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Abstract

We propose a novel algorithm for the compression of ECG $sgria particular QRS complexes.
The algorithm is based on the expansion of signals with campapport into a basis of discrete
Hermite functions. These functions can be constructed loyplag continuous Hermite functions at
specific sampling points. They form an orthogonal basis & uhderlying signal space. The proposed
algorithm relies on the theory of signal models based onogihal polynomials. We demonstrate that
the constructed discrete Hermite functions have imporavantages compared to continuous Hermite
functions, which have previously been suggested for thepcession of QRS complexes. Our algorithm
achieves higher compression ratios compared with preljiceported algorithms based on continuous

Hermite functions, discrete Fourier, cosine, or wavelahsforms.

Index Terms

QRS complex, ECG signal, compression, Hermite functiomntte transform, signal model, or-

thogonal polynomials.

. INTRODUCTION

Some classes of electrophysiological signals have (or esasbumed to have) compact support. These

signals represent the impulse responses of a system or am ¢ogan electrical stimulation that is
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Fig. 1. The schematic structure of an ECG signal.

recorded on the body surface. Examples include electrmmgaphic (ECG), electroencephalographic,
and myoelectric signals.

The major role of electrophysiological signals is to pravidformation about a patient’s condition, and
reflect important changes in his/her state. In addition,ayralso be desired to store electrophysiological
signals for later analysis and reference. However, theaVauoalysis and monitoring of long-term repetitive
signals is a tedious task that requires the presence of arhoperator. In these cases, computer-based
systems can be used to facilitate this process.

For efficient storage, automatic monitoring, and accuraterpretation, electrophysiological signals
are usually represented by a set of features, either hieussich as duration and amplitude, or formal,
such as the coefficients of the expansion in an orthogonas.bisthe latter case, one can use either
a continuous or a discrete basis. When a continuous basiseid, the projection and reconstruction
of a compactly supported signal are computed using numariethods for integral approximation, for
example, a numerical quadrature. When a discrete basiseid, asdiscrete signal transform, such as
the discrete Fourier transform or the discrete cosine foams is applied to a digitized signal. These
signals can be obtained from continuous ones by samplingeatific sampling points. The choice of the
guadrature formula, or the sampling points is an importdwatracteristic of the representation scheme.

In both cases of continuous and discrete bases, typically afew projection coefficients are used
for the storage and reconstruction of a signal. While theicgdn of expansion coefficients leads to the
compression of the signal, it also leads a reconstructicor.eFhe goal of the compression optimization
then is to minimize the error while maximizing the compreasiatio. This can be achieved, for example,

by using only the coefficients with the largest magnitudel, minimizing the number of coefficients used
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for reconstruction.

In this paper, we introduce a novel algorithm for the compigs of QRS complexe&@lso known as
QRS intervals), which are the most characteristic waves@sEignals. The structure of an ECG signal
is shown in Fig. 1. The morphology of QRS complexes is impurta cardiologists in different stages

of diagnosis and treatment [1]. Examples include, but atdingted to,

1) The detection of the rhythm origin (supraventriculagnfr the upper chambers of the heart, or
ventricular, from the bottom chambers). This is a key fa@tothe choice of the treatment.

2) The detection of conduction abnormalities between arid ventricles (bundle branch blocks,
fascicular blocks, and others).

3) The detection of accessory pathways (Wolf-Parkinsont&\gyndrome).

4) The evaluation of the effect of specific anti-arrhythmieditations (such as sodium channel

blockers).

Our proposed algorithm is based on the expansion of QRS ex@pinto the basis afiscreteHermite
functions. Such functions are obtained by sampliogtinuousHermite functions at specific sampling
points, not necessarily located on a uniform grid. We oadiijnproposed this compression method in [2].
In this paper, we extend our previous work by rigorously folating and describing the signal model
used for the description of QRS complexes. In particular,use results from our recently developed
theory of signal models based on orthogonal polynomials[§3] We also identify a fast algorithm for
the implementation of the proposed compression methoallfzirour experimental results demonstrate
that the proposed method achieves higher compressiors ratpared to other methods, when used to
obtain medically acceptable compressed ECG signals. Mereall a compressed ECG sigmaédically
acceptableif visually it is sufficiently similar to the original sigmaand would not lead to an incorrect
interpretation and diagnosis. In our experiments, thetifleation of medically acceptable compressed
signals has been performed by one of the authors who is aotagdit with extensive experience in
cardiac electrophysiology.

