
Classification via Regularization on Graphs
Aliaksei Sandryhaila

Department of ECE
Carnegie Mellon University

Pittsburgh, PA, USA
asandryh@andrew.cmu.edu
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Abstract—We present a novel data classifier that is based on
the regularization of graph signals. Our approach is based on the
theory of discrete signal processing on graphs where the graph
represents similarities between data and we interpret labels for
the dataset elements as asignal indexed by the nodes of the graph.
We postulate that true labels form a low-frequency graph signal
and the classifier finds the smoothest graph signal that satisfies
constraints given by known data labels. Our experiments demon-
strate that our approach achieves high accuracy in multiclass
classification and outperforms other classification approaches.

Index Terms—Discrete signal processing on graphs, graph
signal, graph shift, total variation on graphs, regularization,
classification.

I. I NTRODUCTION

Classification and data labeling are important problems in
machine learning and data mining, [1]. Classification catego-
rizes elements of a dataset into two or more groups based on
specific parameters. For example, documents may be attributed
to different classes based on their topic; image databases can
be classified based on their content; and customers may be
assigned to a group based on their shopping preferences.

It is not feasible or practical to classify large datasets manu-
ally. A common semi-supervised learning approach represents
a dataset with a graph, where nodes correspond to dataset
elements and edges represent similarities. assumes known only
a subset of data element labels, and then uses the structure of
the graph to predict the missing labels. A central assumption
in this approach is that similar dataset elements tend to be in
the same class, so knowledge of their similarity should allow
inferring unknown labels from known ones. Many labeling
and clustering algorithms, e.g., spectral learning or Laplacian
eigenmaps, are based on this assumption, [2], [3], [4].

We study classification of large datasets from the perspec-
tive of discrete signal processing on graphs (DSPG)—a novel
framework that represents complex datasets as signals indexed
by graphs and defines fundamental signal processing concepts
for such signals [5], [6], [7]. DSPG extends to graph signals
and graph filters classical signal processing concepts as well as
algebraic signal processing, [8], [9], [10], [11]. In this paper,
we apply to image and document datasets a multiclass classifier
that searches for a smooth graph signal that is conditioned on
initially known labels [12]. The classifier finds the graph signal
that minimizes the total variation of a graph signal, see [12],

subject to the known label constraints. Our experiments demon-
strate that the classifier achieves higher classification accuracy
than other approaches, such as support vector machines and
neural networks, two widely used techniques, as well as a
classification method based on Laplacian matrices of similarity
graphs for datasets.

II. D ISCRETESIGNAL PROCESSING ONGRAPHS

We briefly review needed concepts from DSPG theory
from [5], [6], [7], [12].

A. Graph Signals

In DSPG, a dataset is represented with a graphG = (V ,A),
whereV = {v0, . . . , vN−1} is the set of nodes andA is the
weighted adjacency matrix of the graph. Each data element
corresponds to nodevn, and each weightAn,m of a directed
edge from vm to vn reflects the degree of relation (e.g.,
similarity or dependency) of themth data element to thenth
one. The dataset is viewed as agraph signalindexed by the
graphG and defined as a map from the setV of nodes to the
set of complex numbersC:

s : V → C,

vn 7→ sn. (1)

The mapping (1) can also be written as

s =
(
s0 s1 . . . sN−1

)T
∈ C

N ,

where each elementsn is indexed by node vn of a given
representation graphG = (V ,A), as defined by (1).

B. Graph Filters

A graph filter H(·) takes a graph signals as input and
produces as output the graph signals̃ = H(s). A basic non-
trivial graph filter is thegraph shift defined by the local
operation of replacing a signal valuesn at nodevn with a
linear combination of elements at its neighbors. The outputof
the graph shift is given by the product of the input signal with
the adjacency matrix of the graph:

s̃ = As. (2)

A linear, shift-invariant (i.e., commuting) graph filter isa
polynomial in the adjacency matrixA:

h(A) = h0 I+h1A+ . . .+ hLA
L. (3)
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Fig. 1. Traditional graph representation for a finite discrete periodic time
series of lengthN .

Example: Discrete time series.Finite discrete periodic time
series are commonly represented with the directed cycle graph
shown in Fig. 1 [9], [5]. The edge from the last vertexvN−1 to
the first v0 captures the periodicity assumptionsN = s0. The
adjacency matrix of this graph is theN ×N circulant matrix

A = CN =




1
1

. . .
1


 . (4)

The time shift is represented by the time delay:

s̃n = s(n−1) mod N .

