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ABSTRACT
We propose an algorithm for the compression of ECG signals, in
particular QRS complexes, based on the expansion of signalswith
compact support into a basis of discrete Hermite functions.These
functions are obtained by sampling continuous Hermite functions,
previously used for the compression of ECG signals. Our algorithm
uses the theory of signal models based on orthogonal polynomials,
and achieves higher compression ratios compared with algorithms
previously reported, both those using Hermite functions, as well as
those using the discrete Fourier and discrete cosine transforms.

Index Terms— QRS complex, ECG signal, compression, Her-
mite function, Hermite transform, DFT, DCT.

1. INTRODUCTION

Many signals encountered in electrophysiology often have (or can
be assumed to have) a compact support. These signals usuallyrep-
resent the impulse response of a system or organ to an electrical
stimulation recorded on the body surface. Examples includeelec-
trocardiographic (ECG), electroencephalographic, and myoelectric
signals.

Visual analysis of long-term repetitive electrophysiological sig-
nals, especially in real time, is a tedious task that requires the pres-
ence of a human operator. Computer-based systems have been de-
veloped to facilitate this process. For efficient storage, automatic
analysis and interpretation, electrophysiological signals are usually
represented by a set of features, either heuristic, such as duration
and amplitude, or formal, such as coefficients of the expansion in an
orthogonal basis. In the latter case, a continuous basis canbe used,
and the projection and reconstruction of a compact-supportsignal
are computed using numerical methods for integral approximation,
such as a numerical quadrature. Alternatively, a discrete basis can
be used, and a discrete signal transform, such as the discrete Fourier
transform (DFT) or the discrete cosine transform (DCT), canbe ap-
plied to a digitized signal—obtained by sampling a continuous one.

In both continuous and discrete cases, usually only a few pro-
jection coefficients are used for the storage and reconstruction of
a signal, leading to a reconstruction error. The goal of the com-
pression optimization is to minimize the error while achieving the
highest compression (for example, by using the fewest coefficients
possible).

In this paper, we study the compression of QRS complexes,
which are the most characteristic waves of ECG signals [1]. The
structure of an ECG signal and an example QRS complex are shown
in Fig. 1. In particular, we examine the expansion of QRS complexes
into the basis of Hermite functions. Such functions, in their contin-
uous form, provide a highly suitable basis for the representation and
compression of QRS complexes [1, 2, 3, 4]. However, as we discuss
in Section 3, the reported computer implementations of suchexpan-
sion suffer from certain limitations, such as the inabilityto obtain an
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Fig. 1. (a) ECG structure. Reprinted from Lab-
VIEW for ECG Signal Processing, National Instruments,
http://zone.ni.com/devzone/cda/tut/p/id/6349. (b) QRScomplex
(centered around the peak).

exact reconstruction of a signal, large computational cost, and an a
priori selection of coefficients for reconstruction.

Contributions. We propose an improved compression algo-
rithm for QRS complexes that expands digitized signals intothe ba-
sis ofdiscreteHermite functions, obtained by sampling the continu-
ous Hermite functions at specific points, not necessarily ona uniform
grid. This approach is based on results obtained from our recently
developed theory of signal models based on orthogonal polynomi-
als [5, 6]. The proposed algorithm allows us to obtain perfect recon-
structions of signals, if desired. In addition, it has a lower compu-
tational cost, and allows us to choose coefficients for reconstruction
from a larger pool of coefficients. Experiments comparing the ap-
proximation accuracy demonstrate that the new algorithm performs
on par with other algorithms for low compression ratios (less than
4.5), and outperforms them for higher compression ratios.

2. BACKGROUND

Hermite functions. Consider the family of polynomialsHℓ(t), ℓ ≥
0, that satisfy the recursion forℓ ≥ 2

Hℓ(t) = 2tHℓ−1(t)− 2(ℓ − 1)Hℓ−2(t),

with H0(t) = 1 andH1(t) = 2t. They are known asHermite
polynomials. These polynomials are orthogonal on the real lineR

with respect to the weight functione−t2 :

∫ ∞

−∞
Hℓ(t)Hm(t)e−t2dt = 2ℓℓ!

