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Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT

We propose a novel discrete signal processing framework forstruc-
tured datasets that arise from social, economic, biological, and phys-
ical networks. Our framework extends traditional discretesignal
processing theory to datasets with complex structure that can be
represented by graphs, so that data elements are indexed by graph
nodes and relations between elements are represented by weighted
graph edges. We interpret such datasets as signals on graphs, intro-
duce the concept of graph filters for processing such signals, and dis-
cuss important properties of graph filters, including linearity, shift-
invariance, and invertibility. We then demonstrate the application
of graph filters to data classification by demonstrating thata classi-
fier can be interpreted as an adaptive graph filter. Our experiments
demonstrate that the proposed approach achieves high classification
accuracy.

Index Terms— Graph signal processing, graph signal, graph
filter, structured data, data classification, label propagation.

1. INTRODUCTION

Recent years have witnessed an enormous growth of interest in the
analysis of large-scale datasets emerging in various fieldsand appli-
cations, such as social and economic networks, internet andworld
wide web, image and video databases, sensor and transportation net-
works. A common feature of these datasets is their complex rela-
tional structure represented, for example, by similarities or depen-
dencies between data elements. A usual way to represent thisstruc-
ture is to use graphs, so that data elements are indexed by graph
nodes, and the strength of relations between elements is represented
via corresponding weighted graph edges.

The graph representation of structured data has been exploited
in numerous works. In social and economic networks, graph prop-
erties, such as degree distributions, node centrality and between-
ness, and clustering, have been used to infer the community struc-
ture and interaction [1, 2]. Graphical models [3, 4] study inference
and learning from structured datasets by viewing data elements as
random variables and reflecting their probabilistic dependencies be-
tween each other with graph edges. Spectral graph theory hasbeen
applied for data learning [5, 6]. These methods, however, analyze
the representation graph, not the actual data. More recently, the
Laplacian matrix and its eigenvectors have been used for therep-
resentation and spectral analysis of data [7, 8]. This approach is
significantly more similar to existing signal processing techniques,
and to our work in particular. Its major limitation, however, is the
restriction to indexing graphs that are undirected and havereal, non-
negative edge weights.

In this paper, we propose a framework, which we calldiscrete
signal processing on graphs(DSPG), for the representation, analy-
sis, and processing of data indexed by arbitrary graphs. Ourframe-
work extends the traditional discrete signal processing (DSP) theory
that addresses signals with linear structure, such as time (speech,
radar, econometric series) and space signals (images), to datasets
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Fig. 1. Graph representations for standard DSP signals.

with complex structure. We define the fundamental DSP concepts
of signals and filters on graphs1, and discuss important properties of
graph filters. As a potential application of graph filters we consider
data classification. In particular, we demonstrate that data labels can
be viewed as a graph signal, and a data classifier can be represented
by a graph filter that processes known labels (input signal) to predict
unknown labels (output signal). We demonstrate that a properly de-
signed graph filter achieves high classification accuracy even when
a relatively small fraction of data labels are known initially.

2. GRAPH SIGNALS

Consider a dataset, for which we know how its elements relateto
each other. A simple example is a set of images, where the informa-
tion about them, such as content, represents the data, and the simi-
larity between images represents the relation. Another example is a
collection of documents, where their topics represent the data, and
references (citations, hyperlinks) between documents represent the
relations. Despite the different nature of each dataset, ifwe repre-
sent it in a numeric form, we can view it as a set of vectors

S =
{
s : s = (s0, . . . , sN−1)

T , sn ∈ C
}
, (1)

and represent the relation between coefficientssn of s with a graph
G = (V,A). Here,V = {v0, . . . , vN−1} is a set ofN nodes,
andA is aN ×N weighted adjacency matrix. Each coefficientsn
is indexed by nodevn, and the weightAn,m of the directed edge
from vm to vn reflects the degree of relation ofsn to sm. Note that
edge weightsAn,m can take arbitrary real or complex values (for
example, if data elements are negatively correlated). We denote the
set of indices of nodes connected tovn asNn = {m | An,m 6= 0}.
We call a signals indexed by a graphG a graph signal.

Since, in general, signals can be complex-valued, and they can
be added together and scaled by constant coefficients, they form a
vector space. If we do not make additional restrictions, thesetS of
graph signals is theN -dimensional complex vector spaceS = CN .

