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ABSTRACT

We propose a novel discrete signal processing frameworktfac-
tured datasets that arise from social, economic, biolbgca phys-
ical networks. Our framework extends traditional discrsignal
processing theory to datasets with complex structure thathe
represented by graphs, so that data elements are indexedy g
nodes and relations between elements are represented dlytecki
graph edges. We interpret such datasets as signals on ghapbs
duce the concept of graph filters for processing such sigaatkdis-
cuss important properties of graph filters, including lityashift-
invariance, and invertibility. We then demonstrate theligpfion
of graph filters to data classification by demonstrating thelassi-
fier can be interpreted as an adaptive graph filter. Our axgetis
demonstrate that the proposed approach achieves higlificktssn
accuracy.

Index Terms— Graph signal processing, graph signal, graph
filter, structured data, data classification, label profiaga

1. INTRODUCTION

Recent years have witnessed an enormous growth of interése i
analysis of large-scale datasets emerging in various feeldsappli-
cations, such as social and economic networks, internetanid
wide web, image and video databases, sensor and trangporiat-
works. A common feature of these datasets is their compliax re
tional structure represented, for example, by similasite depen-
dencies between data elements. A usual way to represestiins
ture is to use graphs, so that data elements are indexed pi gra
nodes, and the strength of relations between elementsrissemed
via corresponding weighted graph edges.

The graph representation of structured data has been ®dloi
in numerous works. In social and economic networks, grapp-pr
erties, such as degree distributions, node centrality aatdden-
ness, and clustering, have been used to infer the communiiy- s
ture and interaction [1, 2]. Graphical models [3, 4] studfgiance
and learning from structured datasets by viewing data etesnas
random variables and reflecting their probabilistic dejeecies be-
tween each other with graph edges. Spectral graph theorlydwas
applied for data learning [5, 6]. These methods, howevealyae
the representation graph, not the actual data. More rgceht
Laplacian matrix and its eigenvectors have been used forepe
resentation and spectral analysis of data [7, 8]. This ambras
significantly more similar to existing signal processinghtieiques,
and to our work in particular. Its major limitation, howeyés the
restriction to indexing graphs that are undirected and heak non-
negative edge weights.

In this paper, we propose a framework, which we didicrete
signal processing on grapi®SRs), for the representation, analy-
sis, and processing of data indexed by arbitrary graphs.fr@ome-
work extends the traditional discrete signal processirgRtheory
that addresses signals with linear structure, such as tpeeth,
radar, econometric series) and space signals (imagesptaseads
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Fig. 1. Graph representations for standard DSP signals.

with complex structure. We define the fundamental DSP cdscep
of signals and filters on graphsand discuss important properties of
graph filters. As a potential application of graph filters voasider
data classification. In particular, we demonstrate that tidtels can
be viewed as a graph signal, and a data classifier can be eepzds
by a graph filter that processes known labels (input signgdyedict
unknown labels (output signal). We demonstrate that a plppe-
signed graph filter achieves high classification accuraeynevhen

a relatively small fraction of data labels are known inltial

2. GRAPH SIGNALS

Consider a dataset, for which we know how its elements retate
each other. A simple example is a set of images, where thenafo
tion about them, such as content, represents the data, ersinti
larity between images represents the relation. Anothemelais a
collection of documents, where their topics represent #ta,dand
references (citations, hyperlinks) between documentsesept the
relations. Despite the different nature of each datasetgifepre-
sent it in a numeric form, we can view it as a set of vectors
S:{s:s:(507...731\;,1)T7snG(C}7 1)
and represent the relation between coefficientsf s with a graph
G = (V,A). Here,V = {wo,...,on—1} Iis a set of N nodes,
andA is aN x N weighted adjacency matrix. Each coefficient
is indexed by node,,, and the weightA,, ,,, of the directed edge
from v,,, to v, reflects the degree of relation of to s,,. Note that
edge weightsA,, ,,, can take arbitrary real or complex values (for
example, if data elements are negatively correlated). WWetdethe
set of indices of nodes connecteduipasN,, = {m | A, # 0}.
We call a signak indexed by a grapl¥ agraph signal

Since, in general, signals can be complex-valued, and they ¢
be added together and scaled by constant coefficients, teyd
vector space. If we do not make additional restrictions st of
graph signals is th&/-dimensional complex vector spasSe= C%.

