
Official Information

Bass Active Crossover Filter Data SheetMay 2, 1997

Bass Active Crossover Filter 1

Bass Active Crossover Filter

Group M4
Albert Hwang
John Kuhns
Adrian Loh

Andrew Ryan

Carnegie Mellon University
May 2, 1997

Official Information

Bass Active Crossover Filter Data SheetMay 2, 1997

Bass Active Crossover Filter 2

1 Bass Active Crossover Filter

§ Advanced IIR (Infinite Impulse Response) DSP

 44.1 to 48 kHz sampling frequency

 8th-order Chebyshev Type II filter algorithm

 Implemented using cascaded 2nd-order sections

 ±0.5 dB pass-band ring error

 ±0.5 dB combined low-/high-pass gain error

 48 dB/octave roll-off rate

 More than 80 dB of stop-band attenuation

 High precision 20-bit filter coefficients

 Selectable low-/high-pass filter

 Selectable cut-off frequencies: 80 Hz, 120 Hz, or 160 Hz

§ Innovative microarchitecture

 16-bit external I/O for high-fidelity applications

 32-bit internal datapath for protection against internal overflow

 Over 700,000 32-bit serial multiply & accumulates per second

 Serial I/O for reduced pin count.

§ IC Technology

 2.0 µm n-well CMOS process

 2.3 mm x 2.3 mm die size

 10,310 transistors (not including the pad frame), 320 λ2/transistor

 5 V operation

§ Applications

 High-fidelity car stereos

 Home theatre systems

The Bass Active Crossover Filter is the perfect DSP solution for today’s high-fidelity
audio systems. The DSP allows an amp or pre-amp to take a CD-quality digital signal
and either attenuate all non-low frequencies, or all low frequencies. Using this chip
in a preamp to split a digital audio signal will help greatly keep the lows clean and
the highs crisp in a speaker system.

Our chip leverages the speed of the IC technology to give the user high precision (16-
bit) along with high speed (up to 48 kHz samping rate). This combination equates
to high fidelity and optimal audio performance.

Official Information

Bass Active Crossover Filter Data SheetMay 2, 1997

Bass Active Crossover Filter 3

2 Design

We first sought out a DSP algorithm that would implement a filter with the desired
characteristics. On the Internet, at http://www.ece.rutgers.edu/~orfanidi/
intro2sp.html, we found Matlab code that would implement a Chebyshev Type II
filter and its coefficients. After considerable coding, we were able to write a C
program called DSP_FREQDSP_FREQDSP_FREQDSP_FREQDSP_FREQ (see Appendix A) that would output the gain and the
phase shift of the output of the DSP compared to its input at any frequency. We then
graphed the output using Excel (see Appendix B).

Next, we designed an architecture that would allow us to do the necessary 32-bit
multiplies and additions. One complication is that multiplication must be done in
sign and magnitude format, while addition must be done in two’s complement
format. So on our chip we store the SRAM intermediate values and the ROM
coefficients in sign and magnitude format, so they can be multiplied directly. Then
when the value from temporary register dff_t (which holds the running sum of the
previous terms) is added, the product is switched to two’s complement on the fly.

Over ninety-five percent of the time the datapath is doing a multiply and accumalate
operation (or MAC). To do a MAC, the first step is to multiply the 32-bit SRAM value
from dff_s times the 0th bit of the ROM coefficient (which comes in on the a2_sel
line) and add the product to 0. The next eighteen steps is multiplying the SRAM value
times 1st through 18th bit of the ROM, shifting the output to the right by one bit each
time. In the last step, the 19th bit of the ROM and the 31st bit of the SRAM is used
to calculate the sign of the product. If the product is negative, it is transformed into
its two’s complement representation, and then added with the value from dff_t, and
then stored back into dff_t, all in one clock cycle.

So in twenty cycles, a 32-bit SRAM value from dff_s is multiplied by a 20-bit ROM
coefficient, and added to the 32-bit value from dff_t.

Another consideration in designing the microarchitecture was to isolate the SRAM
from the rest of the datapath using DFFs. This simplified timing.

Since both input and output is serial, we designed the datapath with shift registers
both on the input and output. Both input and output operate on the least significant
bit of the sample first.

A diagram of the datapath of our circuit is on the following page.

C Code

Micro-
architecture

Official Information

Bass Active Crossover Filter Data SheetMay 2, 1997

Bass Active Crossover Filter 4

d q
dff_s

clk

clk

a1_sel

1

0

b1_sel

1

0

0

1

b2_sel

0

1

r_sel

0

1

t2_sel

1

0

t1_sel

1

0
d q
dff_t

clk

clk

>>1

0

0

0

cin

q d
dff_a

clk

clk

w_sel

0

1

a2_sel

0

1

1632

31

31

X_bit

word_clk

0

1
d q
dff_o

clk

bit_clk

>>10 Y_bit

16

q d
dff_i

clk

bit_clk

>>1

Sign
Extend

out

SRAM

wen

SRAM_wen

in

Figure 1. The datapath of the DSP

Next, we wrote a Verilog simulation of our chip (see Appendix C). We then went back
and modified our C code so that is would reflect the precision and rounding behavior
of our microarchitecture. Eventually, we were able to get the Verilog and the C to
output the exact same outputs given the same inputs. We tested both positive and
negative vector runs.