Let us illustrate graph signals with several examples. A finite
periodic discrete time series (a standard signal in finite DSP), can be
represented by the directed cyclic graph in Fig. 1(a) [10, 11]. The
causality of a time series is represented by the graph edges that are

1Other fundamental concepts of DSPG, including the spectrum, Fourier
transform, and frequency response, are discussed in [9].
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Fig. 2. Graph representation for images of handwritten digits: a)
example images; b) similarity graph of 100 images.

all directed and have the same weight; and the periodicity isrepre-
sented by the edge fromvN−1 to v0. A general digital image can be
represented by the two-dimensional rectangular lattice inFig. 1(b).
Pixels correspond to graph nodes and are related to the four adjacent
pixels. This relation is symmetric, hence all edges are undirected
and have the same weight, with possible exceptions of boundary
nodes, depending on boundary conditions [10, 12]. The graphin
Fig. 2(b) represents images of handwritten digits, such as the ones
shown in Fig. 2(a) [13]. Each node corresponds to an image and
connects to several most similar images, where similarity of two im-
ages is measured as theℓ2-norm of their difference. We discuss this
dataset in more detail in Section 5. Note that, unlike the graphs for
discrete time series and images, this graph has no immediately ap-
parent structure. Nevertheless, as we demonstrate in Section 5, it is
just as useful as the previous graphs.

3. GRAPH FILTERS

Here, we introduce the concept of graph filters. Similarly tothe
traditional DSP, graph filters are systems that take a graph signal as
an input and produce another signal indexed by the same graphas
the output.

Graph shift. In DSP, the basic building block for filters is a time
delay, or time shift, denoted byz−1 [14]. It represents the simplest
non-trivial system that delays the input signals by one sample. Us-
ing the graph representation of finite periodic time series in Fig. 1(a),
for which the adjacency matrixA is theN×N circulant matrix with
weights [10, 11]

An,m =

{
1, if n−m = 1 mod N

0, otherwise
, (2)

we can write the output of the time shift as

s̃ = As. (3)

In DSPG, we extend the notion of the shift (3) to graph signals
indexed by a graphG = (V,A). We call the operation (3) thegraph
shift. It is realized by replacing the coefficientsn at nodevn with
the weighted linear combination of the coefficients at its neighbor
nodes:

s̃n =
N−1∑

m=0

An,msm =
∑

m∈Nn

An,msm. (4)

Graph filters. The representation (3) of a graph shift as a matrix-
vector multiplication suggests that, in general, any matrixH ∈ CN×N

that for input signals ∈ S outputs another graph signals̃ = Hs cor-
responds to agraph filter. This implies that graph filters are linear,
since for anyH,G ∈ CN×N the output of the linear combination
of these systems is the linear combination of their outputs:

(αH+ βG)s = αHs + βGs.

However, in this paper we would like to focus onshift-invariant
graph filters, for which applying the graph shift to the output is
equivalent to applying the graph shift to the input prior to filtering:

A
(
Hs

)
= H

(
As

)
. (5)

The next theorem establishes the structure of linear, shift-invariant
graph filtersH aspolynomialsin the shiftA.

Theorem 1LetA be the graph adjacency matrix and assume that its
characteristic and minimal polynomials are equal:pA(x) = mA(x).
Then, a graph filterH is linear and shift invariant if and only if (iff)
H is apolynomialin the graph shiftA, i.e., iff there exists a polyno-
mial

h(x) = h0 + h1x+ . . .+ hLx
L (6)

with possibly complex coefficientshℓ ∈ C, such that:

H = h(A) = h0 I+h1A+ . . .+ hLA
L. (7)

Proof: Since the shift-invariance condition (5) holds for all graph
signalss ∈ S = CN , the matricesA andH commute:AH = HA.
As pA(x) = mA(x), all eigenvalues ofA have exactly one eigen-
vector associated with them [15]. Then, the graph matrixH com-
mutes with the shiftA iff it is a polynomial inA (see Proposition
12.4.1 in [15]). �

We call the coefficientshℓ of the polynomialh(x) in (6) the
graph filtertaps. Obviously, any graph filter is precisely represented
by its taps.

Properties of graph filters. The assumption onpA(x) and
mA(x) in Theorem 1 does not hold for all adjacency matricesA.
Nevertheless, we can extend the result in Theorem 1 to all matrices
using the concept of equivalent graph filters, as defined next.

Definition 1 Given any shift matricesA and Ã, filters h(A) and
g(Ã) are calledequivalentif for all input signalss ∈ S they produce
equal outputs:h(A)s = g(Ã)s.

Hence, given a signals indexed by an arbitraryG = (V,A)
with pA(x) 6= mA(x), we can view it as being indexed by another
graphG̃ = (V, Ã) with the same set of nodesV but potentially
different edges and edge weights, for whichp

Ã
(x) = m

Ã
(x) holds

true. Then graph filters onG can be expressed as equivalent filters
on G̃, as described by the following theorem (the proof is available
in [9]).

Theorem 2For any matrixA there exists a matrix̃A and polyno-
mial r(x), such thatA = r(Ã) andp

Ã
(x) = m

Ã
(x).