Let us illustrate graph signals with several examples. Adini
periodic discrete time series (a standard signal in finitep8an be
represented by the directed cyclic graph in Fig. 1(a) [1Q, The
causality of a time series is represented by the graph etigesiute

10ther fundamental concepts of D§Pincluding the spectrum, Fourier
transform, and frequency response, are discussed in [9].



that for input signas € S outputs another graph sigria= Hs cor-
responds to graph filter. This implies that graph filters are linear,
since for anyH, G € CV*¥ the output of the linear combination
of these systems is the linear combination of their outputs:

(eH + G)s = aHs + 3Gs.

However, in this paper we would like to focus shift-invariant
graph filters, for which applying the graph shift to the outjmi
equivalent to applying the graph shift to the input prior ttefing:
A(Hs) = H(As). (5)
The next theorem establishes the structure of linear;siviétriant

Fig. 2. Graph representation for images of handwritten digits: a)@raph filtersH aspolynomialsin the shiftA.
example images; b) similarity graph of 100 images.
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Theorem 1Let A be the graph adjacency matrix and assume that its
all directed and have the same weight; and the periodicitgpse-  characteristic and minimal polynomials are eqgal{z) = ma (x).
sented by the edge fromy_1 to vo. A general digital image can be Then, a graph filteH is linear and shift invariant if and only if (iff)
represented by the two-dimensional rectangular lattideign 1(b).  H is apolynomialin the graph shifiA, i.e., iff there exists a polyno-
Pixels correspond to graph nodes and are related to thedgagemt ~ mial
pixels. This relation is symmetric, hence all edges are reat:d h(z) = ho + b1z + ... + hpa” (6)
and have the same weight, with possible exceptions of boynda with possibly complex coefficients, € C, such that:
nodes, depending on boundary conditions [10, 12]. The ghaph

L
Fig. 2(b) represents images of handwritten digits, sucthaohes H="h(A)=hol+hiA+...+hL A" @)
shown in Fig. 2(a) [13]. Each node corresponds to an image anflyoof: Since the shift-invariance condition (5) holds for all jgia
connects to several most similar images, where similafitywo im- signalss € S = CV, the matricesA andH commute:AH = HA.

ages is measured as thenorm of their difference. We discuss this g pa(z) = ma(z), all eigenvalues oA have exactly one eigen-
dataset in more detail in Section 5. Note that, unlike th@lgsdor  \ector associated with them [15]. Then, the graph matficom-
discrete time series and images, this graph has no immBdagie s with the shiftA iff it is a polynomial in A (see Proposition

parent structure. Nevertheless, as we demonstrate ino8egtitis 15 4.1 in [15]). -
justas useful as the previous graphs. We call the coefficientd:, of the polynomialk(z) in (6) the
graph filtertaps Obviously, any graph filter is precisely represented
3. GRAPH FILTERS by its taps.

Properties of graph filters. The assumption opa (z) and

Here, we introduce the concept of graph filters. Similarlyttte ~ ma(z) in Theorem 1 does not hold for all adjacency matrides
traditional DSP, graph filters are systems that take a grmlsas Nevertheless, we can extend the result in Theorem 1 to aticeat
an input and produce another signal indexed by the same gmph using the concept of equivalent graph filters, as defined next
the output. ~

