the theory of signal models based on orthogonal polynomials. We demonstrate that

the constructed discrete Hermite functions have importantadvantages compared to continuous Hermite

functions, which have previously been suggested for the compression of QRS complexes. Our algorithm

achieves higher compression ratios compared with previously reported algorithms based on continuous

Hermite functions, discrete Fourier, cosine, or wavelet transforms.

Index Terms

QRS complex, ECG signal, compression, Hermite function, Hermite transform, signal model, or-

thogonal polynomials.

I. INTRODUCTION

Some classes of electrophysiological signals have (or can be assumed to have) compact support. These

signals represent the impulse responses of a system or an organ to an electrical stimulation that is
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Fig. 1. The schematic structure of an ECG signal.

recorded on the body surface. Examples include electrocardiographic (ECG), electroencephalographic,

and myoelectric signals.

The major role of electrophysiological signals is to provide information about a patient’s condition, and

reflect important changes in his/her state. In addition, it may also be desired to store electrophysiological

signals for later analysis and reference. However, the visual analysis and monitoring of long-term repetitive

signals is a tedious task that requires the presence of a human operator. In these cases, computer-based

systems can be used to facilitate this process.

For efficient storage, automatic monitoring, and accurate interpretation, electrophysiological signals

are usually represented by a set of features, either heuristic, such as duration and amplitude, or formal,

such as the coefficients of the expansion in an orthogonal basis. In the latter case, one can use either

a continuous or a discrete basis. When a continuous basis is used, the projection and reconstruction

of a compactly supported signal are computed using numerical methods for integral approximation, for

example, a numerical quadrature. When a discrete basis is used, a discrete signal transform, such as

the discrete Fourier transform or the discrete cosine transform, is applied to a digitized signal. These

signals can be obtained from continuous ones by sampling at specific sampling points. The choice of the

quadrature formula, or the sampling points is an important characteristic of the representation scheme.

In both cases of continuous and discrete bases, typically only a few projection coefficients are used

for the storage and reconstruction of a signal. While the reduction of expansion coefficients leads to the

compression of the signal, it also leads a reconstruction error. The goal of the compression optimization

then is to minimize the error while maximizing the compression ratio. This can be achieved, for example,

by using only the coefficients with the largest magnitude, and minimizing the number of coefficients used
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for reconstruction.

In this paper, we introduce a novel algorithm for the compression of QRS complexes(also known as

QRS intervals), which are the most characteristic waves of ECG signals. The structure of an ECG signal

is shown in Fig. 1. The morphology of QRS complexes is important to cardiologists in different stages

of diagnosis and treatment [1]. Examples include, but are not limited to,

1) The detection of the rhythm origin (supraventricular, from the upper chambers of the heart, or

ventricular, from the bottom chambers). This is a key factorin the choice of the treatment.

2) The detection of conduction abnormalities between atriaand ventricles (bundle branch blocks,

fascicular blocks, and others).

3) The detection of accessory pathways (Wolf-Parkinson-White syndrome).

4) The evaluation of the effect of specific anti-arrhythmic medications (such as sodium channel

blockers).

Our proposed algorithm is based on the expansion of QRS complexes into the basis ofdiscreteHermite

functions. Such functions are obtained by samplingcontinuousHermite functions at specific sampling

points, not necessarily located on a uniform grid. We originally proposed this compression method in [2].

In this paper, we extend our previous work by rigorously formulating and describing the signal model

used for the description of QRS complexes. In particular, weuse results from our recently developed

theory of signal models based on orthogonal polynomials [3]–[5]. We also identify a fast algorithm for

the implementation of the proposed compression method. Finally, our experimental results demonstrate

that the proposed method achieves higher compression ratios, compared to other methods, when used to

obtain medically acceptable compressed ECG signals. Here,we call a compressed ECG signalmedically

acceptable, if visually it is sufficiently similar to the original signal, and would not lead to an incorrect

interpretation and diagnosis. In our experiments, the identification of medically acceptable compressed

signals has been performed by one of the authors who is a cardiologist with extensive experience in

cardiac electrophysiology.

Related work. Previous work on the compression of QRS complexes includes the use of continuous

Hermite functions as the expansion basis [6]–[9]. Due to theshape similarity between continuous Hermite

functions and QRS complexes, these functions were identified as a suitable basis for the representation and

compression of the latter. These works, however, only provide a theoretical framework for the compression

algorithm. The actual implementation is not discussed and no experimental data is provided that would

confirm that the proposed compression method indeed performs better than other methods. In addition, as
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we discuss in Section II, the computer implementations of the previously proposed algorithms suffer from

certain limitations, such as the inability to obtain an exact reconstruction of a signal, large computational

cost, and an a priori selection of coefficients for reconstruction.