As a consequence of Theorem 2, any filter on the graphG =

(V,A) is equivalent to a filter on the graph̃G = (V, Ã), since
h(A) = h(r(Ã)) = (h ◦ r)(Ã), whereh ◦ r denotes the polyno-
mial composition ofh andr. Thus, the conditionpA(x) = mA(x)
in Theorem 1 can be assumed to hold for any graphG = (V,A).
Otherwise, by Theorem 2, we can replace the graph by anotherG̃ =

(V, Ã) for which the condition holds, and assigñA toA.
Furthermore, as the next theorem demonstrates, the number of

taps required to represent any graph filter is limited.



Theorem 3Any graph filter (7) has a unique equivalent filter on the
same graph with at mostdegmA(x) = NA taps.

Proof: Consider the polynomialsh(x) in (6). By polynomial divi-
sion, there exist unique polynomialsq(x) andr(x):

h(x) = q(x)mA(x) + r(x), (8)

wheredeg r(x) < NA. Hence, we can express (7) as

h(A) = q(A)mA(A) + r(A) = q(A)0N +r(A) = r(A).

Thus,h(A) = r(A) anddeg r(x) < degmA(x) = NA. �

As a consequence of Theorem 3, all graph filters (7) on the in-
dexing graphG = (V,A) form a set

F =

{
H : H =

NA−1∑

ℓ=0

hℓA
ℓ

∣∣∣∣∣hℓ ∈ C

}
. (9)

Due to the linearity of graph filters, this set is a vector space. More-
over, the shift-invariance of filters inF implies that multiplication of
graph filters produces filters fromF . Furthermore, if a graph filter
h(A) is invertible, its inverseh(A)−1 is also a graph filter fromF
(the proof is available in [9]):

Theorem 4A graph filterH = h(A) ∈ F is invertible iff polyno-
mialh(x) satisfiesh(λm) 6= 0 for all distinct eigenvaluesλm, of A.
Then, there is a unique polynomialg(x) of degreedeg g(x) < NA

that satisfies
h(A)−1 = g(A) ∈ F . (10)

Theorem 4 implies that instead of inverting theN ×N matrixh(A)
directly, we only need to construct a polynomialg(x) specified by at
mostNA taps. Overall, the above properties of graph filters imply
thatF has the structure of an algebra [10].

Example 1Observe that the proposed definition of graph filters in
DSPG is consistent with the traditional DSP theory. As we discussed
in Section 2, finite discrete periodic time series are represented by
the directed graph in Fig. 1(a). Its adjacency matrix is theN × N
circulant matrix (2). Hence, for any graph filterh(A) = h(CN ) =∑N−1

ℓ=0 hℓ C
ℓ
N , the coefficients of its output̂s = h(CN)s are calcu-

lated as

ŝn = hns0 + . . .+ h0sn + hN−1sn+1 + . . .+ hn+1sN−1

=

N−1∑

k=0

skh(n−k mod N).

Obviously, this is the standard circular convolution.

4. DATA CLASSIFICATION WITH GRAPH FILTERS

In this section we discuss a potential application of graph filters to
data classification. This is an important task in data learning and
analysis. Traditionally, the problem of data classification has been
studied in machine learning, where multiple approaches using sup-
port vector machines and neural networks have been used [16]. More
recently, methods utilizing the graph representation of data were pro-
posed, such as minimum cut clustering [17], spectral clustering [6],
and label propagation [18, 19].

We propose a novel approach to data classification that inter-
prets a classifier system as a graph filter. The construction of an

optimal classifier is viewed and studied as the design of an adaptive
graph filter. Our approach is similar to the label propagation, which
is a simple, yet efficient technique for two-class classification. It is
based on advancing known labels from labeled graph nodes along
edges to unlabeled nodes. Usually this propagation of labels is mod-
eled as a stationary discrete-time Markov process, and the graph ad-
jacency matrix is constructed as a probability transition matrix, i.e.,
An,m ≥ 0 for all n,m, andA1N = 1N , where1N is a column
vector ofN ones. Initially known labels determine the initial proba-
bility distributions(known). For a binary classification problem with
only two labels, the resulting labels are determined by the predicted
distributions(pred) = AP s(known). If s

(pred)
n ≤ 1/2, nodevn is

assigned one label, and otherwise the other. The numberP of prop-
agations is determined heuristically.