√
π · δℓ−m. (1)

It immediately follows from (1) that the functions

ϕℓ(t, σ) =
1

√

σ2ℓℓ!
√
π
e−t2/2σ2

Hℓ(t/σ) (2)



(a) ϕ0(t, σ) (b) ϕ1(t, σ)

(c) ϕ2(t, σ) (d) ϕ3(t, σ)

Fig. 2. First four Hermite functions (plotted for the same scaleσ).

are orthonormal onR with respect to the standard inner product

〈

ϕℓ(t, σ), ϕm(t, σ)
〉

=

∫

R

ϕℓ(t, σ)ϕm(t, σ)dt = δℓ−m. (3)

These functions are calledHermite functions. The set of Hermite
functions{ϕℓ(t, σ)}ℓ≥0 is an orthonormal basis in the Hilbert space
of continuous functions defined onR [7]. Any such functions(t)
can be represented as

s(t) =
∑

ℓ≥0

cℓϕℓ(t, σ), (4)

where

cℓ =
〈

s(t), ϕℓ(t, σ)
〉

=

∫

R

s(t)ϕℓ(t, σ)dt.

The first four Hermite functions are shown in Fig. 2. Notice
that eachϕℓ(t, σ) quickly approaches zero as the value of|t| in-
creases, sinceHℓ(t/σ) is a polynomial of degreeℓ, and, as|t| → ∞,

e−t2/2σ2

Hℓ(t/σ) → 0. Hence, we can assume that each Hermite
function has a compact support. In particular, we assume that firstL
Hermite functions have the same compact support[−Tσ, Tσ], such
thatϕℓ(t, σ) = 0 for t /∈ [−Tσ, Tσ], where0 ≤ ℓ < L, andTσ is a
suitably chosen constant that depends onσ andL. If s(t) also has a
compact support of[−Tσ, Tσ], then we can compute the coefficients
cℓ with a finite integral:

cℓ =

∫

R

s(t)ϕℓ(t, σ)dt =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt. (5)

Compression.In practical applications, only a finite numberM
of Hermite functions are used to represent the signals(t) in (4). Ac-
cordingly, only a fewa priori selected coefficientscℓ0 , . . . , cℓM−1

are computed. Here,cℓk corresponds toϕℓk(t, σ) in (5). Alterna-
tively, a larger pool of coefficients can be computed, from which M
ones are selected. It is well-known that for an orthonormal basis
selecting coefficients with the largest magnitude minimizes the ap-
proximation error computed as the energy of the difference between
the signals(t) and its approximation withM basis functions.

Digital implementation. A computer-based computation of the
coefficient (5) and the Hermite expansion (4) has to be performed
in the discrete form. The integral in (5) can be computed witha

numerical quadrature using, for example, a rectangle rule:

cℓ =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt ≈
K
∑

k=−K

s(τk)ϕℓ(τk, σ)(tk − tk−1).

(6)
Here,−T = t−K−1 < t−K < . . . < tK−1 < tK = T, and each
tk−1 ≤ τk ≤ tk. The signal is then approximated withM Hermite
functions as

ŝ(τk) =
M−1
∑

m=0

cℓmϕℓm (τk, σ). (7)

Let tk be such thattk − tk−1 = ∆ for all k. Then (6) and (7)
can be expressed in the matrix-vector notation. Let

s=







s(τ−K)
...

s(τK)






, c =







c0
...

cM−1






, ŝ=







ŝ(τ−K)
...

ŝ(τK)






.

Then
c = ∆ΦT s and ŝ= Φc, (8)

whereΦ ∈ R
(2K+1)×M , such that itsm-th column is theℓm-th

Hermite function sampled at the pointsτ−K , τ−K+1, . . . , τK :

Φk,m = ϕℓm (τk, σ)

for −K ≤ k ≤ K, 0 ≤ m < M.
Observe that for perfect reconstructionŝ = s, Φ must satisfy

ΦΦT = I2K+1.
Compression of QRS complexes: Previous work.The com-

pression of QRS complexes using the expansion into continuous
Hermite functions has been studied in [1, 2, 3, 4]. It was origi-
nally motivated by the visual similarity of QRS complexes, centered
around their peaks, and Hermite functions, as can be observed from
Figs. 1 and 2. Varying the value ofσ corresponds to “stretching”
or “compressing” Hermite functionsϕℓ(t, σ) to optimally match a
given QRS complex.

Since ECG signals are usually available as discrete signalsequidis-
tantly sampled atτk = k∆, previous works usedtk = τk = k∆
in (8). In addition, they proposed to use only thefirst M Hermite
functionsϕ0(t, σ), . . . , ϕM−1(t, σ) for the approximation of QRS
complexes.

In Section 3, we propose an improved compression algorithm
that re-samples ECG signals at non-equidistant points, andusesM
Hermite functions that have thelargestcoefficientscℓ.

Hermite polynomial transforms. In [5, 6], we developed a
new class of signal models based on orthogonal polynomials1. Due
to the lack of space, we omit the discussion of these signal models,
and only mention the results that are used in Section 3 to construct
an optimized QRS complex compression algorithm.