II. BACKGROUND

In this section, we discuss the expansion of continuous signals using Hermite functions, its digital

implementation, and its use in signal compression.

A. Continuous Hermite functions

Consider the family of polynomialsHℓ(t), ℓ ≥ 0, that satisfy the recursion

Hℓ(t) = 2tHℓ−1(t)− 2(ℓ− 1)Hℓ−2(t), (1)

for ℓ ≥ 2, with H0(t) = 1 andH1(t) = 2t. They are known asHermite polynomials. These polynomials

are orthogonal on the real lineR with respect to the weight functione−t2 :

∫ ∞

−∞
Hℓ(t)Hm(t)e−t2dt = 2ℓℓ!

√
π · δℓ−m. (2)

It immediately follows from (2) that the functions

ϕℓ(t, σ) =
1

√

σ2ℓℓ!
√
π
e−t2/2σ2

Hℓ(t/σ) (3)

are orthonormal onR with respect to the standard inner product

〈ϕℓ(t, σ), ϕm(t, σ)〉 =
∫

R

ϕℓ(t, σ)ϕm(t, σ)dt = δℓ−m. (4)

The set of functions{ϕℓ(t, σ)}ℓ≥0, calledcontinuous Hermite functions, is an orthonormal basis in the

Hilbert space of continuous functions defined onR [10]–[13]. Any such functions(t) can be represented

as a linear combination of the basis functions

s(t) =
∑

ℓ≥0

cℓϕℓ(t, σ), (5)

where

cℓ = 〈s(t), ϕℓ(t, σ)〉 =
∫

R

s(t)ϕℓ(t, σ)dt.

The first four continuous Hermite functions are shown in Fig.2. Note that eachϕℓ(t, σ) quickly
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(a) ϕ0(t, σ) (b) ϕ1(t, σ)

(c) ϕ2(t, σ) (d) ϕ3(t, σ)

Fig. 2. First four Hermite functions (plotted for the same scale σ).

approaches zero as the value of|t| increases: sinceHℓ(t/σ) is a polynomial of degreeℓ,

lim
|t|→∞

e−t2/2σ2

Hℓ(t/σ) = 0.

As a consequence, for practical purposes we can assume that each continuous Hermite function has a

compact support. Since in this paper we often work only with the firstL Hermite functions, we assume

thatϕ0(t, σ), ϕ1(t, σ), . . . , ϕL−1(t, σ) have the same compact support[−Tσ, Tσ], whereTσ is a suitably

chosen constant that depends onσ andL. In other words, we assume

ϕℓ(t, σ) = 0 for t /∈ [−Tσ, Tσ],

where 0 ≤ ℓ < L. If a signal s(t) also has compact support[−Tσ, Tσ], then we can compute the

coefficientscℓ using a finite integral:

cℓ =

∫

R

s(t)ϕℓ(t, σ)dt =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt. (6)

B. Compression with continuous Hermite functions

Coefficient-based compression.In practical applications, only a finite numberM of Hermite functions

are used to represent the signals(t) in (5). Accordingly, only a few coefficientscℓ0 , . . . , cℓM−1
need to

be computed. Here,cℓm corresponds toϕℓm(t, σ) in (6). The approximated signal is then

ŝ(t) =

M−1
∑

m=0

cℓmϕℓm(t, σ). (7)

Alternatively, a larger pool of coefficients can be computed, from whichM optimal ones are selected.
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It is well-known that, in an orthonormal basis, selecting coefficients with the largest magnitude minimizes

the approximation error computed as the energy of the difference between the signals(t) and its

approximation withM basis functions. If a basis is orthogonal, but not orthonormal (i.e. basis functions

do not have unit norms), an additional weighting of coefficients proportionally to the norms of the basis

functions can be performed.

Digital implementation. The coefficientscℓ in (6) and the Hermite expansion (5) are computed using

the continuous functions. However, in practice they have tobe computed in a digital form.

