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Abstract

Human movement in urban areas is a complex phenomenon to analyze and
understand. The geographical spread of human movement, described by locations
between which individuals tend to travel, varies from city to city. The geographical
spread of such locations within a city would also vary with time. This thesis explores
how to formally analyze and understand human mobility using large sets of real-
world data from ride-sharing services for more than a dozen cities and to derive
succinct characterizations for large urban areas which account for both geographical
and temporal changes.

A wide range of machine learning problems require immense amounts of data.
To overcome this issue for human mobility, we propose a framework which includes
a stochastic graph model, and adversarial networks to generate synthetic human
mobility data which conforms with the geographical and temporal characteristics
observed in real data.

Deriving interesting insights from large sets of data and applying those to real-
world applications can be challenging. Here we also highlight how formal character-
izations can be applied to applications like ride pooling and vehicle placement. We
also derive performance bounds for online algorithms using city level characteriza-
tions.

Finally, we provide an open-source framework to understand properties of human
movement, generate synthetic human mobility data, and apply it to different what-if
scenarios for real-world applications. Using such a framework would help public
entities and researchers alike to thoroughly understand a complex and highly relevant
phenomenon.

Throughout, we link our problem formulations with other domains like social
network graphs and online algorithms along with extensive empirical evaluations to
increase our understanding of not just human mobility but established techniques in
the linked domains.
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Chapter 1

Introduction

Traditional human mobility modeling approaches use datasets to make predictions and extrap-
olations about carbon emissions, traffic congestion on highways, adaptive traffic signal control,
real-time scheduling of buses, route planning for peak travel times and many other applications.
Though these approaches are successful to provide tools and models to draw inferences, it is
difficult to succinctly characterize the phenomenon of city scale human mobility and its evolution
over time. Human mobility has been studied from aggregating individual GPS traces; (Song
et al., ) highlights high predictability of each individual’s trajectory due to significant reg-
ularity (Gonzalez et al., ). Although such aggregation of patterns would be applicable to a
majority of cities, it is difficult to infer whether commute pattern varies across cities, and if so
which factors cause the variation, and whether or not we can qualitatively measure the difference
in mobility patterns. To this end, we propose tools and models to characterize human mobility
across different cities and applications which can benefit from such models.

The main goal of our research is to understand patterns and structural properties of human
mobility applicable for cities or urban areas across the globe. Such insights would help us
understand what does normal human movement in cities look like? How will it evolve with time?
For a small time interval, what does the geographical spread of human commute in a city look
like? How can such time and geographically varying characteristics help with finding techniques
for improving transportation services in cities?

When making critical decisions related to transportation management, researchers and gov-
ernment bodies rely on large datasets. But, how do we know if the data is representative of any
typical day of week within a particular city? Using the techniques proposed here to understand
patterns across an urban region, we provide statistical tools to quantify patterns and verify how
precisely does a dataset capture the properties observed in the real world. To the best of our
knowledge, no prior work has looked at multiple cities to draw such characterizations. We also
provide generative models for city-wide synthetic data generation capable of amplification or
contraction of the volume of ride requests across regions. We believe such models could act as a
guide for intelligent transportation management, and formulation of public policies.

The basic premise of understanding large scale mobility patterns is to analyze actual real-
world data in order to identify complex collective behavior and how the local interactions of the
complex phenomenon affects metrics of real-world applications. We leverage actual real-world
data to study three such cases to understand and quantify complex collective behavior:



Thesis Structure

Part 1: Temporal and
Spatial Properties

Part 2: Synthetic Gen-
eration of New Datasets

Part 3: Example Appli-
cations & Useful Tools

Chapter 2
Chapter 3

Chapter 4

Chapter 5
Chapter 6

Table 1.1: Overall summary of structure of the thesis

1. Temporal and Spatial Properties: The study of statistical properties and models that

govern the generation and evolution of human mobility patterns. Evolution of human
movement in a city is viewed as a graph over time to study the collective behavior of
movements within a city. The static properties of the graph and its variation over time
help to design models and understand the temporal and static patterns of real-world human
mobility.

Graphs over time, do not capture the spatial information of mobility. Even for a static
graph, the spatial distribution is not encoded in it. We examine the spatial distribution
using Fractal Dimensionality. The structural information gathered with fractal dimension
is devised to understand how efficiently can algorithms perform.

. Synthetic Generation of New Datasets: The study of generating city-scale human mobility
data which closely matched properties of real-world data. We look at real-world data sets of
human mobility from fifteen cities across the globe. Millions of movements captured every
week in each city are important to consider potential scalability issues in data generation,
and to discover patterns which may not otherwise be visible in smaller and less granular
data sets. We demonstrate the value of large data by quantifying temporal and spatial
structure where most of the existing work focused on small networks of several hundreds
of mobility data points. Qualitative analysis of the generative models using temporal and
spatial properties validates and provides basis to look at real-world applications based on
large datasets of human mobility.

. Example Applications and Useful Tools: The study of multiple what-if scenarios related
to human mobility and making a framework available for the wider research community. We
consider two problems — ride pooling and vehicle placement for considering how synthetic
data generated can be used to evaluate different what-if scenarios. In the vehicle placement
case, we also highlight the benefits of using the properties discovered in human mobility
patterns. Using the two applications and synthetic generation, we provide a customizable
framework capable of learning patterns and providing metrics for quick feedback.



1.1 Scope and Overview of the Thesis

In this work we propose methods to exploit large scale human mobility data to facilitate valuable
services for societal good. For the scope of this thesis, human mobility refers to movement of
masses of humans within cities; movement here could be for any purpose and not restricted to
home and office. We study human mobility using real-world data from ride-sharing services.
On a broader scale, human mobility may include other forms of movement data from trains,
public buses, personal cars, and cell towers. Since some of these modes of transportation (or
data collection methods) may be restricted in terms of their market penetration and used by
certain demographics, in our work we focus on using data from ride-sharing services since they
have enabled an economical and convenient option of transportation for consumers of various
demographics. Curiously enough they have disrupted major players in the transportation market
around the world.

Emergence of ride-sharing services are transforming human mobility patterns in major cities
of the world, and is representative of the mobility phenomena due to its mass adoption. In 2017,
Didi reported over seven million ride requests in China. Uber, Lyft, and Ola have invested heavily
to penetrate markets in North America, Asia, and other parts of the world. With high penetration
rate, there is huge potential for such services to transform urban transportation, public policies,
and also provide researchers the infrastructure to derive new insights which would not have been
possible before their advent.