Graph shift. In DSP, the basic building block for filters is atime Definition 1 Given any shift matricesA and A, filters h(A) and

delay, or time shift, denoted by ' [14]. It represents the simplest ¢(A) are callecequivalenif for all input signalss € S they produce

non-trivial system that delays the input sigsdly one sample. Us-  equal outputsh(A)s = g(A)s.
ing the graph representation of finite periodic time sendsg. 1(a),

for which the adjacency matri is the N x N circulant matrix with Hence, given a signal indexed by an arbitrargy = (V, A)
weights [10, 11] with pa (z) # ma(z), we can view it as being indexed by another
graphG = (V, A) with the same set of nodas but potentially
1, fn—m=1 mod N different edges and edge weights, for whigh(x) = mx (z) holds
Anm = 0. otherwise ) @) true. Then graph filters 06’ can be expressed as equivalent filters
' on @G, as described by the following theorem (the proof is avédlab
we can write the output of the time shift as in [9]).
35— As. (3)  Theorem 2For any matrixA there exists a matriA and polyno-

mial r(z), such thatA. = r(A) andpz (z) = mz (z).

In DSRs, we extend the notion of the shift (3) to graph signals )
indexed by a grapti¥ = (1, A). We call the operation (3) thgraph As a consequence of Theorem 2, any filter on the grapk:
shift It is realized by replacing the coefficiest at nodev, with ~ (V;A) is equivalent to a filter on the grapi = (V, A), since

the weighted linear combination of the coefficients at itgjheor ~ 2(A) = h(r(A)) = (hor)(A), whereh o r denotes the polyno-

nodes: mial composition ofh andr. Thus, the conditiopa (z) = ma (z)
N-1 in Theorem 1 can be assumed to hold for any gr&pk= (V, A).
Sn = Z Anmsm = Z AnmSm. (4) Otherwise, by Theorem 2, we can replace the graph by an6ther
m=0 mENn (V, A) for which the condition holds, and assignto A.

Graph filters. The representation (3) of a graph shiftas a matrix-  Furthermore, as the next theorem demonstrates, the nurhber o
vector multiplication suggests that, in general, any ma&ic CV*Y  taps required to represent any graph filter is limited.



Theorem 3Any graph filter (7) has a unique equivalent filter on the optimal classifier is viewed and studied as the design of aptac

same graph with at modeg ma (z) = Na taps.

Proof: Consider the polynomialg(z) in (6). By polynomial divi-
sion, there exist unique polynomiajéz) andr(x):

h(z) = q(z)ma(z) + r(z), ®)
wheredeg r(z) < Na. Hence, we can express (7) as
h(A) = q(A)ma(A) +7(A) = q(A)On +7(A) = 7(A).
Thus,h(A) = r(A) anddeg r(z) < degma(z) = Na. O

graph filter. Our approach is similar to the label propagatighich

is a simple, yet efficient technique for two-class clasdiiica It is
based on advancing known labels from labeled graph nodeg alo
edges to unlabeled nodes. Usually this propagation ofdabehod-
eled as a stationary discrete-time Markov process, andrimhagd-
jacency matrix is constructed as a probability transitiatnr, i.e.,
A, ., > 0foralln,m,andA 1y = 1y, wherely is a column
vector of N ones. Initially known labels determine the initial proba-
bility distributions*"°*™) . For a binary classification problem with
only two labels, the resulting labels are determined by tieeipted

distributions®e® = APgkrown) i gFred) < /9 nodew, is

As a consequence of Theorem 3, all graph filters (7) on the inassigned one label, and otherwise the other. The nuilEprop-

dexing graphG = (V, A) form a set

Na-—1

J—'—{H: H-= Z heA*

£=0

)

heEC}.

Due to the linearity of graph filters, this set is a vector spadore-
over, the shift-invariance of filters i implies that multiplication of
graph filters produces filters frotA. Furthermore, if a graph filter
h(A) is invertible, its inversé(A) ™! is also a graph filter frond®
(the proof is available in [9]):

Theorem 4A graph filterH = h(A) € F is invertible iff polyno-
mial h(z) satisfiesh(\,) # 0 for all distinct eigenvalues,,, of A.
Then, there is a unique polynomig(zx) of degreedeg g(x) < Na
that satisfies

h(A)"" =g(A) € F. (10)
Theorem 4 implies that instead of inverting tNex N matrixh(A)
directly, we only need to construct a polynomidilr) specified by at

agations is determined heuristically.