In particular, for each coefficientcℓm the integral in (6) can be calculated using a numerical quadrature

that is based, for example, on a rectangle rule:

cℓm =

∫ Tσ

−Tσ

s(t)ϕℓm(t, σ)dt

≈
K
∑

k=−K

s(τk)ϕℓm(τk, σ)(tk − tk−1). (8)

Here,−T = t−K−1 < t−K < . . . < tK−1 < tK = T. Each sampling pointτk is located inside the

corresponding interval:tk−1 ≤ τk ≤ tk.

Then, we can compute the discrete version of the approximation signalŝ(t). It corresponds tôs(t)

sampled at pointsτk, −K ≤ k ≤ K:

ŝ(τk) =

M−1
∑

m=0

cℓmϕℓm(τk, σ). (9)

Usually, pointstk are assumed to lie on a uniform grid, such thattk − tk−1 = ∆ for all k. Then (8)

and (9) can be expressed in matrix-vector notation. Let us define vectors

s=











s(τ−K)

...

s(τK)











, c =











c0
...

cM−1











, ŝ=











ŝ(τ−K)

...

ŝ(τK)











. (10)

Then

c = ∆ΦT s, (11)

ŝ = Φc, (12)

whereΦ ∈ R(2K+1)×M , such that itsmth column is theℓmth Hermite function sampled at the points
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τ−K , τ−K+1, . . . , τK :

Φ =
[

ϕℓm(τk−K , σ)
]

0≤k<2K+1, 0≤m<M
. (13)

As follows from (11)-(12), to achieve the perfect reconstruction ŝ= s, Φ must satisfyΦΦT = I2K+1.

Compression of QRS complexes: Previous work.The compression of QRS complexes using the

expansion into continuous Hermite functions has been studied in [6]–[9]. It was originally motivated

by the visual similarity of QRS complexes, centered around their peaks, and Hermite functions, as can

be observed from Figs. 1 and 2. Varying the value ofσ corresponds to “stretching” or “compressing”

Hermite functionsϕℓ(t, σ) to optimally match a given QRS complex.

Since ECG signals are usually available as discrete signalsequidistantly sampled atτk = k∆, previously

reported work assumed, explicitly or implicitly,tk = τk = k∆ in (8)–(9), and hence led exactly to the

matrix-vector products in (11) and (12). In addition, it proposed to use only thefirst M Hermite functions

ϕ0(t, σ), . . . , ϕM−1(t, σ) for the approximation of QRS complexes.

This compression algorithm has several important limitations. First, sinceΦΦT 6= I2K+1 for τk = k∆,

the approximation̂s does not converge to the original signals, regardless of the numberM of Hermite

functions used for the construction of an approximation. Asa result, the original signals cannot be

reconstructed exactly.

This problem could be theoretically addressed by usingM = 2K+1 coefficients and replacingΦT with

Φ−1 to compute coefficientsc in (11). However, the computation ofΦ−1 is a non-trivial task. Moreover,

the matrix-vector productΦ−1s requires(2K+1)2 operations. This cost can become prohibitive for large

value ofK and make this approach impractical.

Finally, the approximation of̂s(tk) with thefirst M < 2K+1 coefficientsc0, c1, . . . , cM−1 in (8) may

not be the optimal choice for the construction of approximation ŝ with M basis functions.

In Section IV, we propose an improved compression algorithmthat samples ECG signals at non-

equidistant points, and selects coefficientscℓm with the largest magnitude among a larger selection of

coefficients.

III. S IGNAL MODEL FOR QRSCOMPLEXES

In this section, we construct a signal model for the description of QRS complexes. It is based on the

scaled Hermite polynomials. We identify the Fourier transform for this model, called aHermite transform,

as well as its inverse. We also describe a fast algorithm for the corresponding Hermite transform. These

results will be used in Section IV to construct and implementthe novel compression algorithm.
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A. Signal model

Let us define polynomials

Pℓ(t) =
1√
2ℓℓ!

Hℓ(t), (14)

whereHℓ(t) denotes theℓth Hermite polynomials (1). Throughout the paper, we refer to polynomials

Pℓ(t), ℓ ≥ 0, asscaled Hermite polynomials.

Signal model. Consider the vector spaceM of functions spanned by the firstN scaled Hermite

polynomials (14):

M =
{

s0P0(t) + s1P1(t) + . . .+ sN−1PN−1(t)
}

, (15)

where
(

s0, s1, . . . , sN−1

)T ∈ RN . Since eachPℓ(t) is a polynomial of degreeℓ, M is a vector space of

degreeN. It is closed under the addition and linear scaling of its elements.

