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ABSTRACT

It is well-known that the discrete Fourier transform (DFT pdinite
length discrete-time signal samples the discrete-timei€otrans-
form (DTFT) of the same signal at equidistant points on thiecin
cle. Hence, as the signal length goes to infinity, the DFT eqgites
the DTFT. Associated with the DFT are circular convolutiom &
periodic signal extension. In this paper we identify a lacipss
of alternatives to the DFT using the theory of polynomialefigas.
Each of these transforms approaches the DTFT just as the bés, d
but has its own signal extension and own notion of convotutfeur-
ther, these transforms have Vandermonde structure, wimahles
their fast computation. We provide a few experimental exas\p
that confirm our theoretical results.
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the theory of polynomial algebras [2], which is known to dése
the DFT algebraically [3, 5]. This connection was recentieaded
in the algebraic signal processing theory [4].

Organization. Section 2 explains the polynomial algebra frame-
work underlying both the DFT and the alternative transfotinas we
derive in this paper. This framework reduces the problemeoivel
ing the alternative transforms to finding sequences of motyials
whose root sets converge to the unit circle. We identify gdailass
of such sequences in Section 3 and consider a few concretmea
for experiments in Section 4. We conclude with Section 5.

2. BACKGROUND

Index Terms— Discrete Fourier transforms, spectral analysis, The key to deriving alternatives to the DFT is its interptieiain the

boundary value problems, algebra, algebraic signal psingthe-
ory, Vandermonde matrix

1. INTRODUCTION

The discrete-time Fourier transform (DTFT) for a discriiee sig-

nal with finite suppors = (so, ..., sn—1) is given by
y(0) = > see % 0 elo,m). (1)
0<t<n

Computingy(0) is equivalent to evaluating the polynomiglz) =
S 0<e<n sex’ onthe unit circlee ™7, 0 € [0, ).

A related, finite representation sfs computed via the discrete
Fourier transform (DFT):

ye = y(2=E

) = 2o<i<n szefj%[, 0<k<n. 2

Computingy(k) is now equivalent to evaluating(z) at then nth
roots of unitye=?7%9/" 0 < k < n, and shows that the DFT in
(2) samples the DTFT in (1) at equidistant points on the unife:

Hence, as goes to infinity, the DFT approaches the DTFT. Further,we choosé = (1, z, . ..

it is well-known that applying the DFT assumes that the digna
periodically extended and that the associated convoluieEromes
circular convolution.

framework ofpolynomial algebra£"[z]/pn (), which we overview
in this section. Every polynomial algebra has an associatidn
of boundary condition, signal extension, convolution,ctpem, and
Fourier transform, as explained in the algebraic signatessing
theory [5, 4]. As running example, we uggz|/(z™ — 1), which is
known to be associated with the DFT [3].

In short, we will show in this paper that polynomials(z) other
thanz™ — 1 can be used to define alternatives to the DFT.

Polynomial algebra. An algebrais a vector space that is also
aring, i.e., permits the multiplication of its elements.afxles in-
clude the complex numbefs and the complex polynomial§[z].

Letpn(z) = 2" +> 0 ,cn Biz' be a (normalized) polynomial
of degreedeg(p) = n. The set of all polynomials of degree less
thann,

Cla)/pn(2) = {s(z) = ) sea’ | deg(s) < n}

0<t<n

with addition and multiplication modulp(z) is called gpolynomial
algebra As a vector spac&;[z]/p(x) has dimensiom. As a basis,
,xz"~1). Fors(z) € C[z]/p(x), we denote
the list of coefficients witts = (so, ..., Sn—1).
C[z]/(z™ — 1) is an example of a polynomial algebra.
Boundary condition and signal extension EveryC[z]/pn(z)

Contribution. In this theoretical paper we derive a large sethas an associated (right) boundary condition which is abthiby

of alternatives to the DFT. Each of these transforms appesmthe

DTFT asn goes to infinity, has its own associated boundary condi

tion and signal extension (which hence are not periodic), @mn
notion of convolution. Further, these transforms have éambnde
structure, which enables their fast computation ugg log?(n))

operations. For several examples, we experimentally condiar

theoretical result and show how they compare to the DFT wipen a

plied to a signal.

The derivation of the alternatives to the DFT makes use of the

Beraha-Kahane-Weiss theorem [1] that describes the asyimpt-
havior of root sets of polynomials. We combine this theoreitt w
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reducingz™ modpn(z) = — > ,,., Biz’. Similarly, the (right)

“signal extension is given by reducing® modp, (x) for m > n.