Related work. Previous work on the compression of QRS complexes inclutkesise of continuous
Hermite functions as the expansion basis [6]-[9]. Due tcstiegpe similarity between continuous Hermite
functions and QRS complexes, these functions were idethtifiea suitable basis for the representation and
compression of the latter. These works, however, only pleaitheoretical framework for the compression
algorithm. The actual implementation is not discussed am@éxperimental data is provided that would

confirm that the proposed compression method indeed pesfbatter than other methods. In addition, as
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we discuss in Section I, the computer implementations efgteviously proposed algorithms suffer from
certain limitations, such as the inability to obtain an éxaconstruction of a signal, large computational

cost, and an a priori selection of coefficients for recorcsioum.

Il. BACKGROUND

In this section, we discuss the expansion of continuousatsgusing Hermite functions, its digital

implementation, and its use in signal compression.

A. Continuous Hermite functions

Consider the family of polynomialél,(t), ¢ > 0, that satisfy the recursion
Hy(t) = 2tHp—1(t) — 2(¢ — 1) Ho—2(2), 1)

for ¢ > 2, with Hy(t) =1 and H,(t) = 2t. They are known aklermite polynomialsThese polynomials

are orthogonal on the real lif@ with respect to the weight functios " :

/OO Hy(t)Hp (t)e ™  dt = 20/7 - 64 (2)

It immediately follows from (2) that the functions

oot 0) = /2 F (1) 3)

o2t/

are orthonormal oR with respect to the standard inner product

(et ). pm(t,0)) = / e(t,0)pm(t, o)t = by (4)

The set of functiongy, (¢, o) }r>0, calledcontinuous Hermite functiongs an orthonormal basis in the
Hilbert space of continuous functions defined®ii10]-[13]. Any such functions(¢) can be represented

as a linear combination of the basis functions
S(t) - Z CZ@Z@? 0)7 (5)
>0
where

¢ = (s(t), ult, o) = / s(O)pelt, o)t

R

The first four continuous Hermite functions are shown in F2g.Note that eachy,(t,0) quickly
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(@) wo(t, o) (b) p1(t, o)

(©) ¢a2(t, 0) (d) ws(t,0)

Fig. 2. First four Hermite functions (plotted for the samelser).

approaches zero as the value|dfincreases: sincél,(t/o) is a polynomial of degreé,

lim e /27" Hy(t/o) = 0.

[t| =00

As a consequence, for practical purposes we can assumeattfatentinuous Hermite function has a
compact support. Since in this paper we often work only wlh first . Hermite functions, we assume
that oo (t,0), p1(t,0),...,0L—1(t,0) have the same compact suppprtl,,T.,|, whereT, is a suitably

chosen constant that dependscom@nd L. In other words, we assume
we(t,o) =0fort ¢ [-T,,T,],

where(0 < ¢ < L. If a signal s(¢) also has compact suppdrtT,,7,], then we can compute the

coefficientse, using a finite integral:

Ts
o= [ sOpltat = [ st ot (6)

_T

B. Compression with continuous Hermite functions

Coefficient-based compressionn practical applications, only a finite numb&f of Hermite functions
are used to represent the sigrét) in (5). Accordingly, only a few coefficients,,, ..., cs,,_, need to

be computed. Herey,  corresponds tay, (t,o) in (6). The approximated signal is then

M-1
8(t) = o0, (t,0). (7)
m=0

Alternatively, a larger pool of coefficients can be compufeaim which M optimal ones are selected.
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It is well-known that, in an orthonormal basis, selectingficients with the largest magnitude minimizes
the approximation error computed as the energy of the diffee between the signalt) and its
approximation withM basis functions. If a basis is orthogonal, but not orthoradrfine. basis functions
do not have unit norms), an additional weighting of coeffitseproportionally to the norms of the basis
functions can be performed.