Assume thatM is also closed under the multiplication of its elements modulo polynomialPN (t)1. As

we demonstrate in [3]–[5], in this caseM has exactlyN spectral components, and thekth component

of a signal

s(t) = s0P0(t) + s1P1(t) + . . .+ sN−1PN−1(t)

is defined as

s(αk) = s0P0(αk) + s1P1(αk) + . . . + sN−1PN−1(αk).

whereα0, α1, . . . , αN−1 are the roots ofPN (t). Note thatα0, α1, . . . , αN−1 are all distinct real num-

bers [10]. Without loss of generality, we assumeα0 < α1 < . . . < αN−1.

Hermite transform. The spectral decomposition of signals(t) is defined as

S(α) =
(

s(α0) s(α1) . . . s(αN−1)
)T

. (16)

We can express the spectral decomposition ofs(t) in the following matrix-vector notation. Consider

1Strictly speaking, we must consider two separate spacesA andM that have the same elements:A = M. A is an algebra:
it is a vector space closed under the addition and multiplication of its elements moduloPN (t). ThenM can be viewed as an
A-module, and its spectral decomposition can be defined.

A and M comprise a part of what we call analgebraic signal model. It is a central component of thealgebraic signal
processing theorydeveloped by the authors in [3]–[5], [14]–[18].

In particular, in [3]–[5] we introduce signal models based on orthogonal polynomials (of which Hermite polynomials are
a special case). A family of polynomials{Pℓ(t)}ℓ≥0 is called orthogonal, if they satisfy a recursion of the formtPℓ(t) =
aℓPℓ−1(t)+ bℓPℓ(t)+ cℓPℓ+1(t), usually with initial conditionsP0(t) = 1 andP−1(t) = 0. Each family is orthogonal over an
interval I ⊆ R with a weight functionw(t) :

∫
I
Pℓ(t)Pm(t)w(t)dt = 0 if ℓ 6= m. Each polynomialPℓ(t) has exactlyℓ simple

real roots. A detailed discussion on orthogonal polynomials can be found in [10]–[13].
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theN ×N matrix

PP,α =
[

Pℓ(αk)
]

0≤k,ℓ<N
. (17)

The ℓth column ofPP,α is polynomialsPℓ(t) evaluated atα0, . . . , αN−1. In general, matrices with this

structure are calledpolynomial transforms. In the particular case of (17), We callPP,α the (forward)

Hermite transform2.

The spectral decomposition (16) can then be computed as the matrix-vector product

















s(α0)

s(α1)

...

s(αN−1)

















= PP,α ·

















s0

s1
...

sN−1

















. (18)

Inverse Hermite transform. In general, it is non-trivial to compute the inverse of the matrix PP,α for

arbitrary polynomialsPℓ(t). However, as follows from Theorem 16 in [3] and explicitly derived in [5],

we can apply the Christoffel-Darboux formula for orthogonal polynomials [10] to the scaled Hermite

polynomialsPℓ(t) to obtain the inverse of the Hermite transform (17)3:

P−1
P,α = PT

P,α · D . (19)

Here,D ∈ RN×N is a diagonal matrix with thekth diagonal element equal to

Dk,k =

√

2/N

PN−1(αk)P
′
N (αk)

,

whereP ′
N (t) denotes the derivative ofPN (t).

B. Fast algorithm for Hermite transform

A straightforward computation of the matrix-vector product in (18) requires, in general,2N2 additions

and multiplications. Alternatively,43N log22N additions and multiplications can be required, if one uses

an algorithm proposed in [22]. In both cases, the computational cost can become unacceptable for large

values ofN , especially if the product has to be computed in real-time (for example, in the case of ECG

signal processing). The same applies to the inverseP−1
P,α.

2Another definition of the Hermite transform has been previously used in [19], [20]. However, it denotes an expansion into
continuous Hermite polynomials, and should not be confusedwith (17).

3In [21], weighted Hermite polynomials sampled at the roots of PN (t) have also been identified as an orthogonal basis,
essentially leading to (19).
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Here, we provide an improved computational algorithm for the matrix-vector product in (18). It reduces

the computational cost approximately by a factor of 4. We only state the algorithm here, without the

proofs, since they can be verified by direct computation. We originally derived this algorithm by applying

the theory of fast polynomial transforms developed in [4], [23] to the signal space (15).