In matrix-vector form, it is written as

s̃ = CN s. (5)

III. T OTAL VARIATION ON GRAPHS

In [12], we introduce the concept of signal variation on
graphs and define low and high frequencies for graph signals.

The total variation on a graph(TVG) of a signals indexed
by a graphG = (V ,A) is defined as

TVG(s) =
1

||s||22

∣∣∣∣

∣∣∣∣s−
1

|λmax|
As

∣∣∣∣

∣∣∣∣
2

2

. (6)

Here, λmax is the largest-magnitude eigenvalue ofA that
satisfies the condition|λmax| ≥ |λm| for any0 ≤ m ≤ M −1.

The definition (6) extends the concept of total variation from
regular lattices that are used for time and space signals, such
as the one in Fig. 1. In classical signal processing, the total
variation of a discrete signal is defined as the sum of the
magnitudes of the differences between two consecutive signal
samples [13]:

TV(s) =
∑

n

∣∣sn − sn−1

∣∣. (7)

When s is a discrete periodic time series of lengthN , its
periodicity conditionsn = sn mod N leads to the modified
definition of total variation:

TV(s) =
N−1∑

n=0

∣∣sn − sn−1 mod N

∣∣. (8)

Using the time shift notation (5), we write (8) as

TV(s) =
∣∣∣∣s−CN s

∣∣∣∣
1
. (9)

For the circulant shift matrix (4),|λmax| = 1 [9]. Hence,
the definition (9) is conceptually an instantiation of the total
variation on graphs (6) for finite discrete periodic time series.

Similar to the way the total variation in time (8) measures a
cumulative difference between signal values at connected nodes
for the graph in Fig. 1, the total variation on graphs measures
a cumulative difference between a signal value at each node
and the values at its neighboring nodes for arbitrary graphs.

IV. CLASSIFICATION VIA REGULARIZATION

In classification, dataset elements are grouped in different
classes by assigning a label to each element [3]. For example,
the simplest case of binary classification considers only two
classes. Respectively, labels can take only two different values,
such as+1 and−1.

Consider a graphG = (V ,A) with N vertices that rep-
resent a dataset withN elements. Each node corresponds to
an element, and two nodes are connected if we know that
the corresponding elements are similar to each other. If the
connection is directed, the similarity is assumed to be known
only in one direction.

Labels for this dataset form a signal indexed by the con-
structed graph. In particular, for a binary classification problem,
known labels form the signals(known) with values

s(known)
n =





+1, nth element belongs to class 1,

−1, nth element belongs to class 2,

0, class is unknown.

In the graph of dataset similarities, elements are connected
if they are similar to each other. Since similar elements tend
to belong to the same class, we expect that all labels for the
dataset form a graph signal that does not change rapidly from
node to node, i.e., signal values of connected nodes are likely to
be the same. We formulate this assumption in terms of the total
variation on graphs (6) by assuming that labels form a graph
signal that has the lowest total variation [12]. That is, we define
the predicted labels as the solution to the optimization problem

s(predicted)= argmin
s∈RN

TVG(s). (10)

Since the values of known labels should not change in the
solution to (10), we also impose the condition that known labels
are little changed from their original values in the predicted
signals(predicted). We write this requirement as

||Cs(known)−Cs||22 < ǫ, (11)

whereC is aN ×N diagonal matrix such that

Cn,n =

{
1, if s(known)

n ∈ {+1,−1},

0, otherwise.

The parameterǫ in the condition (11) controls how well known
labels are preserved. It can be interpreted roughly as the number
of known labels that can be changed to the opposite value by
the minimization (10).

Once the predicted signals(predicted) is calculated, the unla-
beled data elements are assigned to one class ifs

(predicted)
n > 0

and another class otherwise.
Previous work. The problem of finding a signal with min-

imal variation under given conditions is calledregularization.



Regularization based on time total variation (7) has been used
for denoising, deblurring, and recovery of time series and
digital images [14], [15]. A similar problem formulation has
also been considered in data classification [16], [3], although
it expressed the signal variation function using the Laplacian
matrix. A Laplacian matrix is aN ×N matrix

L = D−A,

whereD is a diagonal matrix with elements given by

Dn,n =

N−1∑

m=0

An,m.

For consistency of notation, we write the signal variation
function based on the Laplacian matrix as

TVL(s) = sT L s =
∑

n,m

(sn − sm)2An,m. (12)

The function (12) was partially inspired by spectral graph
theory [17], [16]. It has also been proposed recently for signal
analysis on graphs [18], [19], [20], [21]. However, as we
demonstrate in this paper, as well as in [12], it is sensitiveto the
quality of graphs that represent similarity of dataset elements
and leads to lower classification accuracy in experiments with
real-world datasets.