Digital implementation. The coefficientsy in (6) and the Hermite expansion (5) are computed using
the continuous functions. However, in practice they havbeéa@omputed in a digital form.

In particular, for each coefficient,, the integral in (6) can be calculated using a numerical catads
that is based, for example, on a rectangle rule:

T,
. = / s(t)pe, (t, 0)dt

-T,
K

~ Y s(m)ee, (T o) (b — tror). (8)

k=—K
Here,-T =t g 1 <t_g < ... < tg_1 < tg = T. Each sampling point;, is located inside the
corresponding intervak, 1 < 7, < t;.

Then, we can compute the discrete version of the approamatignal$(¢). It corresponds tcs(t)
sampled at points,, — K < k < K:

M—

$(me) = Y cu, 0, (Th, 0). ©)

m=0

[y

Usually, pointst, are assumed to lie on a uniform grid, such that- t,_, = A for all k. Then (8)

and (9) can be expressed in matrix-vector notation. Let Ginel@ectors

s(T_K) co (k)
s= : ,ec=| |, &= : . (10)
s(TK) cCM—1 5(TK)
Then
c = Ad's (11)
§ = &c, (12)

where® ¢ RCK+D)xM "gych that itsmth column is the/,,th Hermite function sampled at the points
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T_KyT—K+1y-+-+-3,TK

@ = |t (riic ) (13)

0<k<2K+1, 0<m<M

As follows from (11)-(12), to achieve the perfect reconstian $ = s, ® must satisfydd” = I, ;.

Compression of QRS complexes: Previous workThe compression of QRS complexes using the
expansion into continuous Hermite functions has been etuidi [6]-[9]. It was originally motivated
by the visual similarity of QRS complexes, centered arourairtpeaks, and Hermite functions, as can
be observed from Figs. 1 and 2. Varying the valuesoforresponds to “stretching” or “compressing”
Hermite functionsp,(t, o) to optimally match a given QRS complex.

Since ECG signals are usually available as discrete sigalislistantly sampled at, = kA, previously
reported work assumed, explicitly or implicitly;, = 7, = kA in (8)—(9), and hence led exactly to the
matrix-vector products in (11) and (12). In addition, it poged to use only thiérst A Hermite functions
wo(t,o),...,om—1(t, o) for the approximation of QRS complexes.

This compression algorithm has several important linotai First, since®” # Iy for 7, = kA,
the approximatiors does not converge to the original sigrsalregardless of the numbér of Hermite
functions used for the construction of an approximation. aAgesult, the original signadé cannot be
reconstructed exactly.

This problem could be theoretically addressed by udihg- 2K +1 coefficients and replacing” with
®~! to compute coefficients in (11). However, the computation @~ is a non-trivial task. Moreover,
the matrix-vector producb—'s requires(2K +1)? operations. This cost can become prohibitive for large
value of K and make this approach impractical.

Finally, the approximation of(¢;) with thefirst M < 2K +1 coefficientscy, ¢1, ..., cpr—1 In (8) may
not be the optimal choice for the construction of approxioras with M basis functions.

In Section IV, we propose an improved compression algorithat samples ECG signals at non-
equidistant points, and selects coefficieats with the largest magnitude among a larger selection of

coefficients.

I1l. SIGNAL MODEL FOR QRSCOMPLEXES

In this section, we construct a signal model for the desonipof QRS complexes. It is based on the
scaled Hermite polynomials. We identify the Fourier transf for this model, called Bermite transform
as well as its inverse. We also describe a fast algorithmhercorresponding Hermite transform. These

results will be used in Section IV to construct and implentiet novel compression algorithm.
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8
A. Signal model
Let us define polynomials
1

where H,(t) denotes the/th Hermite polynomials (1). Throughout the paper, we refeptlynomials
Py(t), £ > 0, asscaled Hermite polynomials
Signal model. Consider the vector spac&t of functions spanned by the firs¥ scaled Hermite
polynomials (14):
M = {soPo(t) s P(t) 4. sN_le_l(t)}, (15)