Theorem 1 Let N = 2M be an even number. Then the polynomial transform(17) can be factored as

PP,α =





JM − JM

IM IM





















IM

αM

. . .

αN−1

















×





PM

PM



B0B1 . . .BM−1 L
N
2 . (20)

Here, IM is an identity matrix of sizeM , andLM is a complimentary identity matrix of sizeM :

JM =

















1

. .
.

1

1

















.

Matrix PM is anM ×M polynomial transform defined as

PM =
[

P2ℓ(αk+M )
]

0≤k,ℓ<M
.

EachBk is an identity matrix except its(M +k,M +k)th and(M +k−1,M +k)th elements are equal

to
√

2/(2k + 1) and −
√

2k/(2k + 1), respectively.LN
2 is a permutation matrix: its(k, ℓ)th element is

1 if ℓ = ⌊2k(N+1)
N ⌋ mod N, and 0 otherwise.

The algorithm for odd values ofN is similar.

Theorem 2 Let N = 2M + 1 be an odd number. Then the polynomial transform(17) can be factored
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as

PP,α =











JM − JM

1

IM IM



























IM+1

αM+1

. . .

α2M

















×





PM+1

PM



B0 B1 . . .BM−1 L
N
2 . (21)

Here,PM+1 is an (M + 1)× (M + 1) polynomial transform defined as

PM+1 =
[

P2ℓ(αk+M )
]

0≤k,ℓ<M+1
.

PM is a submatrix ofPM+1 obtained by removing the first row and last column of the latter. EachBk

is an identity matrix except its(M +1+ k,M +1+ k)th and(M + k,M +1+ k)th elements are equal

to
√

2/(2k + 1) and−
√

2k/(2k + 1), respectively. MatricesIM , JM , andLN
2 are as described above.

We show in [4] that the polynomial transformsPM andPM+1 in Theorems 1 and 2 are also based on

orthogonal polynomials. Hence, they can also be computed using approximately2M2 or 43M log22 M

additions and multiplications, depending on the choice of the algorithm. Since other matrices in factoriza-

tions (20) and (21) require approximately3N additions and multiplication, the computational algorithms

in Theorems 1 and 2 require approximately two times fewer operations compared to other algorithms.

IV. COMPRESSION ALGORITHM

As we mentioned in Section II, the parameterσ in the definition of the continuous Hermite functions (3)

can be used to “stretch” and “compress” the functions relatively to the signals(t).

Algorithm modifications. Alternatively, we can fixσ = 1, and introduce a parameterλ to “stretch”

and “compress” signals(tλ) instead. In this case the numerical quadrature (8) can be rewritten as

cℓ =

∫ Tλ

−Tλ

s(tλ)ϕℓ(t, 1)dt

≈
K
∑

k=−K

s(τkλ)ϕℓ(τk, 1)(tk − tk−1). (22)

Furthermore, instead of sampling points on a uniform grid, we propose to use non-equispaced sampling

points associated with the roots of Hermite polynomials. Namely, we setτk = αk+K , −K ≤ k ≤ K, to

be the roots of the scaled Hermite polynomialP2K+1(t).
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Discrete Hermite functions. We call the vector

Φℓ =
(

ϕℓ(α0, 1) ϕℓ(α1, 1) . . . ϕℓ(αN−1, 1)
)T

(23)

the ℓth discrete Hermite function.

As previously, we selecttk in (22) so that the length of intervals[tk−1, tk] is constant4: tk− tk−1 = ∆.

In this case the computation of each coefficientcℓ in (22) can be seen as the inner product of a discrete

signal

s=
(

s(α0λ) s(α1λ) . . . s(α2K+1λ)
)T

with the ℓth discrete Hermite functionΦℓ :

cℓ ≈ ∆

K
∑

k=−K

s(αk+Kλ)ϕℓ(αk+K , 1) = ∆ · 〈Φℓ, s〉.

Expansion matrix. The matrixΦ in (13) can now be rewritten as

Φ = π−1/4WPP,α, (24)

where

W = diag
(

e−α2

k
/2
)

0≤k<2K+1

is a diagonal matrix, andPP,α is given in (17).

Finally, if M = 2K + 1, andΦ is a square(2K + 1) × (2K + 1) matrix, then it follows from (19)

that the rows ofΦ form an orthogonal basis:

ΦΦT = π−1/2W 2D−1. (25)

We denote the diagonal matrix on the right-hand side of (25) asΛ. Later, to account for the vector norms,

we will pre-multiply the input signals with the weight matrixΛ−1.

