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ABSTRACT

We propose a novel discrete signal processing frameworlkhfeor
representation and analysis of datasets with complextateicSuch
datasets arise in many social, economic, biological, agdipal net-
works. Our framework extends traditional discrete sigmatpssing
theory to structured datasets by viewing them as signatesepted
by graphs, so that signal coefficients are indexed by graghsiand
relations between them are represented by weighted gragégsed
We discuss the notions of signals and filters on graphs, afidede
the concepts of the spectrum and Fourier transform for gsigh
nals. We demonstrate their relation to the generalizedneéagzor
basis of the graph adjacency matrix and study their prageris a
potential application of the graph Fourier transform, wesider the
efficient representation of structured data that utilibessparseness
of graph signals in the frequency domain.

Index Terms— Graph signal processing, graph signal, graph

filter, graph spectrum, graph Fourier transform, genegdligigen-
vectors, sparse representation.

1. INTRODUCTION

Recently we have been observing a growth of interest in tfie ef

cient techniques for representation, analysis and proges$large
datasets emerging in various fields and applications, sacéen-
sor and transportation networks, internet and world widé,vie-
age and video databases, and social and economic netwdrkse T
datasets share a common trait: their elements are relatedcto
other in a structured manner, for example, through sintiésrior
dependencies between data elements. This relationatigteus of-
ten represented with graphs, in which data elements camesio
nodes, relation between elements are represented by edgethe
strength or significance of relations is reflected in edgeyhtsi

structured datasets that can be represented by graphs.rabue-f
work extends the traditional discrete signal processingRPthe-
ory that studies signals with linear structure, such as sarees and
space signals. e.g. images, to signals with complex, maatistruc-
ture. We discuss the notions of signals and filters on grapmhd,
then define the concepts of spectral decomposition, spectad

Fourier transform for graph signals. We identify their tigla to the

generalized eigenvectors of the adjacency matrices oéseptation
graphs and study their properties. As a potential apptioadif the
graph Fourier transform, we consider efficient data remtasien

and compression. In particular, we demonstrate that if plgsig-

nal is sparsely represented in the spectral domain, i.éeigsiency
content is dominated by few frequencies, then it can be effiby

approximated with only a few spectrum coefficients.

2. SIGNALS AND FILTERS ON GRAPHS

In this section we discuss the notions of graph signals atetdil
These concepts are defined and studied in [8].

Graph signals. If we consider a quantitative dataset for which
we are given information about the relationship betweeglé@ments,
we can represent it as a numerical-valued signal indexedjogh.
For example, for a set of sensor measurements, the relatarebn
measurements from different sensors can be expressedjthtioe
physical distance between sensors. For a collection ofirelsers
and their publication records, the relation can be giverhigyrtcol-
laborations and publication coauthoring. Assuming thatdataset
is finite, we can treat it as a set of vectors

S:{s:s:(so,...,stl)T,sneC}. 1)

Then, we can represent the relation between coefficignts s with
a graphG = (V, A), so thaty = {wvo,...,on_1} is a set of N
nodes, andA is a N x N weighted adjacency matrix. Each coef-

The analysis and processing of structured data has been stuficient s,, corresponds to (is indexed by) nodg, and the weight

ied in multiple ways. Graph properties, such as degredillisions,
node centrality and betweenness, and clustering, are adehto in-
fer the community structure and interaction in social anochemic
networks [1, 2]. Inference and learning of structured detasan

be performed using graphical models [3, 4] by viewing dat el

ments as random variables and expressing their probabdispen-
dencies between each other with graph edges. Data leawctirsy,
tering, and classification has been approached using apgcaiph
theory [5]. A common feature of these approaches, howevénait
they analyze the graphs that represents the relationaitsteu of
datasets, rather than the datasets themselves. Anotheigee for
the representation and spectral analysis of data basecdedratia-

cian matrix of the graph and its eigenvectors has becomelaopu

recently [6, 7]. This technique is more similar to existirignal

processing approaches, and to our work in particular; heweévis

restricted to undirected graphs with real, non-negatigeeageights.
We propose a framework, calletiscrete signal processing on

A, ., of the directed edge from,,, tov,, expresses the degree of re-
lation of s,, to s,,. Note that edge weighta.,, ,,, can take arbitrary
real or complex values (for example, if data elements arathady
correlated). We call a signalindexed by a graplé’ agraph signal

Graph signals, in general, can be complex-valued. Furtterm
they can be added together and scaled by constant coeficiéemce,
they form a vector space. If no additional assumptions ardema
on their values, the se§ of graph signals corresponds to the
dimensional complex vector spaSe= C» .