where(so, S1yeeny sN_l)T € R¥. Since eachP(t) is a polynomial of degreé, M is a vector space of
degreeN. It is closed under the addition and linear scaling of its elats.
Assume thatM is also closed under the multiplication of its elements mogwlynomial Py (). As

we demonstrate in [3]-[5], in this casel has exactlyN spectral components, and tkéh component

of a signal
S(t) = SOPO(t) + 81P1(t) +...+ SN_1PN_1(t)
is defined as
s(ax) = soPo(ow) + s1Pi(ag) + ...+ sy—1Py—1(aw).
whereag, a1, ...,an_1 are the roots ofPy(¢). Note thatag, aq,...,an—_1 are all distinct real num-

bers [10]. Without loss of generality, we assume< a3 < ... < an_1.

Hermite transform. The spectral decomposition of signdl) is defined as

S(a)Z(s(ao) s(ar) ... s(ozN_l))T- (16)

We can express the spectral decomposition(¢f in the following matrix-vector notation. Consider

!Strictly speaking, we must consider two separate spatesd M that have the same elementé:= M. A is an algebra:
it is a vector space closed under the addition and multifitineof its elements modul@y (t). Then M can be viewed as an
A-module, and its spectral decomposition can be defined.

A and M comprise a part of what we call amgebraic signal modellt is a central component of thalgebraic signal
processing theoryleveloped by the authors in [3]-[5], [14]-[18].

In particular, in [3]—-[5] we introduce signal models based arthogonal polynomials (of which Hermite polynomials are
a special case). A family of polynomialgP;(t)}¢>o is called orthogonal if they satisfy a recursion of the formP(t) =
arPr_1(t) +bePe(t) + cePot1(t), usually with initial conditionsP, (¢t) = 1 and P—, (¢) = 0. Each family is orthogonal over an
interval I C R with a weight functionw(t) : [, Pe(t) Pm (t)w(t)dt = 0 if £# m. Each polynomialP,(t) has exactly’ simple
real roots. A detailed discussion on orthogonal polynosnéan be found in [10]—{13].
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9
the N x N matrix
Ppo = [P ] : 17
Pa () O<hion (7)
The ¢th column of Pp,, is polynomialsP(t) evaluated aty,...,any—1. In general, matrices with this

structure are callegholynomial transformsin the particular case of (17), We céaftp,, the (forward)
Hermite transform.

The spectral decomposition (16) can then be computed as ditixraector product

s(a) S0
s | _p o (18)
= FPao* . .
s(an—1) SN—-1

Inverse Hermite transform. In general, it is non-trivial to compute the inverse of thetixaPp , for
arbitrary polynomials?(t). However, as follows from Theorem 16 in [3] and explicitly ted in [5],
we can apply the Christoffel-Darboux formula for orthogbpalynomials [10] to the scaled Hermite

polynomials P (t) to obtain the inverse of the Hermite transform €t7)
Ppo="PhaD. (19)

Here,D € RV*¥ is a diagonal matrix with théth diagonal element equal to

Dy, = V2/N

" Py_1(ar) P (o)’

where P}, (t) denotes the derivative dPy (t).

B. Fast algorithm for Hermite transform

A straightforward computation of the matrix-vector protlinc(18) requires, in genera?N? additions
and multiplications. Alternatively}3N log3 N additions and multiplications can be required, if one uses
an algorithm proposed in [22]. In both cases, the computatioost can become unacceptable for large
values of N, especially if the product has to be computed in real-tinoe ¢ikample, in the case of ECG

signal processing). The same applies to the invé’rﬁé.

2Another definition of the Hermite transform has been presfpwsed in [19], [20]. However, it denotes an expansion into
continuous Hermite polynomials, and should not be confusigd (17).

®In [21], weighted Hermite polynomials sampled at the rodtsPy () have also been identified as an orthogonal basis,
essentially leading to (19).
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Here, we provide an improved computational algorithm fer tmatrix-vector product in (18). It reduces
the computational cost approximately by a factor of 4. Wey sthte the algorithm here, without the
proofs, since they can be verified by direct computation. Vigirmally derived this algorithm by applying

the theory of fast polynomial transforms developed in [2B][to the signal space (15).