Human mobility patterns presents interesting problems for researchers in the areas of computer
science, civil engineering, public policy, and machine learning. The primary problem we hope
to address in this work is — whether or not it is possible to model the dynamic spatial and
temporal properties of human mobility across cities? And, if so, what societal benefits can be
extracted from such models? In prior work, probability distributions are used to model temporal
properties like wait times or spatial properties like distances traveled in the underlying datasets.
By formally characterizing temporal properties in this work, we want to understand how they
evolve in a city over time and do not consider the waiting or travel times since we are interested
to understand patterns at a city-level. Also, by formally characterizing spatial properties we need
an aggregate qualitative measure of the distribution of human traces and not an aggregation by
finding a singular distribution of distances traveled to derive city-level properties. The foremost
challenge is to understand succinct ways to capture patterns observed in large mobility data,
and to characterize cities using these patterns. Such patterns should inherently capture mobility
dynamics which may be governed by the geographical shape, or cultural trends of a city. From a
learning perspective, human mobility also poses challenges due to its highly dynamic nature. We
leverage popular generative approaches in machine learning literature along with the properties of
human mobility to synthesize comprehensive framework for generation and study of large scale
human mobility data.

In this work we consider temporal gaps of less than a second, spatial granularity of less than a
meter, characterizations formed by aggregating over fifty million samples covering fifteen cities for
a week to model human mobility patterns. None of the prior work summarized in (Alessandretti,
Sapiezynski, et al., ) has covered similar fine granularity in time and space. By going to
such granular levels and vasts amount of data, we have been able to unmask the variability and



also capture it across all times of a day including weekdays and weekends. The variability across
times and regions is important to capture as it allows the modelling approaches proposed to be
applicable to any situation like rainy, or holiday seasons, or anomalies like road closures; the
modelling approaches would in not ordinary scenarios be able to capture dynamics of human
mobility pattern. Prior works which are restricted in terms of dataset not capturing entire regions
or not continuous in time may not easily be generalizable. More details about our dataset are
provided in chapter 2. The temporal and spatial characterizations proposed can be applied to
any dataset provided the dataset represents a decent percentage of the overall mobility pattern of
the city or urban area.

1.2 Summary of contributions

1.2.1 Part 1 — Temporal and Spatial Properties: What patterns govern
human mobility patterns?

How can we capture and model the temporal evolution of human mobility? (Chapter 2)

Examining large datasets, its synthesis, and formalizing patterns are critical to characterize
dynamic patterns of human mobility for different cities. Even though human mobility patterns are
dynamic, e.g. number of people moving from one part of the city to another changes rapidly over
time, current instruments (models, metrics) are mainly drawn from static or limited snapshots of
data which fail to capture the evolution of phenomena and their fine-grained dynamical properties.
This work is based on extensive real world data from ride-sharing and yellow cab services. We
look at about fifty million ride requests around the globe. To capture the variation of ride requests
we introduced a graph model that captures the temporal attributes of ride requests. We discover
that ride requests graphs (RRGs) from this model exhibit the well known densification power law
property (Jauhri, Foo, et al., ) often found in real graphs modeling human behaviors.

How can we understand the geographical spread of human mobility? (Chapter 3)

Here we try to answer how does the spatial distribution of human mobility look like? We treat the
distribution of mobility locations as a point-set; representing both pickup and drop-off locations.
With this point-set we find a way to characterize their deviation from uniformity. Using the
concept of fractal dimension, we show how human mobility patterns exhibit fractal behavior,
referring to the fact that sub-sets of the point-set representing locations of human movement are
statistically similar to the whole set (Jauhri, Joe-Wong, et al., ). These insights provide a way
to characterize spatial structure of the mobility patterns apart from the graph modeling which
depicts the temporal characterization.



1.2.2 Part 2 — Synthetic Generation of Datasets: Scalable and efficient
approach for synthetic data generation and validation

How can we generate city-scale synthetic realistic datasets of human mobility? (Chapter 4)

Using Generative Adversarial Networks and Graph Generators we provide a novel model for
generating synthetic human mobility data. GANs which are known for modeling natural image
distribution by forcing generated samples to be similar to natural images help to capture spatial
distribution of ride requests without requiring to embed geographical information about an urban
area like water bodies, and parks where ride requests would never originate or end. GANSs also
allow to simplify the process of running simulations or experimentation by not providing access
to real data which would otherwise be a privacy concern but rather allow us to obfuscate the
locations of origin, destination, and also time of ride requests. The approach for GANs here
involves viewing human mobility as a (temporal) sequence of (spatial) images of origin and
destination locations of ride requests used to train the GANs with discretized time buckets as
labels. By dealing with large amount of data for many cities and long training times for GANs, we
also propose an effective way to parallelize and scale the training runs using cluster of machines on
AWS. With such scaling, we highlight how real-time inputs of the mobility patterns phenomenon
can be used to predict future city-wide mobility patterns.

How do we validate real and synthetic datasets? (Chapter 4)

For fifteen cities around the globe, we provide comparative analysis of real and synthetic data sets
for a week of mobility data based on densification power law and correlation fractal dimension
properties. These statistical properties provide insights for both high and low granularity of time
and space human mobility patterns.

1.2.3 Part 3 — Example Applications and Toolkit Framework: How can we
use city-scale data for different what-if scenarios?

What are some real-world applications which can benefit from human mobility data?
(Chapter 5)

We introduce a rigorous formulation of the dynamic ride pooling problem and suggest several
approaches, or methods, for dynamic ride pooling. We explore the design space for different
pooling methods, and different configuration of these methods based on trade offs involving
several key parameters like maximum number of pooled riders, temporal and distance limits
within which a ride should be eligible for pooling. We show dynamic ride pooling can produce
societal benefits, in reducing total travel distance and the total vehicle count for a city. Human
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mobility and transportation is a major issue for many large urban areas in the world. In this work
we take a data-driven approach to investigate the subject of real-time dynamic ride pooling.

Reducing wait times to below two minutes is a challenging problem that requires real-time
vehicle placement. The real-time nature of this problem introduces two challenges: first, to
minimize wait times, drivers should proactively predict where future pickup requests will be
located and go to these locations in anticipation of future pickup requests, thus eliminating any
travel time to the request location. Yet to accurately predict future pickup requests, drivers must
account for not just overall patterns in ride requests, but also real-time temporal and geo-spatial
request fluctuations, which are influenced by human mobility dynamics. Second, these vehicle
placement decisions must be made quickly and cannot require any significant coordination,
e.g., drivers can view this information in their mobile application. We highlight a distributed
placement algorithms that allow each driver to independently decide where to go after dropping
off a passenger.

How can we use a parameterized framework and associated toolkit to study different what-if
scenarios? (Chapter 6)

We provide a framework and associated toolkit to generate city scale urban mobility data
for a large number of cities around the globe. The framework is based on spatial and temporal
insights without compromising the identity and privacy of both the riders and drivers. Apart from
generation of datasets, the proposed framework provides tools to determine whether the generated
data depicts normal patterns of urban mobility or not. This validation is done by analyzing the
temporal and spatial characterizations of the city from both real and synthetic datasets. Since
these patterns vary for each city we also depict how our framework can be extended for any other
city not covered in this paper.

Our parameterized framework and toolkit use different generative techniques which provide
insights into how and why mobility patterns develop between different areas of a city. Such
models are also useful to reason about the structure and its evolution with time. The framework
allows to customize geographical space, density, and time for data generation.