Our DSRs-based approach has two major distinctions from the
label propagation technique. First, we do not requkeo be a
stochastic matrix. We only assume that edge weighis,, > 0 are
non-negative and indicate similarity or dependency betwesles.

In this case, nodes with positive predicted labéfg*® > 0 are
assigned to one class, and with negative labels to anotleeons,
instead of propagating labels as in a Markov chain, we coosa
filter h(A) = ho I+ ...+ hr AT that produces predicted labels

s(pr'ed) — h(A)s(known) (11)

Under these assumptions, we determine the optimal tapsdpy ad
tively constructing the filter using the initially known lalss(*°“™) |
This process corresponds to the “training” of the classiied pro-
ceeds as follows. Denote the subset of nodes with initiatigwkn
labels asy*"evn) — V: here, the labeb "™ is set to+1 if
vn € VF7own) gnd to0 otherwise. Let us select a smaller subset of

most Na taps. Overall, the above properties of graph filters implytraining nodeg ("@") ¢ p(known) "and construct the training sig-

thatF has the structure of an algebra [10].

(train)

nals*"*™) for which labelss;, are known and set t&:1 only
if v, € V™) otherwise they are set tb Then we assume that

Example 1Observe that the proposed definition of graph filters ina classifietz(A) correctly classifies all nodes W*"°*™ using the
DSRs is consistent with the traditional DSP theory. As we disedss  nformation about nodes it _if for eachwv,, € V*"°v") the

in Section 2, finite discrete periodic time series are represi by
the directed graph in Fig. 1(a). Its adjacency matrix isMe< N
circulant matrix (2). Hence, for any graph filteA) = h(Cn) =

ff:’ol he C%, the coefficients of its outp@ = h(Cn)s are calcu-
lated as

-~

Sn = hnso+...+hosn + An—1Spt1+ ...+ hnt1SN—1
N-1
= Z Skh(nfk mod N)-
k=0

Obviously, this is the standard circular convolution.

4. DATA CLASSIFICATION WITH GRAPH FILTERS

In this section we discuss a potential application of grajtérs to
data classification. This is an important task in data legyr@ind
analysis. Traditionally, the problem of data classificatims been
studied in machine learning, where multiple approachesgusiip-
port vector machines and neural networks have been used\tbég
recently, methods utilizing the graph representation td daere pro-
posed, such as minimum cut clustering [17], spectral clingjg6],
and label propagation [18, 19].

nth coefficient of the outpuk(A)s*"*"™) has the same sign as the
coefficients{""**™ . This condition can be written as

D h(A)s™) > 0, (12)
whereD = diag s"m"w”)) is the diagonal matrix with initially

known labels on its main diagonal.

Let us denote the vector of taps/ifA ) ash = (ho hr)
Assuming thatl is fixed, we find the taph of the optimally trained
graph filter satisfying (12) by solving the least-squaresimization
problem

T

argmin || D h(A)s®™™ — 1y ||
= argmin|| (D AVg(train) D ALS(”"””)) h—1x]2.

After the “training” stage, we use the constructed graplerfilt
h(A) to classify all nodes,, € V using the initially known la-
bels +1 of nodesv, € V*"°*™) by analysing the output signal
h(A)s(k""w"). A nodew, is assigned to the class corresponding
to labels+1 if the nth coefficient of the output signal is positive;

We propose a novel approach to data classification that-inteand to the class with label 1, if the nth coefficient of the output is

prets a classifier system as a graph filter. The constructiano

negative.



is a common problem in DSP theory. In our experiments withtimul
class classification, we obtained high prediction accueseyn when
a relatively small fraction of labels were known initially.
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