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Abstract—We present a novel data classifier that is based on subject to the known label constraints. Our experimentsotem
the regularization of graph signals. Our approach is based o the  strate that the classifier achieves higher classificaticaracy
theory of discrete signal processing on graphs where the gph 51y other approaches, such as support vector machines and

represents similarities between data and we interpret labls for | tworks. tw idel d techni I
the dataset elements as dgnal indexed by the nodes of the graph. neural networks, two widely used techniques, as well as a

We postu|ate that true labels form a |ow-frequency graph Siga| C|aSSIflcatI0n method ba.sed on LaplaCIan matrices Of Sllﬂyla
and the classifier finds the smoothest graph signal that safies graphs for datasets.

constraints given by known data labels. Our experiments dewwn-

strate that our approach achieves high accuracy in multiclas Il. DISCRETESIGNAL PROCESSING ONGRAPHS

classification and outperforms other classification approahes. We briefly review needed concepts from QSRheory
Index Terms—Discrete signal processing on graphs, graph from [5], [6], [7], [12]

signal, graph shift, total variation on graphs, regularization, R D ’

classification. A. Graph Signals

In DSR;, a dataset is represented with a grédph= (V, A),

|. INTRODUCTION whereV = {vg,...,vn_1} is the set of nodes and is the
Classification and data labeling are important problems Y}('elghted adjacency matrix of the g_raph. Each daFa element
machine learning and data mining, [1]. Classification Oategcorresponds to node,, and each weighi.,, ., of a d_|rected
rizes elements of a dataset into two or more groups based G1PE from vm 10 v, reflects the degree of relation (e.g.,
specific parameters. For example, documents may be aﬁdbu?'m”amy or depen_der!cy) of thexth dat_a ele_ment o theth
to different classes based on their topic; image databases gne- The datasgt is viewed asgeaph signalindexed by the
be classified based on their content; and customers maygrggth and defined as a map from the 32bf nodes to the

assigned to a group based on their shopping preferences. set of complex numberE:

It is not feasible or practical to classify large datasetsima s V= C,
ally. A common semi-supervised learning approach reptesen Uy = 5. (1)
a dataset with a graph, where nodes correspond to dataset ) _
elements and edges represent similarities. assumes kmwn d he mapping (1) can also be written as
a subset of data element labels, and then uses the struéture o
the graph to predict the missing labels. A central assumptio
in this approach is that similar dataset elements tend tmbeWhere each element, is indexedby nodewv, of a given
the same class, so knowledge of their similarity shouldwallorepresentation grapi = (V, A), as defined by (1).
inferring unknown Iabels from known ones. _Many Iabelin@_ Graph Filters
and clustering algorithms, e.g., spectral learning or aeijain
eigenmaps, are based on this assumption, [2], [3], [4]-

We study classification of large datasets from the persp
tive of discrete signal processing on graphs (BFPa novel

framework that represents complex datasets as Sign‘Fjllm-ddelinear combination of elements at its neighbors. The ougut

by graphs and defines fundamental signal processing C(mc%)t e : . ;
. . e graph shift is given by the product of the input signahwit
for such signals [5], [6], [7]. DS& extends to graph S|gnalsthe gdjgcency magt]rix of t¥1e grgph: P 9

and graph filters classical signal processing concepts hasve
algebraic signal processing, [8], [9], [10], [11]. In thiaper, S = As. (2)
we apply to image and documentda_tasets am_ult|clas_s_cé135|f| A linear, shift-invariant (i.e., commuting) graph filter &
that searches for a smooth graph signal that is conditioned O ivnomial in the adiacency matria:
initially known labels [12]. The classifier finds the grapgrsal P2 ! y :
that minimizes the total variation of a graph signal, sed,[12 h(A) = hoI+hiA + ...+ hp A" 3)

S:(SO S1 ... SN_1)T€(CN,

A graph filter H(-) takes a graph signal as input and
roduces as output the graph sigdak H(s). A basic non-
fivial graph filter is thegraph shift defined by the local
operation of replacing a signal valug, at nodew, with a



,/\ Similar to the way the total variation in time (8) measures a

,UO qu 9 % cumulative difference between signal values at conneaidé
0 ! N=2 ON-I for the graph in Fig. 1, the total variation on graphs measure
a cumulative difference between a signal value at each node

Fig. 1. HTradmnal graph representation for a finite digerperiodic time and the values at its neighboring nodes for arbitrary graphs
series O engt .