With models for space and time characterization and algorithms for pooling and driver
placement, ours is a holistic framework to aid intelligent transportation studies and decision
making for city planning.



Chapter 2

Temporal Evolution of Human Mobility

How does city traffic evolve with time? How can mobility movement at a macroscopic temporal
level be captured and used to summarize city level statistics or properties of human mobility?
What does the city level statistics tell us about how human movement? Many prior studies
have looked at datasets constrained geographically to regions within a city like downtown, or
for time spanning a few hours to derive human mobility behaviors. Given the lack of access of
data in continuum for both space and time, it is difficult to derive from such findings concrete
characteristics over time across large urban settlements.

In this chapter we analyze human mobility using ride sharing services’ data from fifteen cities
around the world and observe a surprising phenomenon. For all fifteen cities the mobility data
encompasses each city’s geographical area for an entire week. To derive city level characteristics,
we detail a graph based model constructed from human movements grouped by time, and observe
the graph to densify over time i.e. the growth in the number of edges to be super-linear in the
number of nodes. Even more surprising is the discovery that for any city the densification pattern
repeats each day of the week with constant growth factor. We also looked at human mobility data
from New York’s popular yellow cabs to avoid bias in data towards ride sharing services. In the
case of yellow cab data too we observe the densification phenomenon in graphs constructed in a
similar fashion as with ride sharing services.

We do not consider data from subways, or city buses in our human mobility study since such
services would capture only popular mobility routes which would remain very similar for the
purposes of our analysis; bus or subway routes do not change drastically over time. Privately
owned vehicle data is also not considered in this work which would have given a much more
precise characterizations of every city although we think the insights would not differ by a lot but
only be more comprehensive if we had had access to such data. Pedestrian walking data would
have also been beneficial for completeness.

Given the patterns observed in the proposed graph model, we connect human mobility
properties to social networks where graph models have been studied extensively. We provide a
graph generator, that has a simple, intuitive justification of producing graphs exhibiting full range
of temporal properties of human mobility observed in cities like densification, and rich getting
richer (Leskovec, Kleinberg, et al., ).



2.1 Related Work

Studies about human mobility patterns have been governed by a variety of data sets. Call detail
records, with its temporal sparseness, was used to derive insights about carbon footprints and
traffic congestion for metropolitan areas for three major cities in the United States (Becker et al.,

). Social media data platforms like Instagram and Twitter provide much more fine grained
data both spatially and temporally also provide real-time insights about human mobility beneficial
to policy makers, advertisers, and city denizens (Rashidi et al., ; Tasse and Hong, ).
These works provide evidence on how data sets can be used to correlate or infer about human
movement related phenomenons. Our work is focused around providing universal and general
laws which under certain constraints hold true for any city for any time.

This work models human movement as a graph by converting group of ride-requests, either
pickups or drop-offs, within a geographical area into nodes, and then connecting the nodes with
directed edges from pickup node to drop-off node. Multiple ride-requests with same pickup and
drop-off nodes will have edge weight of greater than one. Some important prior works on graphs
have helped us to model and discover properties for ride requests. There is a class of graphs that
models real networks, e.g. social network graphs and publication citation graphs, that evolve over
time. These graphs become more and more dense as they evolve in time, i.e. the edge count grows
super-linearly relative to the node count growth. This densification of the graph can be modeled
concisely by a power law relationship between the edge count and the node count. Graphs for
many real networks all seem to exhibit this densification power law (DPL) (M. E. Newman,

). For this class of graphs it is possible to automatically generate synthetic graphs that
exhibit the same densification power law without needing the original data (Leskovec, Kleinberg,
et al., ). These graphs also exhibit the attribute of having strongly connected subgraphs or
communities (Fortunato, ). In this work, we have discovered that our graph model of human
mobility for a city belongs to this class of graphs. This fact allows us to discover interesting
attributes and insights about ride requests and the potential of ride pooling for ride-sharing
services.

2.2 Introduction

Recent emergence of ride-sharing services is transforming human mobility and transportation in
major cities of the world (Buzzfeed, ) with New York completing over seventeen million
trips using ride sharing services in January, 2018, double the number of medallion trips (Parrott
and Reich, ). The growth of ride-sharing has made it easier to aggregate data from multiple
cities around the world to understand patterns in human movement.

Many of the human mobility studies are motivated by the desire to improve infrastructure in
urban areas like construction of roads, highways, and broadening of lanes. Studies also aim to
provide insights on how to improve experience of daily riders by providing optimal and efficient
routes, trip planning, or techniques to perform rider pooling and other ways to reduce rider travel
time while also minimizing cost. Our study here aims to not just formalize the properties and
dynamics of human mobility but also to aid prior work and models to easily analyze costs and
benefits of a scheme for improving rider experience. More importantly, we also provide tools by
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which synthetic data exhibiting real-world properties can be generated for a city while preserving
privacy.

We introduce a new graph model for human mobility to capture the temporal evolution of
mobility patterns. In the next chapter we discuss the spatial evolution properties, and then in
Chapter 4 provide a complete model for synthetic data generation which obeys both temporal and
spatial properties. We first start our discussion around human mobility graphs exhibiting the well
known densification power law property often found in real graphs modeling human behavior
and many other naturally occurring social phenomenons.

2.2.1 Human Mobility Dataset

The dataset used in all analysis consists of ride request data taken from services which offer
on-demand ride-sharing facilities around the world. We study datasets from fourteen cities from
a single source, and for one city, New York, from two sources. Both sources of data span over
a week in April, 2016, starting from Friday midnight (GMT). Each ride request in our dataset
contains the following attributes:

* Pick-up (or source) & drop-off (or destination) latitudes, and longitudes.

* Pickup & drop-off timestamps.
For example, the following represents one of the million ride requests we looked at:

1460478841, 40.674758385, —73.95501347, 1460679891, 40.6413914034, —73.9412089714

The first comma separated value is the pickup time, represented in unix time; second value
is pickup latitude coordinate followed by pickup longitude coordinate; drop-off unix time; and
finally drop-off latitude and longitude.

2.3 Temporal Patterns of Human Mobility

Human mobility patterns exhibit significant variability from city to city. Furthermore, with each
city, mobility also vary across regions of the city, on different days of the week, and at different
times of the day. However, we also observed that, for most cities there is a strong pattern that
tends to repeat on a weekly basis. This is shown in Figure 2.1 for two consecutive weeks from
two mutually exclusive datasets; both datasets belong to the city of New York.

At a macro level temporally, both datasets show a similar pattern in terms of volume. Week-
ends on average, excluding Sunday, are more busy in comparison to weekdays. The rise and fall
of the number of rides temporally overlap for all days in a week in both the datasets. The temporal
evolution of the requests is the unknown factor here which we examine in the next section.