In our examplep,(xz) = =™ — 1, i.e.,z" modz™ —1 = 11is
the cyclic boundary condition. Further” modz™ — 1 = g™ Mmod",
i.e., a periodic signal extension.

Convolution. The convolution associated with[z]/p. (z) is
the multiplicationh(x)s(x) modp(z).

In our examplér(x)s(x) modz™—1 is equivalent to the circular
convolution of the coordinate sequendesnds [3].

Spectrum and Fourier transform. We assume,, (x) has pair-
wise distinct zerosx = (ao,...,an—1). Then the Fourier trans-
form associated witlC[z] /p, (z) is given by the Chinese remainder



Theorem 1Let

O—» 0—P» 0 ¢ s s s e O—PO—>0

20 2! 22 Zn3  gn—2  pn-l qn(z) = ak($)$kn + akfl(w)w(kﬂ)n +... Fa(x)z” + ao(a(%,)
Fig. 1. The structure imposed on the signal by the polynomial algewherea;(x) € C[z] andao, ar, # 0. Then,z € C is a limit of zeros
braC[z]/(z™ — 1) and hence by the DFT. if and only if one of the following holds:
() |2 =1.
theorem [2], which decomposes it into a Cartesian producinef (i) |z] < landao(z) = 0.
dimensional polynomial algebras: i) |2| > 1 anday(z) = 0.

F i Clal/pa(r)  — Bocren Clal/(z —ax),

3 - 5
s(z) = (s(a0);..ss(an_1)). 3) In other words, Theorem 1 states that the limits of zerosepibly:

nomial sequence in (5) is the entire unit circle, plus pdgdihitely
This F is a linear mapping (even an isomorphism of algebras) andnany additional points, namely the roots @f(x) inside the unit
(s(cu))o<k<n is called thespectrumof s(z). Hence, with respectto  circle and the roots aiy (z) outside the unit circle.

the basis of C[x]/p.(z) and(z°) = (1) in each of theC[z]/(z — This result can be readily extended by combining such fasili
ay) it is represented by a matrix (obtained by evaluating alisas of polynomials, which yields the following corollary.

elements irb at all zeros inx), which has Vandermonde structure:
F = [al]o<h.c<n. 4)  Corollary 1 Letpy (z) = 2%, ai(2)zl ™7 with a; (z) € Clz]
) . . ) andao,ar # 0, d = deg(ax). Thenz € C is a limit of zeros for
Note that this class of transforms does not contain theelisciosine ;g sequence if and only if one €j—(iii) in Theorem 5 holds.

and sine transforms, which can be captured in the algehraice-

work by using Chebyshev polynomials [6, 4]. pn(z) = 2™ — 1is a special case of the sequence in Corollary 1.

In our example, the zeros af” — 1 areay, = Wk, w, = To prove Theorem 1, we use a theorem from Beraha, Kahane,
exp(—2mj/n). HenceF = [w;‘lo<ke<n = DFT, is exactly  and Weiss [1] explained next.
the discrete Fourier transform, i.e., thg in (2) are computed as The Beraha-Kahane-Weiss theoremSuppose€{q, | n > 0}
Yy=FS Y= (Y0, Yn—1). is a sequence of polynomials satisfying theth degree recursion

Visualization. The operation of: on the basi$ of C[z]/p, ()
can be represented by a graph. E.g., in our example) = =" —1, m
we obtain the directed circle in Fig. 1. Note how the graphu®s Gntm (T) = — Z [i (@) gntm—;(x), (6)
the boundary condition™ = z°. Intuitively, the graph is the struc- i=1
ture imposed on a signaby the polynomial algebra.

Fast algorithms. Every general Fourier transfort in (4) is
a Vandermonde matrix. Hencg, = Fs can be computed using
only O(nlog?(n)) operations [7]. In the case of the DFT, even
O(nlog(n)) is possible.

where thef; € C[z] are polynomials. For each € C, (6) is an
ordinary linear recurrence for the numbergx), n > 0. With this
observation, we can solve (6) following the standard praocedor
linear recurrences [8], except that the results depencl on

The characteristic equatiomssociated with (6) is

3. ALTERNATIVE DISCRETE FOURIER TRANSFORMS m .
Qe(N) = A"+ fi(z)A" T =0, 7
Problem statement. We are interested in finding polynomial alge- i=1
brasC[z]/p» (x) such that the set of zeros @f converges to the unit
circle asn goes to infinity. The theory in Section 2 yields for each LetAi (), ..., Am(x) be them zeros of ofQ.. Ifthe A; (x) are
choice ofp, (x) the associated notions of signal extension, convo-Pairwise distinct for a particular, theng,, (z) has the form
lution, spectrum, and Fourier transform. By constructithe, latter m
will gpprqach the DTFT in (:.L) as goes to inIinity, jyst as the DFT an(z) = Z a; (z)A;(z)", ®
(which arises from the special casg(z) = =™ — 1) in (2) does. =
We will use the following definition.

