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ABSTRACT

We propose an algorithm for the compression of ECG signals, i
particular QRS complexes, based on the expansion of sigritis
compact support into a basis of discrete Hermite functiofisese
functions are obtained by sampling continuous Hermite tions,
previously used for the compression of ECG signals. Ourrdlgo
uses the theory of signal models based on orthogonal polaigm
and achieves higher compression ratios compared withitiigts
previously reported, both those using Hermite functiossyall as
those using the discrete Fourier and discrete cosine tnansf

Index Terms— QRS complex, ECG signal, compression, Her-
mite function, Hermite transform, DFT, DCT.

1. INTRODUCTION

Many signals encountered in electrophysiology often hawvecén
be assumed to have) a compact support. These signals usemlly
resent the impulse response of a system or organ to an edctri
stimulation recorded on the body surface. Examples incklde-
trocardiographic (ECG), electroencephalographic, andetectric
signals.

Visual analysis of long-term repetitive electrophysiatag sig-
nals, especially in real time, is a tedious task that regtine pres-
ence of a human operator. Computer-based systems have &een
veloped to facilitate this process. For efficient storagepmatic
analysis and interpretation, electrophysiological sigi@ae usually
represented by a set of features, either heuristic, sucturagiah
and amplitude, or formal, such as coefficients of the exjpanisi an
orthogonal basis. In the latter case, a continuous basibeased,
and the projection and reconstruction of a compact-supggrtal
are computed using numerical methods for integral appratian,
such as a numerical quadrature. Alternatively, a discragistcan
be used, and a discrete signal transform, such as the disevatier
transform (DFT) or the discrete cosine transform (DCT), barap-
plied to a digitized signal—obtained by sampling a contimione.
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Fig. 1 (@) ECG structure. Reprinted from Lab-
VIEW for ECG Signal Processing, National Instruments,
http://zone.ni.com/devzone/cda/tut/p/id/6349. (b) QBEnplex

(centered around the peak).

exact reconstruction of a signal, large computational,sd an a
priori selection of coefficients for reconstruction.

Contributions. We propose an improved compression algo-
rithm for QRS complexes that expands digitized signals tinéoba-
sis ofdiscreteHermite functions, obtained by sampling the continu-
dus Hermite functions at specific points, not necessarily oniform
grid. This approach is based on results obtained from owmntgc
developed theory of signal models based on orthogonal polin
als [5, 6]. The proposed algorithm allows us to obtain pénfecon-
structions of signals, if desired. In addition, it has a lowempu-
tational cost, and allows us to choose coefficients for retcantion
from a larger pool of coefficients. Experiments comparing dip-
proximation accuracy demonstrate that the new algorithrfopas
on par with other algorithms for low compression ratios glésan
4.5), and outperforms them for higher compression ratios.

2. BACKGROUND

In both continuous and discrete cases, usually only a few pro

jection coefficients are used for the storage and recorigiruof
a signal, leading to a reconstruction error. The goal of the-c
pression optimization is to minimize the error while aclevthe
highest compression (for example, by using the fewest cbefis
possible).

In this paper, we study the compression of QRS complexesyith Ho(t)

which are the most characteristic waves of ECG signals [lje T

Hermite functions. Consider the family of polynomial&/,(t), £ >
0, that satisfy the recursion fdr> 2

Hy(t) = 2tH,_1(t) — 2(¢ — 1) Ho_a (),

1 and H1(t) = 2¢. They are known aslermite
polynomials These polynomials are orthogonal on the real e

structure of an ECG signal and an example QRS complex arenshowyith respect to the weight functiom®- -

in Fig. 1. In particular, we examine the expansion of QRS dergs
into the basis of Hermite functions. Such functions, inttleeintin-
uous form, provide a highly suitable basis for the represtén and
compression of QRS complexes [1, 2, 3, 4]. However, as weislisc
in Section 3, the reported computer implementations of sxglan-
sion suffer from certain limitations, such as the inabitiyobtain an
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/ Ho(t) Hy (e dt = 2°03/7 - 8¢ rm. 1)
It immediately follows from (1) that the functions
o Hy(1/o) @

pelto) = e
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Fig. 2. First four Hermite functions (plotted for the same scale

are orthonormal of® with respect to the standard inner product

<Lpf(t7 0)7 me(tvg)> = /]Q‘Pdt O—)me(tv U)dt = 0o—m.- (3)

These functions are callddermite functions The set of Hermite
functions{ . (t, o) }¢>0 is an orthonormal basis in the Hilbert space
of continuous functions defined dR [7]. Any such functions(t)
can be represented as

s(t) = Y et o),

>0

4)

where

Ce = <S(t)7(p[(t70')> :/

R

s(t)pe(t, o)dt.