2.4 Graph Model

To understand the temporal characterization of a city we introduce a method to construct directed
graphs from ride requests. The graph representing ride requests for a specific time period,
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(a) Ride-sharing dataset (b) Yellow cab dataset

Figure 2.1: Temporal distribution of total volume of ride requests for two consecutive weeks from
two different data sources in New York City.

spanning over a few minutes, is referred to as the Ride Request Graph (RRG). Each RRG captures
the spatial connections of ride requests across a city within that time period without encoding
the geographical distances. The RRG evolves from one time period to the next, to account for
new ride requests initiated in the next time period. This evolution of the RRG and the resultant
sequence of RRGs capture the temporal aspect of ride requests over many time intervals. For any
time snapshot, the RRG does not account for ride requests from the previous time snapshot.

2.4.1 Ride Request Graph Generation

For a given time interval we can generate a RRG representing all the ride requests in that interval.
We divide the map of a city into equal sized cells of length € meters. Each cell is considered as a
node in the graph only if a source or destination of a ride request falls within that cell. A directed
edge connects the source and destination cells of a ride. A directed graph can then be generated
to model all the ride requests in that time interval for a given city.

For any ride i, s; represents the pick-up location and d; represents the drop-off location.
Now consider the ride requests in Figure 2.2a belong to a specific time snapshot. The four ride
requests are shown on a gridded map (not drawn to scale). The corresponding RRG in Figure
2.2b is formed by four nodes with node A subsuming si, 2, d4; node B subsuming s3; node
C subsuming s4, d1; and node D subsuming d5, d3. All edges in Figure 2.2a have at least unit
weights representing single ride requests from source to destination node. Edge weights represent
the number of ride requests from the same source and destination nodes, and may not necessarily
be the same geographical locations. The term node is always used in the context of the RRG
graph. We use the term point to refer to a specific location defined by its latitude and longitude,
which could be the source or destination of a ride request, and is associated with a node in the
RRG.

Map data of Figures 2, 3, and 5 are available from OpenStreetMap under the Open Database License and the

10



1 NHP.

MARITIME NH

B

0@ 9
7 N (v
r I‘ RANGISCQ FRANQISCOJ
OCEAN ’ > ¥
BEAGH Y \ \ feACH
A 4 et
$ |
: ’ C
2 X

™ @OpenStre¢tMap contributors

© 'bénSHeet Map contributors

(a) Four ride requests distributed spatially overa  (b) Corresponding Ride Request Graph with four
map nodes (marked by red boxes) and directed edges.

Figure 2.2: Transformation of ride requests, in a particular time interval, into a directed
ride-request graph (RRQG).

= a#.lalhu!LrEEk Wil valley ey el g r I.I;.lalntl_{t Lreek
3 afayette
gy sty Y Berkgley y
B ioraga Alarmogw % Ernr;' e Mﬂraqamdmu
(8] ill Danville
BN~ ~08k'End
, ." San Regrion S isco’ hl San Ramon
-
. i
it ndro % L SaniLeandro
"#’.?Mfalle;r D“Wi,f .Li\. Darét’w- Cadro-valigy Dublin=- o]
a;ﬁ.grd Pleasanton puthesan Ha‘p"ward Pleasanton
ra@lsca !
_ Pacifica ey
I.Jnn::% C-t;ﬁ : . 'Bur{lrganﬁe I._Imc:-n(_ty :
) nt | SaniMateo Fremont
ta m | %_Belriont NEWGF‘(
A=t Qd \ 1 ~=Radwood ° # )
Half Moon), 3\ " | "I-‘x Half\Maan Citg i)
Bay W Bay -
' ﬂr@m L i iLu*.-. Palo .ﬂ'..lto { Milpitas
- . -
. Sunnyvale “§. ‘s
> .:-@ms& S e ede
. I!amphFII
Sarama q-". ! Saratogae

los, 'I'ams Los #atos

©OpenStreetMap contributors ©OpenStreetMap contributors
(a) Distribution of ride requests at rush-hour time,  (b) Distribution of ride requests at non-rush-hour

7pm time, Sam
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Each ride request is considered independent of any other ride request. In constructing the
graph the length of the actual navigation path taken from s to d for a ride request is omitted.

Based on examining the ride request data from the fifteen cities gathered over multiple weeks
of Spring 2016, we can make two key observations. For each city, the temporal ride request

cartography is licensed under the Creative Commons Attribution-ShareAlike 2.0. http://www.openstreetmap.
org/copyright
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patterns tend to repeat from week to week, and a typical week of data is sufficient to understand
patterns of a city. On the other hand, there is significant variability of ride request patterns from
city to city. Furthermore, in each city there is variability across different days of the week, at
different times of the day, and across different regions of the city.

Variability in ride request patterns in San Francisco for two snapshots taken at two different
times of the day is shown in Figure 2.3. The figure shows the spatial distribution of ride request
density over the Bay Area. San Francisco downtown (top left cluster of points) is clearly denser
in ride requests. The two figures illustrate two snapshots of ride request density for two different
5-minute intervals one at 7:00pm and the other at 5:00am. The temporal and spatial variations
of ride requests can be clearly seen.

2.5 Ride Request Graph Densification

A Ride Request Graph is different from conventional graphs: (1) each node has a geographical
area associated with it; (2) RRG is fixed in time but does not evolve with time meaning for
every time snapshot a new RRG is generated. Each RRG involves a spatial quantization (like
100m x 100m cells 2) of the geographical area of the city, and a temporal quantization into
sequence of time intervals. In our analysis we use 5-minute intervals for temporal quantization.
As a RRG evolves in time, it produces a sequence of RRGs that capture the temporal behavior of
ride requests.

As we analyze the RRGs extracted from historical data of ride requests from all the cities, we
make an interesting observation about human mobility. Densification refers to graphs that evolve
in time, and how the edge count grows relative to the growth of the node count. Many graphs
modeling aspects of human behaviors, such as social network graphs and publication citation
graphs, among others, exhibit densification over time that follows a power law, i.e. the number
of edges grows as a power of the number of nodes (Leskovec, Kleinberg, et al., ). We have
discovered that the RRGs for ride requests exhibit the same power law densification behavior and
belongs to this class of graphs.

We observe RRGs at different snapshots of time, with each spanning five minutes. For each
snapshot, we study the Densification Power Law plot (DPL plot) (Leskovec, Kleinberg, et al.,

) i.e. log-log plot of the number of edges e(#) versus number of nodes n(z).

Figure 2.4 shows the Densification Power Law (DPL) plot for New York for a typical week in

2016. It is observed that for every time interval ¢:

e(1) e n(2)"
=Cn(1)”
where e(f) and n(t) are the number of edges and number of nodes respectively, formed by all
ride requests occurring in the time interval z. C and « are constants. Number of edges is a good
approximation of the number of ride requests since we do not consider edge weights. All cities

follow the densification power law but the parameters of the power law vary from city to city.
It is important to note that we do not consider the complete graph when plotting any point in

2The cell size can be varied based on the dynamics of the city and dataset used.
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(a) Ride-hailing dataset for New York City (b) Yellow Cab Dataset for New York City

Figure 2.4: DPL plots from real data for New York City from two different sources of data. The
red line is the least square fit of the form y = Cx®, where y and x are number of edges and nodes
respectively. R% ~ 1.00 for all of them.