where thex; are determined by solving a systemraflinear equa-
Definition 1 Let {p»(z) | n > 0} be a sequence of complex poly- tions obtained by letting = 0,1,...,m — 1. If the \;(x) are not
nomials of increasing degrekg(p.) = n. We say that € Cisa  pairwise distinct, (8) is adjusted in the usual way [8, apjdeA].

limit of zerosfor this sequence if there is a sequeres | n > 0} We assume that the following twmndegeneracy conditiorse
such thapn(z,) = 0 and lim z, = z. satisfied:

As an example, the limits of zeros of the sequence given by * {gn} does not satisfy a recursion of degree less than

pn(x) = 2™ — 1 are precisely all points on the unit circle. We note e There are na, j such that\;(z) = w);(x) for a constant

that we can extend the above definition to any sequdigsér)} with jw| = 1.
_ofdpolynomials of increasing degreast necessarily equab their Under these conditions, the following theorem holds.
index.

Main theorem. The main result of this paper is the follow-
ing theorem, which yields a large class of sequences of patyn
als whose zero sets converge to the unit circle. We deteramide
experimentally test the associated alternatives to the IBf€T. @) M(z)] > 1Ni(2)],2 <5 <m,andai(z) = 0.

Theorem 2A point z € C is a limit of zeros of{q, } if and only if
the \;(z) can be ordered such that one of the following holds:



(i) M) = Pa(2)] =... =

m, for somel > 2.

()] > [N () I +1 <5 <

Proof of Theorem 1. To apply Theorem 2, we show that our

polynomial sequence (5)
e satisfies a linear recursion,

¢ allows for a simple computation of the rootg(x) and of the

coefficientsa; (x) in (8), and
e satisfies the nondegeneracy conditions.

Lemma 1lLet {g.(x)} be the sequence defined in (5) andlet
{i]0<i<kai(x)#0} = {i,...,
increasing order. This implies = 0, i,, =
fies the following recurrence of ordet =
smaller order:

Z fi(@)gn—;( )
where the polynomialg; are defined as
L@ =y Y [ (10)
JCL|J|=jteJ

Further, the characteristic equation takes the simple form

—A’”+ij AR || (O (11)

i€l

im }, Which we assume in
k. Then{gn(z)} satis-
|I], and no recurrence of

-1

m

) Y o o0 > 0 o o0 > 0 > @
20 2! zln/2) 21 g
Fig. 2 The structure imposed on the signal Bfz]/(z" —

Sgln/2l 4 1) and its associated Fourier transform.

To show thaf ¢, } does not satisfy any recursion of order smaller
thanm, we use proof by contradiction but omit the details due to
space limitations. O

At this point we have shown that Theorem 2 is applicable to (5)
To complete the proof of Theorem 1 we inspect which pointisfyat
one of the two conditions in Theorem 2. If forzac C, exactly one
of |A\;(2)| = || is maximal, thenjz| # 1. In the casdz| > 1,
we know|z¥| > |2¢|, fori € T\ {k}, and soz is a limit of zeros
for {g»} if and only if ax(z) = 0. In the casdz| < 1, we have

= [2% > |#%], fori € I\ {0} andz is a limit of zeros if and
only if ap(z) = 0. This completely handles the first condition in
Theorem 2. Alternatively, if for € C, there are,,j € 1,4 # j,
such thaiz’| = |27|, then necessariliz| = 1. Since for allz on the
unit circlel = |zi|,i € I, we conclude that any such point is a limit
of zeros for{g, }. This completes the proof of Theorem 1.

Associated Fourier transforms. For each polynomial sequence
pn Of the form considered above, and hence polynomial algebra
C[z]/pn, the general theory from Section 2 provides the associated
notions of boundary condition and signal extension (whidhwot
be periodic in general) convolution spectrum, and Fourans-

satisfied. Comparing (8) W|th (5), this also showgz) = a;; ().

In particular, the recurrence for thg does not depend on the

ai(z) in (5); thea; will affect only the initial conditions.

algorlthm due to its Vandermonde structure (Sectlon 2).