Proposed algorithm. The proposed compression algorithm operates as follows. Weassume that the

ECG signals(t) is sampled at pointsαk+Kλ, −K ≤ k ≤ K, to obtain a vector of samples

s=
(

s(α0λ), s(α1λ), . . . , s(α2Kλ)
)T

. (26)

4To our best knowledge, there is no closed-form expression for the roots of Hermite polynomialsP2K+1(t) [10], [13]. In
general, we cannot guarantee that for anyK there existsλ, such thatλαk+K can be placed inside intervals[tk−1, tk] of equal
length, so thattk−1 ≤ λαk+K ≤ tk holds. However, in the experiments in Section V onlyK ≤ 15 were used, and we
numerically confirmed the existence of suitable valuesλ. Moreover, for each consideredK there exists a range of values ofλ

that satisfy the condition; in the experiments, the value that maximized the compression ratio was selected.
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The selection of parameterλ is discussed in Section V. Then we compute the vector of expansion

coefficients

c = ∆ΦTΛ−1s, (27)

whereΦ andΛ are given in (24) and (25). Following this, we construct the vector ĉ by keeping onlyM

coefficients inc with the largest magnitudes and setting others to zero. Finally, we useĉ to obtain the

signal approximation

ŝ= ∆−1Φĉ. (28)

Advantages.The proposed algorithm addresses several limitations of the original compression algo-

rithms based on continuous Hermite functions.

First of all, the discrete Hermite functionsΦℓ in (23) form an orthogonal basis in the finite-dimensional

vector spaceCN of all discrete signals of lengthN . The expansion of QRS complexes sampled atN nodes

into the discrete Hermite functions is complete, and allowsfor a perfect reconstruction of the sampled

complexes. By contrast, an expansion of a continuous QRS complex into a finite numberN < ∞ of

continuous Hermite functionsϕℓ(t, σ) is not complete, since theseN functions do not form a complete

basis inL2(R). As a result, a perfect reconstruction cannot be achieved.

Furthermore, for a digital implementation of the compression, both the QRS complexes and the basis

functions must be discretized by sampling. As we have discussed, equidistant sampling of continuous

Hermite functions does not yield an orthogonal basis in theCN space. In this case, approximating a

signal with more basis functions may not necessarily lead toa smaller approximation error. On the other

hand, since the discrete Hermite functions form an orthogonal basis, increasing the number of vectors

used for the signal approximation necessarily decreases the approximation error [24]. Moreover, since we

pre-compute all coefficientsc0, c1, . . . , c2K , and only after this selectM ones with the largest magnitude

to obtainĉ, the approximation error is minimized for a fixedM . In addition, if an exact reconstruction

of signals is required, it can be achieved by usingM = 2K + 1 coefficients to obtain̂c.

Finally, the proposed algorithm has a more efficient implementation, since the computational cost of

Φ in (24) (as well asΦT ) is approximately two times lower compared to the cost ofΦ (andΦT ) in (13),

as discussed in Section III-B.

V. EXPERIMENTS

Setup. In order to analyze the performance of the proposed compression algorithm, we study the

compression of QRS complexes extracted from ECG signals in the MIT-BIH ECG Compression Test
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Fig. 3. An example ECG signal with two leads.

Database [25]. The database contains 168 ECG signals sampled at 250 Hz. An example ECG signal with

two recorded channels, orleads, is shown in Fig. 3.

Preprocessing.To make the experiments uniform across the database, we onlyused the first 10 seconds

of the first lead of each signal. All detectable QRS complexeswere extracted automatically, a total of

N = 1486 complexes. During the extraction, we require that each extracted complex is centered around

the R peak. As a result, each extracted complex is available as a discrete signal of length2K + 1 ∈
{27, 29, 31}, where the(K + 1)th sample corresponds to the R peak. Hence, each signal represents a

continuous QRS complex of duration 104, 112, or 120 milliseconds sampled at 250 Hz.

For the new compression algorithm, QRS complexes must be sampled at pointsαk+Kλ proportional

to the roots ofP2K+1(t). These signals are not available directly from MIT-BIH ECG Compression Test

Database. Hence, we had to construct the required discrete signals prior to running the experiments. We

first reconstructed continuous QRS complexes by interpolating the extracted discrete QRS complexes

with sinc functions, and then sampled the obtained continuous signals at the required pointsαk+Kλ.