Figure 2.4. For every time snapshot 7, no historical i.e. ride requests originating before ¢ are
aggregated. Only ride requests in five minute interval are used to generate the RRG. This is a
distinction from majority of other academic works on graphs and their evolution where all nodes
and edges from start till ¢ are captured in the graph. In Figure 2.5 we provide plots for fourteen
other cities using one week of data divided over five-minute discreet time snapshots.

2.5.1 Characteristic Attributes of RRGs

Based on the previous observation it appears that the pattern of ride requests for a city can be
characterized concisely by C, and « derived from the power law of RRGs for that city. The
exponential a depicts the densification of ride requests within a city. This densification factor a
can range in value from 1.0 to 2.0. If @ = 1.0, this means the number of edges is growing linearly
with respect to the number of nodes; if @ = 2.0, then the RRGs become fully connected.

It is interesting to note that both datasets from yellow cab and ride-hailing service exhibit
densification factors greater than 1.0. This means the edge count is growing super-linearly to
the node count. We speculate this demonstrates the human tendency towards the creation of
clustered/connected communities, perhaps reflecting the small world effect (Watts and Strogatz,

). When compared across cities, a city with higher densification factor would mean higher
rate of growth in the number of edges in comparison to number of nodes; implying small set
of regions or communities are present which tend to experience higher volume of ride requests.
Prior work (Gonzalez et al., ) had highlighted repetition of patterns in human movement
but with densification factor we not only confirm there are certain geographical pockets within
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which people tend to travel more often but we are also able to distinguish qualitatively how these
patterns differ from city to city.

In Figure 2.4, the difference in the values of densification factor, a, for the two datasets
varies from 1.116 to 1.16; proportional to the popularity of each of the two services at the time
of collection of dataset. This @ could look different if computed exclusively using data from
privately owned vehicles in New York city.

DPL graphs exhibit a fascinating attribute. (Leskovec, Kleinberg, etal., ) and (Chakrabarti
and Faloutsos, ) have shown that for graphs that evolve according to the densification power
law, it is possible to automatically generate these graphs that exhibit densification. This implies
that we can automatically generate RRGs that exhibit very similar densification factor as that of
RRGs extracted from real data for any city.

2.6 Degree Distribution Over Time

Given the observation around the densification of human mobility patterns, we now discuss
the distribution of node degree over time to understand the reason for the densification. It is
important to reiterate here that the DPL property observed in Figure 2.4 exists when every graph
generated uses mobility data only with the defined time snapshot interval of five minutes and not
continuously aggregating over multiple time snapshots.

Based on previous observations around densification the hypothesis is that urban human
mobility patterns tend to create specific communities which lead to densification. Although, the
prior analysis does not capture the reason for the densification. Previous studies have highlighted
that effective diameter, defined as the minimum number of hops in which 90% of all connected
pairs of nodes can reach each other, reduces with densification of graph. The reduction of effective
diameter, a concept more commonly known as shrinking diameters, is attributed to how degree
sequence evolves over time, and not related to how edges connect with nodes over time (Leskovec,

). For this reason we leave out any discussion around effective diameter here but we did
observe its decline over time in the generated ride requests graphs.

We analyze the case where the degree distribution of graphs over time exhibits a power law,
and it maintains constant power law exponent y over time, then we show that for 1 <y < 2 we
obtain the Densification Power Law exponent:

@=2/y 2.1)

In this case the Densification Power Law is the consequence of the fact that a power law
distribution with exponent y < 2 has no finite expectation (M. E. Newman, ). This implies
that the mean on a sample may be small, although it would at times vary due to very large values.
Thus the large fluctuations in the value of mean lead to the conclusion of no finite expectation. In
our case, we observe average degree grows with the number of samples i.e. with more nodes or
equivalently increase in human mobility activity; this is highlighted in Figure 2.6. On the other
hand, the power law degree exponent is constant over time.
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Figure 2.6: Average node degree plots using New York’s ride-hailing and yellow cab datasets
for a week. For most days there is a rise in the mean with increase in human activity. For
yellow-cab dataset there is a slight decrease in mean during mid-day; we suspect this is due to an
inherent property of its ridership.
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2.6.1 Constant degree exponent over time

Here we discuss the case where the RRG over time snapshots maintains a power law degree
distribution with a constant exponent y. Power law distribution p(x) = cx™” with exponent
v < 2 has infinite expectation i.e., as the number of samples increases, the average also increases.
Assume the exponent (slope) of the degree distribution does not change over time, then the
relation between the Densification Power Law exponent and the Degree Distribution exponent
over time is as follows:

Theorem. In a temporarily evolving graph with a power law degree distribution having constant
degree exponent 'y over time, the DPL exponent « is:

A= if y>2
2
Y
=2 if y<lI
Proof (taken from Leskovec, ): Assume that at any point time ¢ the degree distribution

of an undirected graph G follows a power law. This means the number of nodes N; with degree
dis Ny = cd™”, where c is a constant. Now assume that at some point in time as the graph grows
the maximum degree of the graph is d,,,,x. As the graph grows we will let d,,, — co. Using the
previous power law relation, we can calculate the number of nodes N and the number of edges E
in the graph:

dmax dimax 1—’)’ _
N = Z cd™ =/ d = c—dmax !
d=1 d:] 1 - y

dmax d 2—')’
1 max Ay — 1
E:—ch‘yd:/ d'7Y = e
d

2 a =1 2=y

We let the graph grow so d,,x — co. Then the DPL exponent « is:
log E_ y10gdyay +10g sy = 11l ~ log 12— |

a= lim -
dnax—= 10g N 10 dypyy +10g ||dprar — 1] = log |1 = ||

Note that the degree distribution exponent is y so we also have the relation log ¢ = y log d;4x-
Now we have three cases:

1. Case 1: y > 2; no densification:

_ylogdpax +o(1) _ 1
ylog dyax + o(1)

2. Case 2: 1 <y < 2 is the interesting case where densification arises:

’leg dmax + (2 - 7) 10g dmax + 0(1) 2
a = =

ylogdpax +0(1) Y
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3. Case 3: y < 1; maximum densification — the graph is basically a clique and the number of
edges grows quadratically with the number of ndoes:

q= 'ylogdmax + (2 - 7) logdmax + 0(1) -9
ylog, +(1—1vy)logduax +o(1)

This highlights that for cases when y < 2 we observe densification. This densifications means
that the number of edges grows faster than the number of nodes. For degree distribution exponent
the densification means the tail of the degree distribution has to grow i.e. hash to accumulate
more mass with high human mobility activity in busier time snapshots. Here this is the case since
power law distributions with exponent v < 2 has no finite expectation. In the case of degree
distribution this means that the expected node degree grows as the graph accumulates more nodes.
Graphs can also show densification with degree distribution y > 2.
Theorem. In a time evolving graph of N nodes that changes according to Densification Power
Law with a > 1, and has a power law degree distribution with exponent y(N) > 2, the degree
exponent changes as
A = AN -1
Y(N) = e

Proof: Refer to (Leskovec, ).