Consider a set of distinct sample pointsα = {α0, . . . , αn−1}
and a set of linearly independent polynomialsP = {P0(t), . . . , Pn−1(t)}.
Then× n matrix

PP,α =
[

Pℓ(αk)
]

0≤k,ℓ<n
, (9)

1A family of polynomials{Pℓ(t)}ℓ≥0 is calledorthogonal, if they sat-
isfy a recursion of the formtPℓ(t) = aℓPℓ−1(t) + bℓPℓ(t) + cℓPℓ+1(t),
usually with initial conditionsP0(t) = 1 and P−1 = 0. Each fam-
ily is orthogonal over an intervalI ⊆ R with a weight functionw(t) :∫
I Pℓ(t)Pm(t)w(t)dt = 0 if ℓ 6= m. Each polynomialPℓ(t) has exactlyℓ

simple real roots. Hermite polynomials are an example of orthogonal polyno-
mials. A detailed discussion on orthogonal polynomials canbe found in [7].



is called apolynomial transform. In general, it is non-trivial to
compute the inverseP−1

P,α. However, in the particular case when
Pℓ(t) = 1√

2ℓℓ!
Hℓ(t) for 0 ≤ ℓ ≤ n are scaled Hermite polyno-

mials, andα0, . . . , αn−1 are the roots ofPn(t),

P−1
P,α = PT

P,αD, (10)

whereD ∈ R
n×n is a diagonal matrix whosek-th diagonal element

is
√

2/n/Pn−1(αk)P
′
n(αk).

Using the decomposition algorithm for polynomial transforms
derived in [6, 8], a matrix-vector product withPP,α can be com-
puted with approximately3n+ n2/4 operations for small values of
n, and3n + 21.5n log22(n/2) operations for largen, instead ofn2

and 43n log22 n, respectively [9]. As a result, the cost is reduced
approximately by a factor of 2. Similarly, we can use (10) to com-
pute a matrix-vector product withP−1

P,α with only 4n + n2/4 and
4n + 21.5n log22(n/2) operations instead ofn2. This reduction of
the computational cost is especially significant for large values ofn.

3. PROPOSED ALGORITHM

The compression algorithm based on the expansion into continuous
Hermite functions has several important limitations. SinceΦΦT 6=
I2K+1 for τk = k∆, ŝ does not converge tos, regardless of the
numberM of Hermite functions used for the construction of an ap-
proximation. As a result, an exact reconstruction ofscannot be con-
structed. This problem could be solved by settingM = 2K +1 and
usingΦ−1 instead ofΦT to computec in (8). However, construction
of Φ−1 is non-trivial. Moreover, the matrix-vector productΦ−1s re-
quires(2K + 1)2 operations. This cost can be prohibitive for large
K, and makes this approach impractical. Finally, the solutionsug-
gested in previous works, that uses thefirst M Hermite functions,
may not be the optimal choice for the construction ofŝwith M basis
functions.

Algorithm modifications. In Section 2 the parameterσ was
used to “stretch” and “compress” the Hermite functionsϕk(t, σ)
relatively to the signals(t). Alternatively, we can fixσ = 1, and
introduce a parameterλ to “stretch” and “compress” signals(tλ).
In this case the numerical quadrature (6) becomes

cℓ =

∫ Tλ

−Tλ

s(tλ)ϕℓ(t, 1)dt ≈
K
∑

k=−K

s(τkλ)ϕℓ(τk, 1)(tk − tk−1).

Furthermore, we use different, non-equispaced sampling points.
Let τk = αk+K ,−K ≤ k ≤ K, be the roots of the Hermite polyno-
mialH2K+1(t), and define polynomialsPℓ(t) =

1√
2ℓℓ!

Hℓ(t). Then
Φ in (8) has the form

Φ = π−1/4WPP,α, (11)

whereW = diag
(

e−α2

k
/2
)

0≤k<2K+1
is a diagonal matrix, and

PP,α is given in (9).
Finally, if M = 2K + 1, then it follows from (10) that the

columns ofΦ form an orthogonal basis:

ΦΦT = π−1/2W 2D−1 = Λ. (12)

Thus, to account for the vector norms, we must pre-multiply the in-
put signals with the weight matrixΛ−1.

Proposed algorithm.The proposed compression algorithm op-
erates as follows. First, we sample ECG signals(t) at sampling
pointsαk+Kλ, −K ≤ k ≤ K, to obtain a vector of samples

s=
(

s(α0λ), s(α1λ), . . . , s(α2Kλ)
)T

.

Fig. 3. A QRS complex and its approximations with 10% and 5%
errors.