We illustrate representation graphs with several examplage
graph in Fig. 1(a) represents a finite, periodic discrete series [9,
10]. It is a directed, cyclic graph, with directed edges & ame
weight, reflecting the causality of a time series. The péciodof
the time series is captured by the edge frogn_; to vo. The two-
dimensional rectangular lattice graph in Fig. 1(b) repnesa digital
image. Each pixel corresponds to a node that is connectedukto t
nodes that index its four adjacent pixels. This relatiorymmmetric,

graphs(DSRs), for the representation, processing, and analysis ohence all edges are undirected. If no additional infornmeitscavail-
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able, all edge weights,, andb,,, are equal, with a possible excep-
tion of boundary nodes which may have directed edges anetelift
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(b) Digital image

(c) Weather stations across the U.S.

Fig. 1. Graph representations for different datasets.

edge weights due to imposed boundary conditions [9, 11]. eEdgHere, V,, is a matrix with columns given by, o,

Spectral decomposition.The spectral decomposition of a sig-
nal spaceS corresponds to the identification of subspaSgs0 <
k < K, of S that areinvariant to filtering. For a signak, € Sk
from a subspacé;,, the outpufs, = h(A)s; of any filterh(A) is
also a signal from the same subsp&ge The sighak € S then can
be represented as

s=sp+s1+...+8SK-1,

(4)

wheres;, € S;,. Decomposition (4) is uniquely determined for every

graph signak € S if and only if 1) invariant subspaceS;. have

zero intersection, i.e§x N Sy, = {0} for anyk # m; 2) dim Sp +

...+dimSk_1 = dimS = N; and 3) eacl, isirreducible i.e.,

it cannot be decomposed into smaller invariant subspaces.
Consider the Jordan decompositionfof

A=VvJIV!, (5)

Here,J is the Jordan normal form and is the matrix of general-
ized eigenvectors. Let,, denote an arbitrary eigenvalue Af, and
Vm,0, - - -, Vm,r denote a Jordan chain of generalized eigenvectors
corresponding to this eigenvalue. Theén = span{v.0,...,Vmr}

is a vector subspace Sfwith this Jordan chain as its basis. Any sig-
nals,, € S,, has a unique expansion in this basis:

'§m,OVm,O +...+ '§m,7‘vm,'r

= Vm (§m,0 gm,r')T .

Sm =

ey Ve

weightsa,, andb,,, however, can be optimized for better image rep-fg|lows from (5) that if we apply the graph shift (2) #9., the output

resentation, as we show in Section 4. Finally, the graphdn Fic)
represents temperature measurements from weather sthitaned
across the United States. We represent the relations betisee
perature measurements of different sensors by geodesancés

between these sensors, and connect each node to nodesrtkat co

spond to several most closely located sensors. We discadattbr
example in more detail in Section 4.

Graph filters. In DSP, filters are systems that take a signal as

an input and produce another signal as the output. Ind)SR
define an equivalent concept of filters for the processingraply
signals. Given graph signatsindexed by a grapl&z = (V, A),
the basic building block for graph filters @i is agraph shiftthat
replaces each signal coefficient indexed by node,, with a linear
combination of coefficients at other nodes weighted promoatly
to the degree of their relation:

N-1

Sn=> Anmsm & §=As.
m=0
Similarly to traditional linear, time-invariant DSP thgpwe

consider linear, shift-invariant filters for graph signals demon-
strated in [8], any linear, shift-invariagtraph filteris necessarily a
matrix polynomial in the adjacency matriX of the form

h(A) = hoI+hiA + ...+ h A",

@)

®)

with possibly complex coefficients, € C. Furthermore, any graph
filter (3) can be represented by at m@étcoefficients; and if it is in-
vertible, its inverse also is a matrix polynomialAnof the form (3).

3. GRAPH FOURIER TRANSFORM

Having defined the concepts of graph signals and filters, we no

discuss the spectral decomposition, spectrum, and Fdtaiesform
for graph signals. These concepts are related to the Joatamah
form of the adjacency matriA ; this topic is discussed in [12].