Theorem 1 Let N = 2M be an even number. Then the polynomial transf¢ti@) can be factored as

15V
J —J Qg
Pro = M M
Iv  Im
aN—1
P
w | BoBi...By_1 LY. (20)
Pm

Here,I,, is an identity matrix of sizé/, andL,; is a complimentary identity matrix of sizd:

1
Ju =
1

Matrix P,s is an M x M polynomial transform defined as

Py = [P ] .
M 2e( Q1) o<k ient

EachBy, is an identity matrix except it&V + &, M + k)th and (M + k — 1, M + k)th elements are equal
to \/2/(2k + 1) and —+/2k/(2k + 1), respectivelyL) is a permutation matrix: it§%, £)th element is

Lif £ = Lw]\,ﬂ)j mod N, and 0 otherwise.

The algorithm for odd values oW is similar.

Theorem 2 Let N = 2M + 1 be an odd number. Then the polynomial transfdfvi) can be factored
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as

Iy

Jv —Ju
QNI4+1
PP,Oc = 1
I I
(%3

Pri+1

BoB;...By_1 LY. (21)

P

Here, Pyry1 is an (M + 1) x (M + 1) polynomial transform defined as

Pry1 = {Pzz ay, M] .
+ (kar) 0<k,b<M+1

P is a submatrix ofPy; 1 obtained by removing the first row and last column of the tafach B

is an identity matrix except iteM + 1+ k, M + 1+ k)th and (M + k, M + 1 + k)th elements are equal
to \/2/(2k + 1) and —/2k/(2k + 1), respectively. Matrices,;, J,;, and LY are as described above.

We show in [4] that the polynomial transforr#s,; andP,,.; in Theorems 1 and 2 are also based on
orthogonal polynomials. Hence, they can also be computed) wpproximately2A/2 or 43M log3 M
additions and multiplications, depending on the choicéhefdlgorithm. Since other matrices in factoriza-
tions (20) and (21) require approximatedyv additions and multiplication, the computational algarith

in Theorems 1 and 2 require approximately two times feweratns compared to other algorithms.

V. COMPRESSION ALGORITHM
As we mentioned in Section I, the parametan the definition of the continuous Hermite functions (3)
can be used to “stretch” and “compress” the functions neditito the signals(t).
Algorithm modifications. Alternatively, we can fixc = 1, and introduce a paramet@rto “stretch”
and “compress” signad(t)\) instead. In this case the numerical quadrature (8) can bettewas

T\
o = / s(tA)pe(t, 1)dt
N

K
> s N) ety 1)tk — thot)- (22)

k=—K

Q

Furthermore, instead of sampling points on a uniform grie ,propose to use non-equispaced sampling
points associated with the roots of Hermite polynomialsmily, we setr, = oy x, —K < k < K, to

be the roots of the scaled Hermite polynomial ().
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Discrete Hermite functions. We call the vector

T
2 = (prla0,1) @elor,1) .. gelan-1,1)) (23)

the /th discrete Hermite functian
As previously, we seled, in (22) so that the length of interval,_,, t;] is constarft ¢, —t,_; = A.
In this case the computation of each coefficienin (22) can be seen as the inner product of a discrete

signal

S:<s(ao)\) s(agX) ... s(a2K+1)\)>T

with the ¢th discrete Hermite functio®, :
K
cr =~ A Z s(ak+K)\)cpg(ak+K, 1) =A- <(I)g,3>.
k=—K
Expansion matrix. The matrix® in (13) can now be rewritten as

where

W = diag (e_ai/2)0§k<21<+1

is a diagonal matrix, an®p, is given in (17).
Finally, if M = 2K + 1, and® is a squarg2K + 1) x (2K + 1) matrix, then it follows from (19)

that the rows ofd form an orthogonal basis:
0T = 7~ 12W2p—L. (25)

We denote the diagonal matrix on the right-hand side of (85).d_ater, to account for the vector norms,
we will pre-multiply the input signaé with the weight matrixA—".
Proposed algorithm. The proposed compression algorithm operates as followsas®ame that the