IV. CLASSIFICATION VIA REGULARIZATION

, . L e In classification, dataset elements are grouped in differen
E_xample: Discrete time serleslet_e d|scre¥e periodic time classes by assigning a label to each element [3]. For example
series are commonly represented with the directed CyclBgrane gimplest case of binary classification considers only tw

shown in Fig. 1 [9], [5]. The edge from the last vertex_1 10 ¢ |a55es. Respectively, labels can take only two differahtes,
the firstvy captures the periodicity assumptiog = so. The ¢ ast1 and—1.

adjacency matrix of this graph is th€ x N circulant matrix Consider a graptG = (V,A) with N vertices that rep-
1 resent a dataset witiV elements. Each node corresponds to
1 an element, and two nodes are connected if we know that
A=Cy= . . (4) the corresponding elements are similar to each other. If the
- connection is directed, the similarity is assumed to be know

1 only in one direction.
The time shift is represented by the time delay: Labels for this dataset form a signal indexed by the con-
~ structed graph. In particular, for a binary classificatiootpem,
Sn = 8(n=1) mod N- known labels form the signaf"“" with values

In matrix-vector form, it is written as +1, nth element belongs to class 1,

§=Cys. (5) sknown) — 21 nth element belongs to class 2,

0, class is unknown.

[1l. TOTAL VARIATION ON GRAPHS T
In the graph of dataset similarities, elements are condecte

In [12], we introduce the concept of signal variation of ey, are similar to each other. Since similar elementsiten
graphs and define low and high frequencies for graph signgl$.pe|ong to the same class, we expect that all labels for the
Thetotal variation on a grapi(T'V) of a signals indexed  ja1a5et form a graph signal that does not change rapidly from

by a graphGz = (V, A) is defined as node to node, i.e., signal values of connected nodes atg tike
1 1 2 be the same. We formulate this assumption in terms of thé tota
TVa(s) = e ﬁAS (6) variation on graphs (6) by assuming that labels form a graph
2 e 2 signal that has the lowest total variation [12]. That is, veéire

Here, Anq. is the largest-magnitude eigenvalue Af that he predicted labels as the solution to the optimizatiorjgm
satisfies the conditiop\,,,4| > || for any0 < m < M —1. edicted )

The definition (6) extends the concept of total variatiomfro sPredeed— argmin TV (s). (10)
regular lattices that are used for time and space signath, su sERY
as the one in Fig. 1. In classical signal processing, thd tofince the values of known labels should not change in the
variation of a discrete signal is defined as the sum of ti§@lution to (10), we also impose the condition that knowrelab

magnitudes of the differences between two consecutiveasigA'® little changed from their original values in the preelitt
samples [13]: signals(Predicted) \We write this requirement as

TV(s) = [sn — su]. ) | st — Csff <, (11)
n whereC is a N x N diagonal matrix such that
When s is a discrete periodic time series of lenghf, its _
g ” - 1, if sknowm e fiq 1}
periodicity conditions,, = s, moda N leads to the modified Con=2" no ) )
definition of total variation: ' 0, otherwise.
Nl The parameter in the condition (11) controls how well known
TV(s) = Z ‘Sn ~ Sn—1 mod N‘- (8) Jabels are preserved. It can be interpreted roughly as thmvan
n=0 of known labels that can be changed to the opposite value by
Using the time shift notation (5), we write (8) as the minimization (10).