Sm = As,, also belongs to the same subspace:

gm ASm = AVm (gm,() .. §m,r)T

Vm J()\m) (§m,d,()

)\mém,O + ém,l

Vm : )
Am8m,r + 8m,r

)\m§7n,r

(6)

whereJ(\,) is a Jordan block corresponding #3,. Thus, the
subspaceS,,, is invariant to shifting. It also follows from (6) that
S isirreducible.
Furthermore, any graph filter (3) can be written as
L L
hA) =Y h(VIVH =>"h VIV
=0 =0

L
=V (Y hI)VI =V VL (7
£=0

Similarly to (6), filtering a signas,,, € S,, produces an output from
the same subspace:

S = h(A)sm =hA) Vi (Bmo oo Bmn)”
§m,0
= Vo |h(T0Om)) : (8)
ém,r

Since A has exactlyNV generalized eigenvectors, and they are
linearly independent, all subspac8s, are irreducible, have zero
intersections, and their dimensions add upMo Hence, they vyield
the spectral decompositioaf the signal spac§.



Graph Fourier transform. The spectral decomposition &
expands each signal € S in the basis given by the union of all
generalized eigenvectors. This expansion can be written as

s=VSE, 9)
where the vector of expansion coefficients is given by
§=Vls. (10)

We call the basis of generalized eigenvectorsgtaph Fourier ba-
sis and the expansion (10) tlygaph Fourier transform We denote
the graph Fourier transform matrix as

F=Vv ' (11)
Following the conventions of classical DSP, we call the ficehts

3n in (10) thespectrumof a signals. The inverse graph Fourier
transformis given by (9); it reconstructs the signal from its spectrum

Discussion. The connection (10) between the graph Fourier

transform and the Jordan decomposition (5) highlights sdesér-
able properties of representation graphs. For instaneg@hgrwith
orthogonal or unitary matrice¥ of generalized eigenvectors, in-
cluding all undirected graphs, have orthogonal graph Eodrans-
forms: F~' = F#. This property has significant practical impor-
tance, since, for example, orthogonal transforms are sugted for
efficient signal representation, as we demonstrate in @edti

Also, observe that the definition (10) of graph Fourier tfama
is consistent with the traditional DSP theory. As we disedsis
Section 2, finite discrete periodic time series are indexethb di-
rected graph in Fig. 1(a). The corresponding adjacencyixniatr
the N x N circulant matrixA for which A, . islifn—m =1

mod N and0 otherwise. Its eigendecomposition (and hence, Jordal

decomposition) is

A =DFTH DFTy,
27 (N—1)
e TN

4. SPECTRAL REPRESENTATION OF GRAPH SIGNALS

Efficient signal representation is required in multiplezaref signal

processing, such as storage, compression, and transmissome
widely-used techniques are based on expanding signalsutable
bases with the expectation that most information aboutitireakis
captured with few basis functions. For example, some image- ¢

pression standards, e.g. JPEG and JPEG 2000, expand im&mes i

cosine or wavelet bases, which yield high-quality apprations for
smooth images [15].

If a representation basis corresponds to a Fourier basmme s

signal model, we say that signals are sparse in the frequaocy

main if their spectrum is dominated by only a few frequencigs

they are accurately approximated by a few Fourier basistifums
As we demonstrate in the following examples, graphs sigoafs

be sparse in their respective frequency domain, which meles
Fourier bases useful for efficient signal representatiahcampres-

siont. For simplicity of the discussion and calculations, we itdeis
signals represented by undirected graphs. In this casés@assded

in Section 3, corresponding graph Fourier transforms ategonal
matrices, and the Fourier bases are orthogonal. The adaafan
orthogonal basis is that selecting spectrum componentslargest
magnitudes minimizes the approximation error in the lsgsiares
sense. The approach discussed here also extends to digeatdt

with general Fourier bases.

Compression algorithm. Given an orthogonal graph Fourier
basis, we compress a graph sigaddy keeping onlyC' of its spec-

frum coefficients (10%,, that have largest magnitudes. Without loss

of generality, assume thio| > |81] > ... > [8x—1]. Then the
signal reconstructed after compression is

50)7.

If for 0 < k < K, signalssy, are approximated &, each with
C largest-magnitude coefficients of their spectrum, we dateuthe

§=F '(8,...,80.1,0,.. (12)

whereDFT y denotes the discrete Fourier transform matrix. Thus2vVerage approximation error as

as expected, the graph Fourier transforiiss DFT v .