4. EXAMPLE AND EXPERIMENTS

Proof. First we prove thafq,, (z) } indeed satisfies the relation above Example. As a first example, we consider the polynomialgz) =

by induction onm = |I].

If m = 1 (implying k£ = 0) the statement holds, singg(x) =
ao(x) = gn-1(x), fi(z) = —1,andQ-(A) = A — 1.

Suppose now that the statement is truerfor- 1 > 1. We will
prove it also holds forn (implicitly, m > 2 and thereforé: > 0).
Letl, = I\ {k} # 0 (i-e., I without its largest element) and

raci1(@) = ga(2) — 28 qa1(2) = 3 bi@)a’ Y, (12)
=

where for alli € Iy, b; ( ) = ai(z)(z' — ) # 0. Definef; (z) =

(-7 X IT = Where1<3<m—1 As|Iy| =m —1,

JCI,|J|=j L€
by applying the induction hypothesis to the sequefgg}, we find

rn-1( : fi(@)rn—1-;(z)
=~ @)1 @) = 3 (F@) = Fro1@))ans @)

+ -1 ()2 g ().

We conclude the proof of the first claim in our lemma by observ-

fm-1(@)z* = —fu(2), and

ing that —f1(z) = —fi(x) — z*,
—fi(x) + fi_1(x)z* = — f;(z) for 1 < j < m, which implies

qn(2) = rp-1(w )+37 gn—1( Zf] z)qn—j(z). (13)

a™ — 2z1"/2] 4 1, which match Corollary 1, and apply the theory
in Section 2.

The boundary condition ifi[z]/p. is given byz™ = 3zl"/2] -
1, which yields the visualization in Fig. 2. Convolution istmul-
tiplication of polynomialsh(z)s(x) modp. (z). The Fourier trans-
form F in (4) is determined by the zeros pf,. For evenn = 2m
they can be explicitly computed as

e —m 1
o= (V2w ™*F, —R”/Ewm /2R
where we ordered the zeros by increasing angle-in, 7). The root

distribution forn = 20, 50, and80 is shown in Fig. 3(b) below.
Hence the Fourier transform in the case- 2m becomes

Ji<k<m,

=k

ki41_my;
Fom = [2 wh ) Jo<k,t1<2m.- (14)

Experiments. For our experiments, we consider four sequences
of polynomials; the first is associated with the DFT:

pn(l’) " =1, (15)
pu(z) = 2" — Szl 41, (16)
Pu(z) = (42° + 1)z + (522 + 1)zl "2 4 (72° + 1), A7)
pn(z) = (223 +3)z" (:c5 —2). (18)

In each case, we numerically compute the root sep,dfc) for
n € {20,50,80}, construct the corresponding Fourier transform,
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Fig. 3. Roots of polynomialg, (x) for n = 20, 50, and80.

and apply it to the first coefficients of the sample signal shown in
Fig. 4, which is one row of a gray-scale image.

According to Theorem 1, all roots of the polynomial sequence
(15) and (16) converge to the unit circle. The sequence (4g) h
five limits of zeros inside the unit circlez, = {/1/7e™ kD75,

0 < k < 4. The sequence (18) has three limits of zeros outside the

unit circle: z;, = {/3/2e™ 2+ 1/3 (0 < k < 2. This is confirmed
by Fig. 3, which shows the root sets fore {20, 50, 80}.

In each case we order the zeroggfz) by increasing angle in
(—m,w]. Forthe DFT p, () = z™—1), this means that the, in (2)
are ordered By i1, .- Yn—1,Y0,- .- Y2, i.e., the DC component is
in the center.

Fig. 5(a)-5(b) shows, fon € {20, 80}, the four Fourier trans-
forms applied to the signal in Fig. 4. We observe that the tspec
become similar fon = 80 as expected. In the last case, the three
limits of zeros outside the unit circle make the three asdedispec-
tral values unbounded asincreases. In contrast, the five limits of
zeros inside the unit circle in the third case do not causett@hav-
ior.

5. CONCLUSION

The question we addressed in this paper is arguably fundaiten
signal processing: why do we use a periodic signal extenaimh
hence a DFT for finite length discrete-time signals? We sldaivat
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0

Fig. 4. Sample signas.
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Fig. 5. Magnitudes of the Fourier transfoyn= Fsfor C[z]/p. (x),
n = 20, 80, andsin Fig. 4.

if only asymptotic convergence to the DTFT is required, ¢reme in-
deed many choices, each of which with its own signal extenasia
notion of convolution. Further, each of these alternatre@sforms
possesses fast algorithms, which makes them in princiglfiufor
applications. The question of these applications stillairs
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