2.6.2 Measurement from real data

For collecting degree distribution from real data, we take a RRG for every time snapshot and
compute its Degree Distribution exponent using maximum likelihood estimation. Since the
densification factor « is computed once after analyzing the entire dataset for a week (or 2015 or
five minute time snapshots), we compare the analytical degree exponent computed using Eq 2.1
with average degree distribution exponent observed using real data over all time snapshots. In
Table 2.1 we observe the analytical model closely approximate the degree distribution exponent
from experimental data. In Table 2.1 we provide the node length for which the experimental
degree exponent was closest to theoretical degree exponent. As one would vary the node length
(€), the node degree exponent (y), and DPL exponent (o) would also change. The highest variation
between theoretical and experimental degree exponent was when we considered € >= 300 meters.
This variation could be attributed to a slightly varying a because with nodes of larger area in
densely populated cities may not necessarily result in constant increase in number of edges. Cities
like Miami, New Jersey, and Los Angeles have a very thick mass in the middle of their DPL plots
(Figure 2.5) implying there exists uniform distribution of geographical pockets with high human
mobility activity.

2.6.3 Community Effect

To further concretize the rich getting richer concept and the surprising phenomenon of constant
densification for a week, we introduce a new term community coefficient defined as follows:
Definition 2.1. Community Coefficient ({): is the ratio of the average out degree and average in
degree of a graph.
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Degree Distribution Exponent
City € Degree exponent Theoretical a
(m.) from real data degree exponent
(mean)
Boston 100 2.047 2.164 1.197
Chicago 100 1.860 1.703 1.174
London 200 2.042 2.231 1.143
Los Angeles 250 1.960 1.693 1.181
Mexico City 100 1.849 1.864 1.073
Miami 300 1.822 1.656 1.208
New Delhi 250 1.959 1.772 1.129
New Jersey 100 2.178 2.371 1.101
New York (ride-hailing) 100 1.853 1.792 1.116
New York (yellow cab) 50 1.719 1.724 1.16
Paris 300 2.037 2.084 1.298
Rio De Janeiro 250 2.002 2.105 1.282
San Francisco 100 1.819 1.780 1.124
Sao Paulo 200 2.013 2.211 1.163
Toronto 250 2.083 2.069 1.333
Washington 100 1.928 1.704 1.173

Table 2.1: Degree exponent comparison for fifteen cities using real-data and theoretical method.

Given, there exists DPL property between the number of edges and nodes, { depicts two
scenarios of community effect:

o [ >=1 signifies that a small set of nodes have higher number of out-going edges directed
towards a larger set of nodes.

e [ < 1 signifies that a small set of nodes have higher number of incoming edges from a
larger set of nodes.

Intuitively, when ¢ > 1 it signifies that the mobility patters are from congested to less
congested areas. Alternatively, this can be explained by the fact that for offices and downtown
areas there will be an influx of people. When ¢ < 1 there will be an out-flux; mobility in the
morning is more likely to see patterns from sparse areas (residential) to denser areas leading to
{ < 1. This metric provides a good measure of the sort of patterns which we had anticipated —
densification and the movement pattern repeats itself.

For every time snapshot we compute the community coefficient. The rich getting richer
attribute is observed in the form of { > 1 with time or as human mobility increases. This is
shown in Figure 2.7 where mostly in the evenings { > 1; signifying a larger movement from
downtown areas, offices, or other small communities to residential localities which are more
spread out geographically in comparison to denser areas of high human activity. Every gap in the
graph indicates night hours which skipped from midnight to seven in the morning (local time).
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Figure 2.7: Community Coefficient variation over a week in New York.
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2.7 Proposed Model

We have now seen the densification properties and how they develop over time. Assuming we
have the points distributed over space, our proposed model would connect these points such that
they become concrete ride requests. Our graph generator model is inspired from the configuration
model (M. Newman, ) and forest fire model (Leskovec, ) which also aim to generate
graphs having DPL property. Algorithm pENsProPGEN allows us to capture the densification
property observed in RRGs from real data. Algorithm 1 requires three parameters: (1) number of
points to generate m; (2) the probability of choosing a point which has not been visited before p;
(3) number of outlinks 7,445 from a source point is defined by geometrically distributed random
number with mean 1/¢g. 1 — p is the probability of choosing a previously visited source point
as destination, variation of the preferential attachment technique described in (Chakrabarti and
Faloutsos, ), which captures the idea of rich getting richer.

Algorithm 1 To capture densification properties. Inputs: m e N, p & ¢q € [0, 1]
1: procedure pbENSPROPGEN(M,p,q)

2: let M =10,...,m—-1]

3: let R =[]

4: let rides = []

5: while length(M) > 1 do

6: s = uniformRandomChoice(M)

7: remove(M, s)

8: Nedges = geometricRandom(q)

9: for each edge e € [0, n.4ge5) do

10 if uniformRandom() < p then
11: d = uniformRandomChoice(M)
12: remove(M, d)

13: else

14: d = uniformRandomChoice(R)
15: end if

16: r = connect(s, d)

17: add(rides,r)

18: end for

19: add(R, s)
20: end while
21: return rides

22: end procedure

In Algorithm 1, uniformRandomChoice uniformly at random selects a point from the set
points. geometricRandom generates values from a geometrically distributed random variable
with success probability g. uniformRandom generates a uniformly random value € [0, 1). In
Figure 2.8 the DPL plot is shown with random nodes without any repetition; this is important
because by having the underlying graph node data to exist with repeats can lead to a higher
probability of their being DPL with exponent > 1 than without repeats. Hence, we remove this
bias from the underlying data to highlight that the proposed graph generator can still generate
graphs with the required a.

In Figure 2.9 we show the degree distribution of Algorithm 1 generated wherein few nodes
have a high node degree but majority of them have low node degree. To summarize, the proposed
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model is able to produce graphs qualitatively matching their properties. We establish this by
simulation and provide intuition for why these properties arise.

Heavy-tailed in-degrees: Our model has a rich getting richer flavor; the nodes within the
set R have a high likelihood to be chosen with in-degree edges from a new node.

Communities: The model also has a copying flavor; a new node has higher likelihood of
connecting with richer nodes in R than other nodes.

Heavy-tailed out-degrees: The geometric distribution guarantees (Leskovec and Faloutsos,
) that there exists a heavy tailed distribution of out-degrees.

Densification Power-law: A new node will have a lot of links with community nodes;
and a few links with nodes outside of community set of nodes. This is analogous to the
community guided attachment although without an explicit set of communities.
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2.8 Discussion

Our analysis of human mobility highlights that the phenomenon of rich getting richer is observed
in almost all cities around the world. The characterization techniques proposed here can be used
to understand real-time trends for different applications. The main findings and contributions are
as follows:

* Densification Power Law exists in graphs constructed without any history. Surprisingly the
growth in these Ride Request Graphs is constant and varies along the slope i.e. « for an
entire week. This implies we can easily generate synthetic RRGs which can closely imitate
properties of real RRGs and use those to qualitatively assess structural differences across
cities like how dense are communities in a city.