Then we compute vector of expansion coefficients

c = ∆ΦTΛ−1s,

whereΦ andΛ are given in (11) and (12). Finally, we construct vec-
tor ĉ by keeping onlyL coefficients with the largest magnitudes inc
and setting others to zero. Then we useĉ to obtain signal approxi-
mation

ŝ= ∆−1Φĉ.

Advantages. The proposed algorithm addresses all limitations
of the original compression algorithms based on continuousHermite
functions. The exact reconstruction of signals can be achieved by
using allL = 2K + 1 coefficients to obtain̂c. Further, to minimize
the approximation error, we can compute all coefficientscℓ for 0 ≤
ℓ < 2K + 1, and only after that pick a few to obtain̂c. This is a
practical approach, since the computational cost of bothΦ andΦT

is now smaller, as explained in Section 2,

4. EXPERIMENTS

Setup. In order to analyze the performance of the proposed com-
pression algorithm, we study the compression of QRS complexes
extracted from ECG signals obtained from the MIT-BIH ECG Com-
pression Test Database [10]. A total ofN = 29 QRS complexes
are used. Each complex is available as a discrete signal of length
2K + 1 = 27, and represents a continuous signal of duration 104
milliseconds sampled at 250 Hz.

For the original compression algorithm that uses continuous Her-
mite functions, we compute2K+1 coefficientsc0, . . . , c26. Among
them, we select1 ≤ L ≤ 27 coefficients with the largest magnitude,
construct the approximation̂s, and compute the approximation error

EL =
||̂s− s||2
||s||2

.

For the new compression algorithm, we assume that QRS com-
plexes are sampled at pointsαk+Kλ proportional to the roots of
P2K+1(t). Since such signals are not available in MIT-BIH ECG
Compression Test Database, we construct them from available sig-
nals by interpolating them withsincfunctions, and sampling at points
τkσ. Then we compute2K + 1 coefficients, selectL ones with the
largest magnitude, constructŝ, and compute the approximation error.

In addition, we study the accuracy of compression algorithms
based on two widely-used orthogonal discrete signal transforms—
DFT and DCT. As above, we apply the transforms tos, selectL



(a) All errors.

(b) Errors less than10%.

Fig. 4. Average approximation errors for different compression al-
gorithms.

largest coefficients, and compute the approximation error of the re-
construction̂s.

The purpose of the experiment is to obtain average approxima-
tion errors of10% and5% with the fewest coefficients possible. We
assume that approximations that capture90% or 95% of the energy
of a QRS complex is sufficient to represent its important features for
correct analysis and interpretation. Fig. 3 gives an example of such
approximations.

Results.The average approximation errors that were computed
during the experiments are plotted in Fig.4. Here, Fig. 4(a)shows
all approximation errors, and Fig. 4(b) shows only the ones less than
10%. The x-axis shows the number of coefficients used for recon-
struction, and the y-axis shows the errors.

To obtain the average reconstruction error of10%, our algorithm
requires onlyL = 5 coefficients out of2K + 1 = 27 (compression
ratio 5.4), while the original Hermite algorithm requires 6 coeffi-
cients, and DFT and DCT-based algorithms require 7 coefficients
(4.5 and3.86, respectively). To obtain the error of5%, our algo-
rithm, as well as the ones based on DFT and DCT, requires 8 coeffi-
cients (compression ratio3.5), while the original Hermite algorithm
requires 17 coefficients (1.6).

Discussion. As we observe from Fig.4, the new compression
algorithm has the lowest approximation error among all algorithms
if the compression ratio is4.5 or higher; i.e. if we use up to 6 out
of 27 coefficients for reconstruction. For lower compression ratios,
it performs on par with the algorithms based on DFT and DCT, and
significantly outperforms the original Hermite algorithm.

The choice of the values for parametersσ andλ is crucial for
optimal representation of signals. We have obtained the best results
usingσ = λ = 0.017 for all N = 29 test signals (these values are
for variablest andτk measured in seconds). However, in computer-
based systems these parameters can be adjusted automatically for

each ECG signal to achieve a yet higher accuracy of compression
and approximation.

5. CONCLUSIONS

We have constructed a new algorithm for the compression of QRS
complexes. The proposed algorithm is based on the expansionof
signals with compact support (such as ECG signals) into the basis of
discrete Hermite functions sampled from continuous Hermite func-
tions at sampling points that are the roots of a corresponding Her-
mite polynomial. The new method uses results from our recently
developed theory of signal models for orthogonal polynomials, and
achieves a better compression ratio than the original algorithm based
on continuous Hermite functions. In addition, the computational cost
of the compression and approximation is reduced.
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