The first four Hermite functions are shown in Fig. 2. Notice
that eachp, (¢, o) quickly approaches zero as the value|dfin-
creases, sincH,(t/o) is a polynomial of degreg and, agt| — oo,

numerical quadrature using, for example, a rectangle rule:
K
s()pe(t,o)dt ~ Y s(m)e(Th, 0) (b — th1).

To
Cy = /
—To k=—K
(6)

Here,—T =t_g-1 <t_-g < ... <tkx-1 < tx = T, and each
tk—1 < 1 < tx. The signal is then approximated wifi Hermite

functions as
M-1

$(k) = ) P, (Th, 0).
m=0

Lett; be such that, — tx—1 = A for all k. Then (6) and (7)
can be expressed in the matrix-vector notation. Let

@)

S(TfK) Co §(7'7K)

w

S(TK) CM—1 §(TK)

Then
c=Ad"s (8)

where® € RCE+HDXM guch that itsm-th column is thel,,-th
Hermite function sampled at the pointSi, 7—x 41, - - -

and §= &c,

yTK ¢
Pim = @e,, (Thy 0)

for —-K <k<K,0<m< M.

Observe that for perfect reconstructién= s, & must satisfy
DT = L.

Compression of QRS complexes: Previous workThe com-
pression of QRS complexes using the expansion into coniguo
Hermite functions has been studied in [1, 2, 3, 4]. It wasierig
nally motivated by the visual similarity of QRS complexesntered
around their peaks, and Hermite functions, as can be olbénwa
Figs. 1 and 2. Varying the value of corresponds to “stretching”
or “compressing” Hermite functiong, (¢, o) to optimally match a
given QRS complex.

Since ECG signals are usually available as discrete signaislis-
tantly sampled at, = kA, previous works uset, = 7, = kA

e*t2/2"2Hg(t/a) — 0. Hence, we can assume that each Hermitein (8). In addition, they proposed to use only tivst M/ Hermite

function has a compact support. In particular, we assumeditbal
Hermite functions have the same compact suppef,, 75 ], such
thaty,(t,0) = 0fort ¢ [-T5,T,], where0 < ¢ < L, andT, is a
suitably chosen constant that dependsr@nd L. If s(t) also has a
compact support g7, 7], then we can compute the coefficients
ce With a finite integral:

¢ = / s(®)pu(t,0)dt = /i

Compression.In practical applications, only a finite numh&f
of Hermite functions are used to represent the sig(glin (4). Ac-
cordingly, only a fewa priori selected coefficients,, ..., c,,
are computed. Herey, corresponds tgy, (t,o) in (5). Alterna-
tively, a larger pool of coefficients can be computed, fronmiclh/
ones are selected. It is well-known that for an orthonornzaid
selecting coefficients with the largest magnitude minirmittee ap-
proximation error computed as the energy of the differerstevéen
the signals(¢) and its approximation witfd/ basis functions.

Digital implementation. A computer-based computation of the
coefficient (5) and the Hermite expansion (4) has to be pexadr
in the discrete form. The integral in (5) can be computed with

s()pe(t,o)dt. 5)

functionsyo (¢, o), . ..
complexes.

In Section 3, we propose an improved compression algorithm
that re-samples ECG signals at non-equidistant pointspaadi/
Hermite functions that have thargestcoefficientsc,.

Hermite polynomial transforms. In [5, 6], we developed a
new class of signal models based on orthogonal polynofniBlge
to the lack of space, we omit the discussion of these signdetsp
and only mention the results that are used in Section 3 tatiwans
an optimized QRS complex compression algorithm.