TV(s) = ||s — Cw s . ©) Once the predicted signal‘fredicred) is calculated, the unla-
N=h beled data elements are assigned to one clas&§f*?> o
For the circulant shift matrix (4)|\...| = 1 [9]. Hence, and another class otherwise.
the definition (9) is conceptually an instantiation of théato  Previous work. The problem of finding a signal with min-
variation on graphs (6) for finite discrete periodic timeiegr imal variation under given conditions is calleeularization



Regularization based on time total variation (7) has beed ugepresent each article with a vector that contains the numbe
for denoising, deblurring, and recovery of time series araf occurrences of 6000 most common keywords, as described
digital images [14], [15]. A similar problem formulation $a in [16]. The representation graph for this dataset is contdd

also been considered in data classification [16], [3], altfio by computing a cosine similarity measure between all kegwor

it expressed the signal variation function using the Laplac vectors, and connecting each article to six most similaclag.
matrix. A Laplacian matrix is & x N matrix For two articles, the distance between them is calculatedeas
cosine of the angle between keyword vectersandv,,:

L=D-A,
whereD is a diagonal matrix with elements given by dp,m = % (14)
ni|2 m||2
N-1
D, ., = Z Ao A smaller angle (14) implies more similarity between two

S articles. The corresponding edge weight is set to
For consistency of notation, we write the signal variation Apn=1—dpm. (15)
function based on the Laplacian matrix as

B. Methods
TVL(s) =s’ Ls = Z(sn — 5m)? Ap.m.- (12)

Section IV describes the solution the binary classification
oblem using regularization based on the graph shift (10).

_ o r
The function (12) was partially inspired by spectral grap&/e extend this approach to multiclass problems by perfagmin

theory [17], [16]. It has also been proposed recently fonaig one against-all classification for each class. This tephi
analysis on graphs [18], [19], [ZO]'_ [21]. _H_owever,_as Weonsiders one class at a time and group all other classes
dempnstrate in this paper, as well asin [_12]' itis sensttMiie 1, 5 second “super”-class. After solving (10) subjecttie t
quality of graphs that rePTes?”t similarity (_)f datasgt elets condition (11) for each class, we choose the most likelysclas
and leads to lower classification accuracy in experiments Wk gach dataset element. We set the value of the parameter
real-world datasets. e to 1 in all experiments. This can be interpreted roughly as
V. EXPERIMENTS allowing at most one known label in the vector of predicted

This section illustrates the application of regularization labels to change value to the OprS'te one. .
graphs (10) to multiclass classification. We have consilere For comparison, vye_also consider regularlzathn_w!th j[he
an example of binary classification in [12]. Here, we extenlu""pl"’IC""m'b"leEd variation (12). We solve the minimization
our approach to more than two classes. We study the perfBFleem
mance of the regularization-based classification by comgar
it with support vector machines and neural networks, which
are well-known and widely used tools for feature-based-cladubject to the same condition (11) in the same series of one-
sification [1], and regu|arizati0n with Lap|acian_basegrﬂ| against'a” classifications as above. The value o set tol
variation (12), which is a popular tool for classificationseel in all experiments, as well.

n,m

sPredicted) — argmin TV, (s) (16)
seRN

on similarity graphs. We also compare our approach with support vector machines
and neural networks [1]. These approaches do not use thk grap
A. Datasets and Graphs of similarities. Rather, they rely on the analysisfeéturesfor
We consider two large datasets: images of handwrittelataset elements. In our experiments, such features age giv
digits [22] and news postings [23]. by pixel intensities for images and by keyword occurrences

The first dataset contains 70000 grayscziex 28 images for news articles. Since support vector machines are binary
of handwritten digits from0 to 9. We randomly selecB000 classifiers, we also run a series of one-against-all claasifins
images of each digit and construct a testing datas&0000 to classify for each class. Neural networks can classifytiplal
images. The representation graph for this dataset is eanstt classes at once, so we perform multiclass classificati@tijr
by viewing each image as a point in2a?> = 784-dimensional by constructing and training neural networks with one hidde
vector space, computing Euclidean distances between all ilmyer of 30 nodes.
ages, and connecting each image with six nearest neighbors.