* We prove that the primary reason for DPL is node degree distribution exponent (). For
any city, y remains quite stable throughout the week and can be analytically computed from
.

* Community Coefficient metric to capture the directionality of flow of community pattern
is proposed. Apart from validating the small world phenomenon, it helps to understand
whether human mobility directionality is from sparse areas towards dense communities or
in the other direction.

* Our proposed model for graph generation uses only a couple of parameters for generating
RRGs with properties similar to those observed with real-data. It selects a destination
node without any measure of distance. This is because the generator is only concerned
with modeling how the connections between the nodes have to be made, the modeling of
distribution of nodes (pickup and drop-off points) will be addressed in chapter 4.
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Chapter 3

Spatial Distribution & Evolution of Human
Mobility

How do we formally interpret the spatial distribution of human mobility data? Given the dynamic
nature of the human mobility phenomenon, is there a way to characterize the distribution of points,
like locations between which individuals tend to travel, for any urban area? Also, how does the
spatial distribution vary with time? With increase in human mobility during certain times of a
day, how does the spatial distribution of geographical coordinates representing drop-off locations
differ from pickup locations? In the previous chapter we looked at the temporal evolution of
human mobility in the form of graphs. Here we shift focus to the spatial distribution and its
variations with respect to time. In RRGs, the temporal variations was with respect to how the
connections between locations were evolving; here it is with respect to spatial distribution.

3.1 Introduction

We use the proposed Ride Request Graph to study the dynamics of human movement with respect
to time. The dynamics included nodes signifying geographic locations and how nodes would
densify with increase in edge degree relative to time. In the graph itself, we do not address how
separated or dispersed are the nodes relative to each other; how does the spread of nodes change
from one time snapshot to the subsequent ones. Note the edge weight in the RRG represented
the number of ride requests having the same origination and destination nodes; the underlying
metric of how far are two nodes was not being captured in the graph or the high level statistic,
Densification Power Law.

The spatial properties proposed in this chapter provide a statistical model to understand the
evolution of human mobility across geographical space. By studying how the spatial connections
are made, using RRGs, combined with understanding of spatial distribution of origin and desti-
nation points for any time snapshot and its evolution with time, we would have most of the tools
to formally characterize the pattern of human mobility in both temporal and spatial dimensions
for any urban region.
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3.2 Past work on spatial distribution of human mobility

Studies such as (Gonzalez et al., ) and (Lu et al., ) aim to derive spatial probability
distribution of human trajectory using mobile phone traces, and conclude that human mobility
patterns show significant reproducible patterns. Power law distribution are observed from ana-
lyzing trip lengths (Hasan et al., ) suggest a lot of trips tend to be short. Analysis using six
million geotagged Twitter data (Jurdak et al., ) find the gyration radius to be approximated by
double power-law with sub-linear growth. Later studies like (Alessandretti, Aslak, et al., )
provide a model to generate synthetic traces using a probabilistic model.

In most prior literature, the focus has been spatial traces of individuals and combining those
to infer traces of human mobility as a whole. These analysis are relevant for understanding
human mobility pattern. The missing piece here is that at any given point in time what is the
spatial distribution of human movement as a whole for the entire city or geographical area of
interest. This distinction here is critical to make collective decisions by public authorities or
private entities in the transportation domain. As a concrete example, if we know that the spatial
distribution of rides originating or terminating in any particular area of a city would look like at
any given point in time, we can:

1. Make a better assessment around how to divert traffic in a dense area.

2. Schedule public transport more frequently in some area at certain times and less frequent
in other areas.

3. Incentivize drivers with guarantees to pool riders.

4. Anticipate and intervene to avoid pile-up of people wanting to move out of an area.

These are just some of the many real-world examples which can be done with ease if such
information or signals are available at macroscopic and microscopic levels in geographical and
temporal dimensions. We illustrate some of these with two specific example applications in
Chapter 5, i.e. strategic ride pooling and intelligent vehicle placement.

3.3 Introduction to fractals

Here again we analyze real data from multiple cities; we look at pick-ups and drop-offs inde-
pendently. Since we are only concerned with the spatial distribution and not how the pick-up
points connect with the drop-off points, we treat them independent of each other but would find
surprising correlation between them using fractal dimension.

The term fractal was coined by Benoit B. Mandelbrot to describe objects with anomalous
dimension. Fractals are linked with self-similar structures which originate by repetition of a given
operation over and over again — on ever smaller scales. Let us take the classical example of such
a repetitive construction called the Koch curve. Start with a segment of straight line and raise an
equilateral triangle over its middle third. The result is called the generator. Note that the length
of the generator is four-thirds the length of the initiator. Repeating once more the process of
erecting equilateral triangles over the middle thirds of straight line segments results in Figure 3.1.

The length of the fractured line is now % . Iterating the process infinitely many times results in a
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Figure 3.1: Koch Curve

curve of infinite length, which although everywhere continuous is nowhere differentiable.

Similarly, applying the Koch generator to an equilateral triangle results in a Koch snowflake.
How long is its perimeter? After n iterations it has increased %n -fold over the perimeter of
the initial triangle. Thus, as n approaches infinity, the perimeter becomes infinitely long. To
characterize the perimeter’s size, we can therefore no longer use its length.

For a smooth curve, an approximate length L(€) is given by the product of the number N of
straight line segments of length € needed to step along the curve from one to the other and the
length € : L(e) = N X €. As the step size € goes to zero, L(€) approaches a finite limit, the
length L of the curve. That is not true for fractals. The product N X € diverges to infinity because
as € goes to zero, we enter finer and finer wiggles of the fractal. However, asymptotically, this
divergence behaves according to a well-defined homogeneous power law of €. In other words,
there is some critical exponent Dy > 1 such that the product N x e”# stays finite. For exponents
smaller than D the product diverges to infinity while for larger exponents the product will tend
to zero. This critical exponent is called the Hausdorff dimension after the German mathematician
Felix Hausdorft.

Another example of a fractal is a Sierpinski Triangle as shown in Figure 3.2. The first
triangle in Figure 3.2 is an equilateral triangle; to construct the second triangle, an upside-down
equilateral triangle with half the side length of the first triangle is removed. The result are three
half-size triangles; the second figure. Repeating the process on the remaining triangles leaves,
after n iterations, N = 3" triangles of side length » = r¢o(27"). The result are smaller triangles
which look like replicas of the whole triangle. The characteristic property of fractals is this
self-similarity property: smaller parts of fractal are similar to the whole fractal. After numerous
recursive iterations of a Sierpinski triangle, it becomes evident that it is not a 1-dimensional
Euclidean object since it has infinite-length perimeter; it is also not a 2-dimensional Euclidean
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Figure 3.2: Sierpinski triangle shown for four recursive steps.

object since it has zero area (Belussi and Faloutsos, ). Instead, we characterize these
shapes with fractal dimensions. The fractal dimension also indicates whether point-sets exhibit
self-similarity.