ECG signals(t) is sampled at points; kA, —K < k < K, to obtain a vector of samples
T
S= (s(ao)\),s(al)\), e ,s(agK)\)> . (26)

“To our best knowledge, there is no closed-form expressiorthie roots of Hermite polynomial® 1 () [10], [13]. In
general, we cannot guarantee that for dtijthere exists\, such that\ax+ x can be placed inside intervals,_1, ti] of equal
length, so thatty—1 < Marxt+x < tr holds. However, in the experiments in Section V oty < 15 were used, and we
numerically confirmed the existence of suitable valdedoreover, for each considerdd there exists a range of values bf
that satisfy the condition; in the experiments, the valua thaximized the compression ratio was selected.
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The selection of parameter is discussed in Section V. Then we compute the vector of esipan
coefficients

c=APTA s, (27)

where® and A are given in (24) and (25). Following this, we construct tieeter¢ by keeping onlyM
coefficients inc with the largest magnitudes and setting others to zero.llizin@e uset to obtain the
signal approximation

§=A"1oe (28)

Advantages.The proposed algorithm addresses several limitations exfotiginal compression algo-
rithms based on continuous Hermite functions.

First of all, the discrete Hermite functiody in (23) form an orthogonal basis in the finite-dimensional
vector spac€” of all discrete signals of lengt. The expansion of QRS complexes samplei atodes
into the discrete Hermite functions is complete, and alléarsa perfect reconstruction of the sampled
complexes. By contrast, an expansion of a continuous QRSlesninto a finite numberV < oo of
continuous Hermite functiong,(¢, o) is not complete, since thes€ functions do not form a complete
basis in£2(R). As a result, a perfect reconstruction cannot be achieved.

Furthermore, for a digital implementation of the compressboth the QRS complexes and the basis
functions must be discretized by sampling. As we have dssulisequidistant sampling of continuous
Hermite functions does not yield an orthogonal basis in @Hé space. In this case, approximating a
signal with more basis functions may not necessarily leaal $maller approximation error. On the other
hand, since the discrete Hermite functions form an orthaybasis, increasing the number of vectors
used for the signal approximation necessarily decreaseagproximation error [24]. Moreover, since we
pre-compute all coefficients, c1, ..., cax, and only after this seleqt ones with the largest magnitude
to obtain¢, the approximation error is minimized for a fixéd. In addition, if an exact reconstruction
of signals is required, it can be achieved by usiig= 2K + 1 coefficients to obtairt.

Finally, the proposed algorithm has a more efficient impletaton, since the computational cost of
® in (24) (as well asb”) is approximately two times lower compared to the cosband ®”) in (13),

as discussed in Section IlI-B.

V. EXPERIMENTS

Setup. In order to analyze the performance of the proposed comipresdgorithm, we study the

compression of QRS complexes extracted from ECG signaleenMIT-BIH ECG Compression Test
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Fig. 3. An example ECG signal with two leads.

Database [25]. The database contains 168 ECG signals shai?®0 Hz. An example ECG signal with
two recorded channels, ¢eads is shown in Fig. 3.

Preprocessing.To make the experiments uniform across the database, waisetythe first 10 seconds
of the first lead of each signal. All detectable QRS complexese extracted automatically, a total of
N = 1486 complexes. During the extraction, we require that eachaeteéd complex is centered around
the R peak. As a result, each extracted complex is available discrete signal of lengthK + 1 €
{27,29,31}, where the(K + 1)th sample corresponds to the R peak. Hence, each signakesysea
continuous QRS complex of duration 104, 112, or 120 millisets sampled at 250 Hz.