Our DSPG-based approach has two major distinctions from the
label propagation technique. First, we do not requireA to be a
stochastic matrix. We only assume that edge weightsAk,m ≥ 0 are
non-negative and indicate similarity or dependency between nodes.
In this case, nodes with positive predicted labelss

(pred)
n > 0 are

assigned to one class, and with negative labels to another. Second,
instead of propagating labels as in a Markov chain, we construct a
filter h(A) = h0 I+ . . .+ hLA

L that produces predicted labels

s
(pred) = h(A)s(known). (11)

Under these assumptions, we determine the optimal taps by adap-
tively constructing the filter using the initially known labelss(known).
This process corresponds to the “training” of the classifierand pro-
ceeds as follows. Denote the subset of nodes with initially known
labels asV(known) ⊂ V; here, the labels(known)

n is set to±1 if
vn ∈ V(known) and to0 otherwise. Let us select a smaller subset of
training nodesV(train) ( V(known), and construct the training sig-
nal s(train), for which labelss(train)

n are known and set to±1 only
if vn ∈ V(train); otherwise they are set to0. Then we assume that
a classifierh(A) correctly classifies all nodes inV(known) using the
information about nodes inV(train), if for eachvn ∈ V(known), the
nth coefficient of the outputh(A)s(train) has the same sign as the
coefficients(known)

n . This condition can be written as

D h(A)s(train) ≥ 0, (12)

whereD = diag
(
s(known)

)
is the diagonal matrix with initially

known labels on its main diagonal.

Let us denote the vector of taps inh(A) ash =
(
h0 . . . hL

)T
.

Assuming thatL is fixed, we find the tapsh of the optimally trained
graph filter satisfying (12) by solving the least-squares minimization
problem

argmin ||Dh(A)s(train) − 1N ||2

= argmin||
(
DA0s(train) . . . DALs(train)

)
h− 1N ||2.

After the “training” stage, we use the constructed graph filter
h(A) to classify all nodesvn ∈ V using the initially known la-
bels±1 of nodesvn ∈ V(known) by analysing the output signal
h(A)s(known). A nodevn is assigned to the class corresponding
to labels+1 if the nth coefficient of the output signal is positive;
and to the class with label−1, if thenth coefficient of the output is
negative.



Total number Fraction of initially labeled images

of images 2% 5% 10% 20% 30%

1000 26% 59% 72% 83% 87%

5000 79% 84% 89% 93% 95%

10000 87% 89% 92% 93% 96%

Table 1. Accuracy of image classification using adaptive filters.

5. EXPERIMENTS

In this section we illustrate the use of graph filters in data classifica-
tion, as discussed in Section 4, on the MNIST dataset of images of
handwritten digits from0 to 9 [13]. Examples of these images are
shown in Fig. 2(a). All images are grayscale, centered and resized to
28× 28 pixels.

We use an8-nearest-neighbor graph that represents the similar-
ity between images. Each graph node indices an image. It is con-
nected by directed edges to8 nodes representing8 most similar im-
ages. We measure the similarity between two images as the Frobe-
nius norm of their difference. Fig. 2(b) shows an example graph for
100 randomly selected images,10 images per each digit.

The classifier system, discussed in Section 4, only performsa
binary classification, i.e. it assigns each node to one of twoclasses.
In this experiment we have ten classes corresponding to digits 0
through9. To extend our binary classifier to this ten-class problem,
we perform a one-against-all classification for each class.We use
one digit as one class and group other digits into another class, run
the binary classifier on this two-class problem, and record the results
for each node. After repeating the procedure ten times, eachtime
selecting a new class and grouping others together, we choose the
most likely class predicted for each image.

In our experiments, we used datasets withN = 1000, 5000, and
10000 images, where each digit was equally represented byN/10
images. We randomly selected between2% and30% of images as
pre-classified ones with known labels. The prediction accuracy was
estimated over the remaining, unlabeled images, and calculated as
an average of30 runs. In all experiments, the prediction filters were
limited toL = 15 taps.

The average prediction accuracy is shown in Table 1. Each re-
sult shows the portion of unlabeled images that were classified cor-
rectly. As can be observed from the results, even when relatively few
images are pre-classified, the adaptively constructed graph filter pre-
dicts unknown labels with high accuracy. Furthermore, the larger the
overall number of images, the smaller fraction of their labels needs
to be known initially to achieve a desired level of classification ac-
curacy.

6. CONCLUSIONS

We have proposed a framework for discrete signal processingon
graphs that studies the datasets directly. We defined the fundamental
DSP concepts of signals and filters on graphs, studied their important
properties, and identified signal and filter spaces. As we showed, our
framework extends the traditional discrete signal processing theory
to datasets with complex structure. We have also studied theappli-
cation of graph filters to important problems in data learning and
analysis, such as data classification. While this task is traditionally
addressed by machine learning, and not DSP, we have demonstrated
that it can be interpreted as an adaptive filter design problem, which

is a common problem in DSP theory. In our experiments with multi-
class classification, we obtained high prediction accuracyeven when
a relatively small fraction of labels were known initially.
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