Consider a set of distinct sample poirts= {ao,...,an-1}
and a set of linearly independent polynomiBls= { Py (t), ..., Pn—1(t)}.
Then x n matrix

,pm—1(t, o) for the approximation of QRS

Ppa = [Pg(ak)} 9)

0<k,b<n’

1A family of polynomials{ P, (t)},> is calledorthogona) if they sat-
isfy a recursion of the formPy(t) = agPp—1(t) + bePe(t) + coPry1(t),
usually with initial conditionsPy(t) = 1 and P_; = 0. Each fam-
ily is orthogonal over an interval C R with a weight functionw(t) :
J; Pe(t) P (t)w(t)dt = 0 if £ # m. Each polynomialP;(t) has exactly’
simple real roots. Hermite polynomials are an example dfagonal polyno-
mials. A detailed discussion on orthogonal polynomials leafound in [7].



is called apolynomial transform In general, it is non-trivial to
compute the invers@, ! . However, in the particular case when

Py(t) = ﬁH{(t) for 0 < ¢ < n are scaled Hermite polyno-
mials, anduo, . . . , an—1 are the roots of?, (¢),

Pro=PhaD, (10)

whereD € R™*" is a diagonal matrix whosk-th diagonal element
is \/Q/TL/Pnfl(Oék)P,{b(Oék).

Using the decomposition algorithm for polynomial transfier
derived in [6, 8], a matrix-vector product witRp,, can be com-
puted with approximatel$n + n? /4 operations for small values of
n, and3n + 21.5n log3(n/2) operations for large:, instead ofn?
and43n log2 n, respectively [9]. As a result, the cost is reduced
approximately by a factor of 2. Similarly, we can use (10) done
pute a matrix-vector product wirﬁ’;}a with only 4n + n?/4 and

4n + 21.5n log3(n/2) operations instead of?. This reduction of
the computational cost is especially significant for largkigs ofn.

3. PROPOSED ALGORITHM

The compression algorithm based on the expansion intoreanis
Hermite functions has several important limitations. 8if®”
Lok for 7, = kA, § does not converge tg regardless of the

numberM of Hermite functions used for the construction of an ap-

proximation. As a result, an exact reconstructios cdnnot be con-
structed. This problem could be solved by settivg= 2K + 1 and
using® ! instead of®” to computecin (8). However, construction
of ! is non-trivial. Moreover, the matrix-vector produbt ' sre-
quires(2K + 1) operations. This cost can be prohibitive for large
K, and makes this approach impractical. Finally, the solutiog-
gested in previous works, that uses flist M Hermite functions,
may not be the optimal choice for the constructiod ofith M basis
functions.

Algorithm modifications. In Section 2 the parameter was
used to “stretch” and “compress” the Hermite functians(t, o)
relatively to the signak(t). Alternatively, we can fixo = 1, and
introduce a parametex to “stretch” and “compress” signail(t)).
In this case the numerical quadrature (6) becomes

Tx
Cy :/
—T
Furthermore, we use different, non-equispaced sampliimggo
Let7r = ar+x, —K < k < K, be the roots of the Hermite polyno-
mial Hax +1(t), and define polynomial®, (t) = ﬁH{(t). Then
® in (8) has the form '

® =71 " "WPp.a,

K
s(tN)e(t, D)t & Y s(me\)pe(Te, 1)tk — tr1).

k=—K

(11)

where W = diag(efai/Q)
Pr,« is given in (9).

Finally, if M = 2K + 1, then it follows from (10) that the
columns of® form an orthogonal basis:

03T = 77 V2W32D 7t = A,

o<kt 1S @ diagonal matrix, and

(12)

Thus, to account for the vector norms, we must pre-multipdyin-
put signals with the weight matrixA~*.

Proposed algorithm. The proposed compression algorithm op-
erates as follows. First, we sample ECG sign@l) at sampling
pointsax+ kA, —K < k < K, to obtain a vector of samples

s= (s(aoA),s(a1)),..., s(agKA))T .
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Fig. 3. A QRS complex and its approximations with 10% and 5%
errors.