This example also illustrates an important difference leetw
our proposed definition (10) of graph Fourier transform arsiha
ilar definition of graph Fourier transform used in [6, 7]. Tl
ter one uses the eigenbasis of the Lagrangian matrix fomithexi

_ Yo 18k — skl
Sico llskll

Image compressionAs the first example, we consider the graph
representation of images using the graph in Fig. 1(b). Alevd

err(C) (13)

ing graph, and assumes that the graph is undirected and has Ng;om the figure, we make a simplifying assumptions that edejgls

negative real weights. Thus, it is not applicable to tradil time
DSP and the derivation of the standard discrete Fouriesfoam, or
other datasets indexed by directed graphs, such as a setiohdats
linked by references [13], or graphs with negative weightg.[

In time DSP, the concepts of spectrum and Fourier transform

have natural, physical interpretations. In Qifese concepts may
have drastically different and not immediately obviousipteta-
tions. For example, if a graph signal represents measutsrfrem
multiple sensors and the indexing graph reflects their pmiyiin
some metric (such as time, space, or geodesic distance) fithe
tering this graph signal linearly recombines related mesaments.
It can be viewed as a graph form of regression analysis with co
stant coefficients. The graph Fourier transform then decsepthe
signal over equilibrium points of this regression. Altdivaly, a
graph signal may contain a characteristic of a social nétwsrch
as an opinion or a preference of individuals, and the indggiaph
represents this social network. In this case filtering canieeed
as the diffusion of this characteristic along existing caimimation
channels in the network, and the graph Fourier transfornmbesin-
terpreted as the representation of the signal in terms bfestan-
changeable opinions or preferences.

depend only on their row or column, as shown. Then, givencifipe
image, we determine the edge weightsandb,,, by minimizing the
distortion caused by the graph shift:

aN -2, }
bar—2
Here,s is a vectorized representation of the image. As demonsitrate
in [17], this is a least-squares minimization problem.

For the evaluation of this image representation technigue,
considerK = 4 images shown in Fig. 2, all of siz256 x 256.
Table 1 shows average errors (13) obtained for differerttifras
of spectrum coefficients used for approximation. For comspar
we also consider three standard orthogonal transform: idtweede
Fourier (DFT), cosine (DCT), and wavelet (DWT) transfornfss
can be observed from the results, the graph Fourier trandfeads

to smallest errors regardless of the number of spectrunficiesits
used for approximation.

ag, ...,

= in||As — .
b ... argmin||As — s||2

an,bm €C

1Eigenvectors of the graph Laplacian matrix have also beesigered
for the compression of graph signals [16]. In contrast, guraach use the
generalized eigenvectors of the graph adjacency matrix.



Fig. 2. Testimages.

Fraction of coefficients used(/ N
Transform dUN)

2% 5% 10% 15% 20% 30%
Graph FT 10% 5% 2% 1% 1% 0.5%
DFT 14% 8% 5% 3% 2% 1%
DCT 12% 6% 3% 2% 2% 1%
DWT 12% 6% 3% 2% 1% 1%

Table 1. Average approximation errors for digital images.

Compression of sensor measurementsAnother example we
consider is the representation of measurements from a nibormly
distributed sensor field. In particular, we consider a sefadlfy tem-
perature measurements from weather stations located B8ana-
jor US cities [18]. Data from each sensor is a separate timesse
however, compressing each time series separately reduifiesing
measurements from multiple days before they can be congatess
for storage or transmission. Instead, we consider graptagon-
structed from daily snapshots of all 150 measurements. \We co
struct the representation graph, shown in Fig. 1(c), useagtaph-
ical distances between sensors. Each sensor correspoadsote
vn, 0 < n < 150, and is connected t® nearest sensors with undi-
rected edges weighted by the normalized inverse exponérite o
squared distances: d,,, denotes the distance between thh and
mth sensors and,, is connected t@,,, then

2
efdnnl

A = .
n,m — —
DokeN, € F Dkens, € T

(14)

We consider a full year o865 daily measurements from each
sensor, and evaluate the representation efficiency bylastuy the
average approximation error (13) ovAr = 365 days. For com-
parison, we also consider compressing each separate tites sé

measurements from each station with DFT and DCT, and caicula

ing average errors ovdk = 150 stations. The results are shown in
Table 2. The graph Fourier transform yields smallest erfarsl|
fractions of spectrum coefficients used for approximation.

Fraction of coefficients used’{/ N)
Transform
2% 5% 10% 15% 20% 30%
Graph FT  17% 9% 5% 4% 3% 1%
DFT 18% 14% 10% 7% 5% 3%
DCT 17%  12% 8% 5% 4% 2%

Table 2. Average approximation errors for temperature data.

5. CONCLUSIONS

We have proposed a framework for discrete signal processisig-
nals indexed by graphs. We discussed the notions of graplalsig
and filters, and defined the concepts of spectral decomposgpec-
trum, and Fourier transform for graph signals. We identiffesir re-
lation to the Jordan decomposition of the adjacency matioceep-
resentation graphs. As a potential application of the giegirier
transform, we demonstrated that graph signals can be $pezpee-
sented in their frequency domain, and thus efficiently axiprated
using a few Fourier basis functions with little approxinoatierror.
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