V. EXPERIMENTS

This section illustrates the application of regularization on
graphs (10) to multiclass classification. We have considered
an example of binary classification in [12]. Here, we extend
our approach to more than two classes. We study the perfor-
mance of the regularization-based classification by comparing
it with support vector machines and neural networks, which
are well-known and widely used tools for feature-based clas-
sification [1], and regularization with Laplacian-based signal
variation (12), which is a popular tool for classification based
on similarity graphs.

A. Datasets and Graphs

We consider two large datasets: images of handwritten
digits [22] and news postings [23].

The first dataset contains 70000 grayscale28 × 28 images
of handwritten digits from0 to 9. We randomly select3000
images of each digit and construct a testing dataset of30000
images. The representation graph for this dataset is constructed
by viewing each image as a point in a282 = 784-dimensional
vector space, computing Euclidean distances between all im-
ages, and connecting each image with six nearest neighbors.
When two images that correspond to nodesvn and vm are
connected, we assign the weight

An,m = e−d2

n,m (13)

to the corresponding edge, wheredn,m is the Euclidean dis-
tance between the images.

The second dataset contains more than 18000 news articles
on 20 different topics. We randomly select500 articles on
each topic to construct a testing dataset of10000 articles. We

represent each article with a vector that contains the number
of occurrences of 6000 most common keywords, as described
in [16]. The representation graph for this dataset is constructed
by computing a cosine similarity measure between all keyword
vectors, and connecting each article to six most similar articles.
For two articles, the distance between them is calculated asthe
cosine of the angle between keyword vectorsvn andvm:

dn,m =
〈vn,vm〉

||vn||2 ||vm||2
. (14)

A smaller angle (14) implies more similarity between two
articles. The corresponding edge weight is set to

An,m = 1− dn,m. (15)

B. Methods

Section IV describes the solution the binary classification
problem using regularization based on the graph shift (10).
We extend this approach to multiclass problems by performing
one-against-all classification for each class. This technique
considers one class at a time and group all other classes
into a second “super”-class. After solving (10) subject to the
condition (11) for each class, we choose the most likely class
for each dataset element. We set the value of the parameter
ǫ to 1 in all experiments. This can be interpreted roughly as
allowing at most one known label in the vector of predicted
labels to change value to the opposite one.

For comparison, we also consider regularization with the
Laplacian-based variation (12). We solve the minimization
problem

s(predicted)= argmin
s∈RN

TVL(s) (16)

subject to the same condition (11) in the same series of one-
against-all classifications as above. The value ofǫ is set to1
in all experiments, as well.

We also compare our approach with support vector machines
and neural networks [1]. These approaches do not use the graph
of similarities. Rather, they rely on the analysis offeaturesfor
dataset elements. In our experiments, such features are given
by pixel intensities for images and by keyword occurrences
for news articles. Since support vector machines are binary
classifiers, we also run a series of one-against-all classifications
to classify for each class. Neural networks can classify multiple
classes at once, so we perform multiclass classification directly
by constructing and training neural networks with one hidden
layer of 30 nodes.

C. Results

For each dataset, we assume that between0.5% and 30%
of randomly selected labels are known initially. We measure
the classification accuracy by calculating remaining labels and
comparing them with the ground truth. Results of each test are
averaged over 100 runs.

Average classification accuracies of images and news articles
are shown in Fig. 2 and Fig. 3, respectively. In all experiments,
the regularization based on the graph shift (10) achieves higher
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Fig. 2. Classification accuracy for the image dataset.

accuracy than other methods. For the images dataset, the accu-
racy of our approach for any fraction of initially known labels
is between5% and20% higher then the closest competitor. For
the news articles dataset, the gap in classification accuracies of
our approach and other methods varies between20% and as
much as40% when less than15% of labels are known initially.

VI. CONCLUSIONS

We presented a classification algorithm that is based on
the theory of discrete signal processing on graphs DSPG. Our
approach represents dataset elements and similarities between
them using a graph and then views labels as a signal indexed by
the nodes of the graph. We estimate unknown labels for dataset
elements by searching for a smooth graph signal, the graph
signal with lowest variation– a concept we introduce in [12].
We have demonstrated with experiments that the proposed
approach yields high classification accuracy even for small
fractions of initially known labels and that it outperformsother
standard classification methods, including Laplacian-based reg-
ularization, support vector machines, and neural networks.
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