For the new compression algorithm, QRS complexes must b@lsdmat pointsay. x A proportional
to the roots ofPx 11 (). These signals are not available directly from MIT-BIH ECGn@wession Test
Database. Hence, we had to construct the required disdgetals prior to running the experiments. We
first reconstructed continuous QRS complexes by interipgjahe extracted discrete QRS complexes
with sinc functions, and then sampled the obtained continuous sigatathe required pointsy x .
The value of the parameter was determined experimentally for each lead to maximizerdésalting
compression ratio. In particular, we have observed thabfiteanal value of\ “stretches” the weighted
signal A~'s in (27) to make its shape closely resemble the shapes of fugetit Hermite functiond,
in (23). Since in our experiments having only a few coeffitsen = (A~'s, ®,) with large magnitudes
implies a higher compression ratio, we hypothesize thatogténal choice ofA\ may be explained by

the Cauchy—Schwarz inequality [26] that states that thenihade of the inner product of two vectors
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with equal norms is maximized when the vectors are equalsTHiu\~'s closely resemble®,, their
inner productc, = (A~'s ®;) should have a large magnitude.

Similarly, we determined the value of the parametdor each lead to maximize the compression ratio
for the original compression algorithm that expands QRSpileres into continuous Hermite functions.

In a real-time system, the parametersr o would be pre-set for each lead. In addition, the incoming
continuous ECG signal would be immediately sampled at thereld points. Hence, the interpolation
step would not be required.

Objective. The main objective of the experiments is to achieve the makitonmpression ratio for a
desired approximation error. We define the error as the ndiimeodifference between the original signal
and its approximation, normalized by the norm of the origsignal:

IS —sll2

approximation error =
[Isl]2

(29)

In this paper, we seek to achieva @% approximation error. It has been verified by one of the awsthor
who is an experienced cardiologist, that all signals in th&-BIH ECG Compression Database can be
compressed with the methods considered in this paper wgh @b error while remainingmedically
acceptable This means that visually all signals remain sufficientiyitar to their original versions, and
would not lead to incorrect interpretation and diagnoses.

We also provide compression ratios foi%, 20%, and25% approximation errors. In general, signals
in the MIT-BIH ECG Compression Database compressed witsethearors have been found medically
unacceptable. For example, in our experiments for the appedion error 0f20%, 630 out of 1486
(42.4%) compressed QRS complexes were identified as medicallycepsble. However, most of the
distortions were introduced at the boundaries of the cosga® QRS complexes, as demonstrated in the
example shown in Fig. 4. Potentially, this problem could Hdrassed by smoothing the boundaries, and
hence reducing the approximation error.

Compression algorithms.For the original compression algorithm that expands QRSpiexes into
continuous Hermite functions, as described in Section, IM& compute a sufficient numbéw of
coefficientsey, ..., cpr—1 in (11). We use the minimal possiblg that ensures that the reconstruction
in (12) has the desired approximation error (29).

For the new compression algorithm, we compgié + 1 coefficients, and select a sufficient number
M of the coefficients with the largest magnitude to obtain thpraximations in (28) that yields the
required approximation error (29).

In addition, we study the accuracy of compression algoritityased on widely used orthogonal discrete
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Fig. 4. A QRS complex and its approximations with 10% and 20%rs.

Error Proposed algorithm Original algorithm DFT-based EzEed DWT-based

10% 5.3 (5.8) 35(9.0) 3.7(83) 43(73)  3.3(9.4)

15% 7.0 (4.4) 43(72) 42 (74) 51(61) 4.2 (7.5)

20% 9.2 (3.4) 50 (6.2) 4.6 (6.7) 58 (53) 4.8 (6.5)

25% 10.4 (2.9) 58 (54) 5.1 (6.1) 6.6 (47) 5.5 (5.6)
TABLE |

AVERAGE COMPRESSION RATIOS OF DIFFERENT ALGORITHMS FOR%, 15%, 20% AND 25% APPROXIMATION ERRORS
THE AVERAGE NUMBER OF COEFFICIENTS REQUIRED TO ACHIEVE THE DEIRED ERROR IS INDICATED IN THE PARENTHESIS
NEXT TO THE CORRESPONDING RATIO

signal transforms. In particular, we consider the disckderier transform (DFT), the discrete cosine
transform (DCT), and discrete wavelet transform (DWT). he tatter case, we consider an orthogonal
DWT based on Daubechies filters of length 4 with three levéldexomposition [24]. Since all these
transforms are orthogonal, we can replaeén (11) and (12) with the corresponding transform, apply
the transforms to the signalin (10), and select a sufficient numbaf of coefficients with the largest
magnitudes, such that reconstruct®im (12) has the desired approximation error (29).