After the successful implementation of our design in Verilog, we took the “glue” logic,
the logic which controls the state ROM, and optimized it using Synopsys (see
Appendix D). It had approximately 150 transistors of random logic.

To make a long story short, we implemented our Verilog code in Magic. We first
floorplanned (see Appendix E) and then layed out out the SRAM, the two ROMs, the
datapath, and the four counters. We then layed out the random “glue” logic and did
global routing. Because we knew our C code and our Verilog code worked, we stuck
close to our Verilog model when we layed out our chip (see Appendix F).

One notable innovation that allowed us to have such a high transistor density was
our use of what we called “channels” in our datapath (see Appendix G). We very
carefully rationed out all the Metal 2 routing on top of the datapath before we layed
out the datapath. This careful planning allowed us to totally eliminate all corner
routes of our 32-bit data bus.

Verilog

Magic

Official Information

Bass Active Crossover Filter Data SheetMay 2, 1997

Bass Active Crossover Filter 5

3 Testing

We quickly began to test our layout using IRSIM, a digital simulator. After fixing a few
misroutes and floating nodes, the vectors that we had run through C and Verilog
came out of IRSIM correctly, too. One notable “hack” that we did was to add two sets
of buffers infront of our adder in the datapath to get IRSIM to work. It did not seem
to like the MUX-MUX-XOR line we had in our datapath; the values in the offending
gates oscillated wildly, often changing values faster than 100 ps. Once we added
buffers, everything worked as expected. But because of spatial constraints on our
chip, we could not permanately add the buffers to our chip. So technically, the chip
that we got working under IRSIM is not the same chip that we claim that works. But
we are confident that chip will work, with or without the buffers.

Before all our IRSIM testing, we had already begun testing many of our components
for correctness and speed using HSPICE, a much more accurate simulator (see
Appendix H). We tested the SRAM, the two ROMs, the 4-bit adder unit, and the
counter unit. We also verified that our datapath critical path was not going to be the
chip’s critical path. On the datapath’s critical path is the muxes (14 ns), the 32-bit
adder (37 ns), and the DFFs at the end (3 ns), which equals 54 ns. Our clock speed
is 16 MHz, so the clock period is 62.5 ns.

4 Conclusions

We have all confidence that when this IC is fabricated, it will work exactly as
designed. We tested the chip for correctness using IRSIM, and for its critical path
using HSPICE. We were able to listen to sample sound clips outputed from our DSP
implemented in C. We would get the exact same results from Verilog and from the
fabricated IC. The Bass Active Crossover Filter lives up to our claim of it being a high
performance audio processor.

IRSIM

HSPICE

A Appendix: C Code

There were three main C programs that were heavily used in the design and
implementation of our chip:

DSP_FREQDSP_FREQDSP_FREQDSP_FREQDSP_FREQ This program calculated the rms gain and the phase shift of the DSP
as a function of frequency. DSP_IIR.CPP and DSP_IIR.H are linked
files.

BBBBBUFFERUFFERUFFERUFFERUFFER This program found optimal buffer sizing, given a timing constraint,
for any inverter configuration.

SMASHSMASHSMASHSMASHSMASH This program was used to compress the the width of the state ROM
from 17 bits to 8 bits using a minimum number of extra logic gates.

B Appendix: Frequency response plots

There are a total of fiveteen plots, five for each of the three selectable frequencies.
For each frequency, there are gain and phase plots for a low-pass filter, gain and phase
plots for a high-pass filter, and a gain plot for the low-pass and high-pass filters “added
together.”

C Appendix: Verilog code

The Verilog code consists of two files:

DSPDSPDSPDSPDSP This is the implementation of the chip in Verilog.

DSP_TESTDSP_TESTDSP_TESTDSP_TESTDSP_TEST This either inputs a positive or negative run of vectors through the
DSP for testing purposes.

D Appendix: Synopsys schematic

On the next page is a Synopsys-synthesized schematic of the “glue” logic, the random
logic of the DSP.

E Appendix: Floorplan

Coefficient ROM
(40 x 36)

State ROM
(32 x 13) 5-Bit

Loop
Counter

6-Bit
Program
Counter

Control
Logic 4 DFFs

2 DFFsMux Buffers

32-Bit
Datapath

3-Bit
Coef
ROM
Row

Counter

6-Bit
Coef ROM

Column
Counter

CLK
Driver

X_bit
(input)

Y_bit
(output)

Clock

Bit
Clock

Word
Clock

High
Pass GND! Freq[1] Freq[0]Reset

Vdd!

VddVdd

GND GND

32-Bit Adder
w/ 4-Bit
Carry

Lookahead

MuxesDFFs DFFs DFFs

Input
DFFs

Output
DFFs

M’s M

SRAM
(9x32)

F Appendix: Layout

G Appendix: Channels

H Appendix: HSPICE output

On the following pages are HSPICE outputs. They should be self-explanatory. The
first page is the clock waveform with a large load on it. The second page shows the
timing of the coefficient ROM. The third and fourth pages show the timing of a large
number of muxes.. The fifth page shows the timing of the 32-bit adder.