The value of the parameterλ was determined experimentally for each lead to maximize theresulting

compression ratio. In particular, we have observed that theoptimal value ofλ “stretches” the weighted

signalΛ−1s in (27) to make its shape closely resemble the shapes of the discrete Hermite functionsΦℓ

in (23). Since in our experiments having only a few coefficients cℓ = 〈Λ−1s,Φℓ〉 with large magnitudes

implies a higher compression ratio, we hypothesize that theoptimal choice ofλ may be explained by

the Cauchy–Schwarz inequality [26] that states that the magnitude of the inner product of two vectors
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with equal norms is maximized when the vectors are equal. Thus, if Λ−1s closely resemblesΦℓ, their

inner productcℓ = 〈Λ−1s,Φℓ〉 should have a large magnitude.

Similarly, we determined the value of the parameterσ for each lead to maximize the compression ratio

for the original compression algorithm that expands QRS complexes into continuous Hermite functions.

In a real-time system, the parametersλ or σ would be pre-set for each lead. In addition, the incoming

continuous ECG signal would be immediately sampled at the desired points. Hence, the interpolation

step would not be required.

Objective. The main objective of the experiments is to achieve the maximal compression ratio for a

desired approximation error. We define the error as the norm of the difference between the original signal

and its approximation, normalized by the norm of the original signal:

approximation error =
||̂s− s||2
||s||2

. (29)

In this paper, we seek to achieve a10% approximation error. It has been verified by one of the authors

who is an experienced cardiologist, that all signals in the MIT-BIH ECG Compression Database can be

compressed with the methods considered in this paper with the 10% error while remainingmedically

acceptable. This means that visually all signals remain sufficiently similar to their original versions, and

would not lead to incorrect interpretation and diagnoses.

We also provide compression ratios for15%, 20%, and25% approximation errors. In general, signals

in the MIT-BIH ECG Compression Database compressed with these errors have been found medically

unacceptable. For example, in our experiments for the approximation error of20%, 630 out of 1486

(42.4%) compressed QRS complexes were identified as medically unacceptable. However, most of the

distortions were introduced at the boundaries of the compressed QRS complexes, as demonstrated in the

example shown in Fig. 4. Potentially, this problem could be addressed by smoothing the boundaries, and

hence reducing the approximation error.

Compression algorithms.For the original compression algorithm that expands QRS complexes into

continuous Hermite functions, as described in Section II-B, we compute a sufficient numberM of

coefficientsc0, . . . , cM−1 in (11). We use the minimal possibleM that ensures that the reconstructionŝ

in (12) has the desired approximation error (29).

For the new compression algorithm, we compute2K + 1 coefficients, and select a sufficient number

M of the coefficients with the largest magnitude to obtain the approximationŝ in (28) that yields the

required approximation error (29).

In addition, we study the accuracy of compression algorithms based on widely used orthogonal discrete
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Fig. 4. A QRS complex and its approximations with 10% and 20% errors.

Error Proposed algorithm Original algorithm DFT-based DCT-based DWT-based

10% 5.3 (5.8) 3.5 (9.0) 3.7 (8.3) 4.3 (7.3) 3.3 (9.4)

15% 7.0 (4.4) 4.3 (7.2) 4.2 (7.4) 5.1 (6.1) 4.2 (7.5)

20% 9.2 (3.4) 5.0 (6.2) 4.6 (6.7) 5.8 (5.3) 4.8 (6.5)

25% 10.4 (2.9) 5.8 (5.4) 5.1 (6.1) 6.6 (4.7) 5.5 (5.6)

TABLE I
AVERAGE COMPRESSION RATIOS OF DIFFERENT ALGORITHMS FOR10%, 15%, 20% AND 25% APPROXIMATION ERRORS.

THE AVERAGE NUMBER OF COEFFICIENTS REQUIRED TO ACHIEVE THE DESIRED ERROR IS INDICATED IN THE PARENTHESIS

NEXT TO THE CORRESPONDING RATIO.

signal transforms. In particular, we consider the discreteFourier transform (DFT), the discrete cosine

transform (DCT), and discrete wavelet transform (DWT). In the latter case, we consider an orthogonal

DWT based on Daubechies filters of length 4 with three levels of decomposition [24]. Since all these

transforms are orthogonal, we can replaceΦ in (11) and (12) with the corresponding transform, apply

the transforms to the signals in (10), and select a sufficient numberM of coefficients with the largest

magnitudes, such that reconstructionŝ in (12) has the desired approximation error (29).