Results. The average compression ratios fdr25% approximation errors are shown in Table |. The
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ratios were computed as

N-1 N-1
average ratio = Z (2K, + 1)/ Z M,,.
n=0 n=0

Here,2K,, + 1 € {27,29,31} is the length of the:th sampled QRS complex, and,, is the number
of coefficients required to achieve the desired approxivnagirror. Naturally, the higher the compression
ratio, the better the algorithm performance, since feweffients are required.

In Table I, we also identify the average minimal numBérof coefficientsc,, required to achieve the
desired approximation error. This characteristic is ideldi for implementation purposes and the ease of

interpretation of compression ratios.

VI. DiscussiION ANDCONCLUSIONS

As we observe from Table I, the proposed compression algoritas the highest compression ratio for
all considered approximation errors. In particular, ituiegs on average only 6 coefficients to reconstruct
compressed QRS complexes that are medically acceptabeisTdR5% improvement compared to using
DCT as the compressing transform,38% improvement compared to using DFT or the compression
algorithm based on continuous Hermite functions, ard®% improvement compared to using DWT. As
an interesting observation, recall that here we are usiagddWT with three decomposition levels; we
tested DWT with other numbers of decomposition levels, dreddompression ratios were even lower.

The larger compression ratio of the proposed algorithm mparison with the original expansion into
continuous Hermite functions can be explained by the imgmmants discussed in Sections Il and IV.
The better performance of the proposed algorithm comparetia orthogonal transforms DFT, DCT,
and DWT, on the other hand, may have different reasons. Ot factor is that, as discussed above,
the proposed compression algorithm uses the parameterbetter “fit” the input signals to the basis
of discrete Hermite functions that have shapes resembliR§¢ Qomplexes. This “fitting” may lead to
fewer coefficients with large magnitudes compared to DFTTD&hd DWT, which have corresponding
basis functions of different shapes. Another, more spégalapotential factor is that DFT, DCT, and
DWT are well-suited for the compression of “smooth” sign@s the discussion, see [24] and references
therein), since they efficiently capture the low-frequeroynponents of signals using a small fraction
of coefficients, and remove the high-frequency componattrtay require many additional coefficients.
Since some QRS complexes may have significant high-frequesmoponents, they may require a larger
number of coefficients to achieve a desired reconstructmmuracy. In our experiments, however, the

effect of high frequencies in QRS complexes on the compragserformance was observed only in a
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limited number of cases.

Future improvements. As we mentioned in Section V, the compression with an appra&on error
higher than10% frequently leads to medically unacceptable signals. Hewewost of the distortion is
introduced at the boundaries of the compressed QRS congplexe

Fig. 4 shows an example of such distortions for #0&; approximation error. While the shape of the
compressed signal is similar to the original QRS compleg, dbmpressed signal is clearly corrupted
at the left and right boundaries. As a result, discontiegitare introduced on the edge between the
compressed QRS complex and the preceding P-R segment, lagswel the edge of the QRS complex
and the following S-T segment. Potentially, one could aslthis problem by smoothing the compressed
signal at the boundaries, thus reducing the approximatimor.e

Conclusions.We have constructed a novel algorithm for the compressioQRE complexes. The
proposed algorithm is based on the expansion of signals eathpact support (such as ECG signals)
into the basis of discrete Hermite functions. These fumstiare constructed by sampling the continuous
Hermite functions at sampling points proportional to thetsoof a corresponding Hermite polynomial.

The proposed algorithm uses results from our recently deeel theory of signal models for orthogonal
polynomials. As confirmed by the experiments, the novel @tlgm achieves a higher compression ratio
compared with the original algorithm based on the expanisitmcontinuous Hermite functions, as well
as other widely used compression algorithms.

In addition, we developed a fast computational algorithmtfee proposed compression method. The

proposed approach reduces the number of operations ap@t®@ty by a factor of two.
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