When two images that correspond to nodgsand v,, are C. Results
connected, we assign the weight For each dataset, we assume that betw@éft and 30%
A, = R (13) of randor_rﬂy ;elected labels are knovyn initially._We measure
' the classification accuracy by calculating remaining Ialzid
to the corresponding edge, whefg ,,, is the Euclidean dis- comparing them with the ground truth. Results of each test ar
tance between the images. averaged over 100 runs.

The second dataset contains more than 18000 news articleAverage classification accuracies of images and newsesticl
on 20 different topics. We randomly sele&t0 articles on are shown in Fig. 2 and Fig. 3, respectively. In all experitagn
each topic to construct a testing dataset @500 articles. We the regularization based on the graph shift (10) achievgsehni
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Fig. 2. Classification accuracy for the image dataset. Fig. 3. Classification accuracy for the news articles datase

accuracy than other methods. For the images dataset, the acy] A. Sandryhaila and J. M. F. Moura, “Discrete signal prggiag on

racy of our approach for any fraction of initially known ldbe ggggglsipgga%lfgtersv" irProc. IEEE Int. Conf. Acoust., Speech and
is betweerb’% and20% higher then the closest competitor. For (g y pischel and J. M. F. Moura, “The algebraic approacthtodiscrete

the news articles dataset, the gap in classification acesrat cosine and sine transforms and their fast algorithn®/AM J. Comp.
; W2 vol. 32, no. 5, pp. 1280-1316, 2003.
our approach and other methods varies bet and as [9] M. Puschel and J. M. F. Moura, “Algebraic signal prodegstheory:
much ast0% when less than5% of labels are known initially. Foundation and 1-D time JEEE Trans. Signal Progvol. 56, no. 8, pp.
3572-3585, 2008.
VI. CONCLUSIONS [10] M. Pischel and J. M. F. Moura, “Algebraic signal praiag theory:

o . ) 1-D space,” IEEE Trans. Signal Prog.vol. 56, no. 8, pp. 3586—3599,
We presented a classification algorithm that is based on 2008.

; ; ; [11] A. Sandryhaila, J. Kovacevic, and M. Pischel, “Algabr signal
the theo;‘y of dlscreted3|gnal prlocessmg Ol’(lj graplhs_@srgl; processing theory: 1-D Nearest-neighbor moddBEE Trans. on Signal
approac represents ataset elements and similaritiee®et Proc, vol. 60, no. 5, pp. 2247-2259, 2012.

them using a graph and then views labels as a signal indexed2y A. Sandryhaila and J. M. F. Moura, “Discrete signal g®sing on

the nodes of the graph. We estimate unknown labels for datase 9raphs: Frequency analysis,<IEEE Trans. Signal Pro¢.June 2013,
submitted for publication.

e_lement§ by SearChin.g fOI’ a smooth graph signal, the Or3@k M. Vetterli and J. Kovagevic, Wavelets and Subband Codingignal
signal with lowest variation— a concept we introduce in [12]  Processing, Prentice Hall, Englewood Cliffs, NJ, 1995.

; ; L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear totatigtion based
We have d.emonSt.rated Wlt.h_ ex.pe”ments that the propoééﬂ noise removal algorithms,"Physica O vol. 60, no. 1-4, pp. 259-268,
approach yields high classification accuracy even for small 1995

fractions of initially known labels and that it outperformother [15] T. F. Chan, S. Osher, and J. Shen, “The digital TV filted aonlinear

At ; ; ; _ denoising,”IEEE Trans. Image Progvol. 10, no. 2, pp. 231-241, 2001.
Stan.dar.d classification methods, .mCIUdmg Laplaciarefaeg [16] M. Belkin, |. Matveeva, and P. Niyogi, “Regularizatioand semi-
ularization, support vector machines, and neural networks supervised learning on large graphs.” Rnoc. Conf. Learn. Th.2004,
pp. 624—-638.
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