Results.The average compression ratios for10–25% approximation errors are shown in Table I. The
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ratios were computed as

average ratio =

N−1
∑

n=0

(2Kn + 1)
/

N−1
∑

n=0

Mn.

Here,2Kn + 1 ∈ {27, 29, 31} is the length of thenth sampled QRS complex, andMn is the number

of coefficients required to achieve the desired approximation error. Naturally, the higher the compression

ratio, the better the algorithm performance, since fewer coefficients are required.

In Table I, we also identify the average minimal numberM of coefficientscℓm required to achieve the

desired approximation error. This characteristic is included for implementation purposes and the ease of

interpretation of compression ratios.

VI. D ISCUSSION ANDCONCLUSIONS

As we observe from Table I, the proposed compression algorithm has the highest compression ratio for

all considered approximation errors. In particular, it requires on average only 6 coefficients to reconstruct

compressed QRS complexes that are medically acceptable. This is a25% improvement compared to using

DCT as the compressing transform, a33% improvement compared to using DFT or the compression

algorithm based on continuous Hermite functions, and a40% improvement compared to using DWT. As

an interesting observation, recall that here we are using the DWT with three decomposition levels; we

tested DWT with other numbers of decomposition levels, and the compression ratios were even lower.

The larger compression ratio of the proposed algorithm in comparison with the original expansion into

continuous Hermite functions can be explained by the improvements discussed in Sections II and IV.

The better performance of the proposed algorithm compared to the orthogonal transforms DFT, DCT,

and DWT, on the other hand, may have different reasons. One potential factor is that, as discussed above,

the proposed compression algorithm uses the parameterλ to better “fit” the input signals to the basis

of discrete Hermite functions that have shapes resembling QRS complexes. This “fitting” may lead to

fewer coefficients with large magnitudes compared to DFT, DCT, and DWT, which have corresponding

basis functions of different shapes. Another, more speculative, potential factor is that DFT, DCT, and

DWT are well-suited for the compression of “smooth” signals(for the discussion, see [24] and references

therein), since they efficiently capture the low-frequencycomponents of signals using a small fraction

of coefficients, and remove the high-frequency component that may require many additional coefficients.

Since some QRS complexes may have significant high-frequency components, they may require a larger

number of coefficients to achieve a desired reconstruction accuracy. In our experiments, however, the

effect of high frequencies in QRS complexes on the compression performance was observed only in a
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limited number of cases.

Future improvements. As we mentioned in Section V, the compression with an approximation error

higher than10% frequently leads to medically unacceptable signals. However, most of the distortion is

introduced at the boundaries of the compressed QRS complexes.

Fig. 4 shows an example of such distortions for the20% approximation error. While the shape of the

compressed signal is similar to the original QRS complex, the compressed signal is clearly corrupted

at the left and right boundaries. As a result, discontinuities are introduced on the edge between the

compressed QRS complex and the preceding P-R segment, as well as on the edge of the QRS complex

and the following S-T segment. Potentially, one could address this problem by smoothing the compressed

signal at the boundaries, thus reducing the approximation error.

Conclusions.We have constructed a novel algorithm for the compression ofQRS complexes. The

proposed algorithm is based on the expansion of signals withcompact support (such as ECG signals)

into the basis of discrete Hermite functions. These functions are constructed by sampling the continuous

Hermite functions at sampling points proportional to the roots of a corresponding Hermite polynomial.

The proposed algorithm uses results from our recently developed theory of signal models for orthogonal

polynomials. As confirmed by the experiments, the novel algorithm achieves a higher compression ratio

compared with the original algorithm based on the expansioninto continuous Hermite functions, as well

as other widely used compression algorithms.

In addition, we developed a fast computational algorithm for the proposed compression method. The

proposed approach reduces the number of operations approximately by a factor of two.
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[3] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory,” available at http://arxiv.org/abs/cs.IT/0612077, parts

of this manuscript are published as [16] and [17].

[4] A. Sandryhaila,Algebraic Signal Processing: Modeling and Subband Analysis, Ph.D. thesis, Carnegie Mellon University,

Pittsburgh, PA, 2010.
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[16] M. Püschel and J. M. F. Moura, “Algebraic signal processing theory: Foundation and 1-D time,”IEEE Trans. on Signal

Proc., vol. 56, no. 8, pp. 3572–3585, 2008.
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