Then we compute vector of expansion coefficients
c=AdTA s,

where® andA are given in (11) and (12). Finally, we construct vec-
tor € by keeping onlyL coefficients with the largest magnitudescin
and setting others to zero. Then we @s® obtain signal approxi-
mation
§=A""oe

Advantages. The proposed algorithm addresses all limitations
of the original compression algorithms based on contintitersnite
functions. The exact reconstruction of signals can be aetidy
using allL = 2K + 1 coefficients to obtai. Further, to minimize
the approximation error, we can compute all coefficient®r 0 <
¢ < 2K + 1, and only after that pick a few to obtai This is a
practical approach, since the computational cost of odnd &7
is now smaller, as explained in Section 2,

4. EXPERIMENTS

Setup. In order to analyze the performance of the proposed com-
pression algorithm, we study the compression of QRS coreplex
extracted from ECG signals obtained from the MIT-BIH ECG Gom
pression Test Database [10]. A total df = 29 QRS complexes
are used. Each complex is available as a discrete signahgtie
2K + 1 = 27, and represents a continuous signal of duration 104
milliseconds sampled at 250 Hz.

For the original compression algorithm that uses contisuder-
mite functions, we comput2K + 1 coefficientsco, . . ., c26. Among
them, we select < L < 27 coefficients with the largest magnitude,
construct the approximatioy and compute the approximation error

§—9
5y [8=sl
IIsl]2

For the new compression algorithm, we assume that QRS com-
plexes are sampled at points.+ x A proportional to the roots of
P>x41(t). Since such signals are not available in MIT-BIH ECG
Compression Test Database, we construct them from avaiadp!
nals by interpolating them witkincfunctions, and sampling at points
Tro. Then we comput@ K + 1 coefficients, seleck ones with the
largest magnitude, construgtand compute the approximation error.

In addition, we study the accuracy of compression algorithm
based on two widely-used orthogonal discrete signal toaumsf—
DFT and DCT. As above, we apply the transformssteselectL
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Fig. 4. Average approximation errors for different compressibn a
gorithms.

largest coefficients, and compute the approximation erfrtimeore-
constructiors.

The purpose of the experiment is to obtain average apprexima

tion errors of10% and5% with the fewest coefficients possible. We
assume that approximations that capt¥®&; or 95% of the energy
of a QRS complex is sufficient to represent its important.fiess for
correct analysis and interpretation. Fig. 3 gives an exaropkuch
approximations.

Results. The average approximation errors that were computed

during the experiments are plotted in Fig.4. Here, Fig. 4f@ws
all approximation errors, and Fig. 4(b) shows only the oess than

10%. The x-axis shows the number of coefficients used for recon-

struction, and the y-axis shows the errors.

To obtain the average reconstruction errot @, our algorithm
requires onlyL, = 5 coefficients out oRK + 1 = 27 (compression
ratio 5.4), while the original Hermite algorithm requires 6 coeffi-
cients, and DFT and DCT-based algorithms require 7 codfiigie
(4.5 and 3.86, respectively). To obtain the error 6%, our algo-
rithm, as well as the ones based on DFT and DCT, requires &-coef
cients (compression rati5), while the original Hermite algorithm
requires 17 coefficientd (6).

Discussion. As we observe from Fig.4, the new compression
algorithm has the lowest approximation error among all @tigms

if the compression ratio ig.5 or higher; i.e. if we use up to 6 out [10]

of 27 coefficients for reconstruction. For lower compresgiatios,

it performs on par with the algorithms based on DFT and DCd, an [11]

significantly outperforms the original Hermite algorithm.

The choice of the values for parameter&nd A is crucial for
optimal representation of signals. We have obtained therbsslts
usinge = A = 0.017 for all N = 29 test signals (these values are
for variablest and 7, measured in seconds). However, in computer-
based systems these parameters can be adjusted autdmétical

(12]

each ECG signal to achieve a yet higher accuracy of compressi
and approximation.

5. CONCLUSIONS

We have constructed a new algorithm for the compression & QR
complexes. The proposed algorithm is based on the expan$ion
signals with compact support (such as ECG signals) intodisestof
discrete Hermite functions sampled from continuous Herhihc-
tions at sampling points that are the roots of a correspgnHier-
mite polynomial. The new method uses results from our régent
developed theory of signal models for orthogonal polyndsniand
achieves a better compression ratio than the original idhgbased

on continuous Hermite functions. In addition, the compatel cost

of the compression and approximation is reduced.
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