3.4 Fractals and Ride Requests

Intuitively, a set of points is a fractal if it exhibits self-similarity within a range of scales. It
has been observed that real datasets of point-sets representing road intersections of Montgomery
county, and Long Beach county in California exhibit properties of self-similarity (Proietti and
Faloutsos, ). In our problem we are also dealing with a natural phenomena involving human
behaviors, i.e. human mobility in urban environments. Characterizing human mobility patterns
using fractals provides a succinct description which could be leveraged in a variety of applications
and their analyses.

3.4.1 Fractal Dimension

The Hausdorff fractal dimension can be defined as follows — divide the n—dimensional space into
(hyper-)cubic grid cells of side €. Let N(¢€) denote the number of cells within which one or more
points exist. Then the Hausdorff fractal dimension or box-counting dimension Dy is defined as:
Definition 3.1. Hausdorff Fractal Dimension For a given point-set in an n—dimensional space
which has fractal property in the range of (€1, €2), its Hausdor[f Fractal Dimension D for this
range is measured as:

_8 log N (€)

Do =
0 dloge

=constant € <€ <€

Definition 3.2. Generalized Fractal Dimension For a point-set that has self-similarity in the
range of (€1, €2), the generalized fractal dimension D is defined as:

1 dlogy, p!
D, = gLip; =constant q#1, for € <e<e
g—1 OJdlogr

where p; denotes the probability of a point occupying i—th cell.
Given the definition of generalized fractal dimension, notice the following:
1. for g = 0 we have the Hausdor{f fractal dimension D.

2. for a set of points in some high dimensional space to be strictly self-similar like the
Sierpinski triangle, it’s important to have Vg, D, = D¢ (Schroeder, ) over all or a
range of scales.
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Fractal dimension can be measured in multiple ways using generalized fractal dimension (Belussi
and Faloutsos, ). Point-sets for which D, is not a constant are referred to as multifractals.
It provides a quantitative measure of self-similarity for a point-set. We shall focus on one spe-
cific measure of fractal dimension which relates to the estimation of spatial queries; specifically
queries like how many points are present in a cell. Points in our context represent pickup or
drop-off locations. Again, consider a two dimensional space divided into square grid cells of side
€, similar to nodes of the Ride Request Graph,

Definition 3.3. Correlation fractal dimension: For a point-set that has self-similarity in the
fractal range (€1, €3) the correlation fractal dimension D, is defined as:

dlog¥; p7
)= ﬂ = constant € € (€1, €) (3.1
dloge
For a point-set to be self-similar, in the range (€j, €), we observe the plot of log }’; pl.2 versus
log € must be a straight line, implying self-similarity in that range, i.e. the fractal range (Belussi
and Faloutsos, ). The slope of the line is equal to the correlation fractal dimension D,.

3.4.2 Neighbor Approximation Using Fractal Dimension

We are primarily interested in approximating queries such as what is the average number of neigh-
boring source or drop-off points which fall within some neighborhood geographically constrained
by a shape, like square or circle, of a certain length. Let nb(€’) denote the average number of
points within an enclosed square O of radius €’ where €’ € (€], ;) for which we observe the
constant fractal dimension as in 3.1. Using Equation 3.1, we can say the sum of squared S>(r)
occupancies for € sized cell follows the relation:

S5 (€) o P2 (3.2)

Also, proportion of pairs within an Euclidean distance or more commonly known as Corre-
lation Integral can be defined as:

>, unique pairs of points within € distance

Cle) = Nx(N-1)/2

(3.3)

Using equations 3.2 and 3.3 we provide the follow Lemma:
Lemma 1. Given a point set P and sum of the squared occupancies S»(€) on a grid with cell of
side € we have:

C(€) x Sy(€) (3.4)

Proof: See (Schuster and Just, ).
An important consequence of this is the power law estimation of the neighbors:
Lemma 2. Given a set of points P with finite cardinality and its Correlation Dimension D, the
average number of points within the shape O with radius of € follows the power law: nb(€') « €'P2.
Proof: Using Equations 3.2 and 3.4 (Belussi and Faloutsos, ).
There are plenty of significant implications of the above lemma:
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Figure 3.3: Correlation Fractal Dimension using ride-sharing dataset for New York for four
consecutive time snapshots each spanning m = 300 seconds. Top row constructed with pick-up

points, and bottom row using drop-off points.

1. We can predict the exact number (Belussi and Faloutsos,

for any geographical space within the constraints of the fractal range.

) of drop-off or pickup points

2. It provides a formal technique to justify validity of any dataset whether real or synthetically
generated since this characterization provides a high-level metric by analyzing data across

the geographical space of a city.

3. Finally, in time snapshots when there are unexpected events like congestion or any accidents,
such a characterization can help evaluate and flag anomalies.

3.4.3 Fractal Dimension of Ride Requests

Based on the our Lemma 2, we now experiment to determine the fractal range and D, with our
point-set which is a collection of real ride requests in a city for a duration of one week where each
point either represents the pickup location (latitude & longitude) or the drop-off location (latitude
& longitude). To compute the correlation fractal dimension of human mobility point-set, we
discretize time into short snapshots of m minute durations; we divide the geographical space into
square cells each with side € meters. Figure 3.3 shows D, for four consecutive time snapshots
on a typical Friday evening. In all four plots there is a super-linear relation between number of

points covered versus the range, €.

When D, is measured for yellow cab data from New York in Figure 3.4, we observe almost
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Correlation Fractal Dimension

City D> min. D> max. D> mean fractal range (m.)
Boston 0.783 1.571 1.284 (600, 2500)
Chicago 1.003 1.459 1.206 (600, 3000)
London 0.678 1.686 1.419 (600, 2500)
Los Angeles 0.438 1.465 1.135 (1500, 4000)
Mexico City 0.832 1.706 1.529 (600, 2500)
Miami 1.049 1.686 1.343 (600, 2500)
New Delhi 1.049 1.686 1.343 (450, 2500)
New Jersey 1.049 1.686 1.343 (900, 2500)
New York (ride-sharing) 0.950 1.694 1.515 (450, 2500)
New York (yellow cab) 0.958 1.709 1.582 (450, 2500)
Paris 0.669 1.778 1.586 (900, 4000)
Rio De Janeiro 0.352 1.686 1.343 (600, 2500)
San Francisco 1.049 1.686 1.343 (450, 2500)
Sao Paulo 0.763 1.737 1.574 (900, 4000)
Toronto 0.782 1.536 1.292 (500, 2500)
Washington 1.049 1.686 1.343 (450, 2500)

Table 3.1: Summary of measured correlation fractal dimensions for fifteen cities; computed
over a week for every 5-minute time snapshot (2016 snapshots for a week). We exclude seven
late-night hours of each day when on average the frequency of ride requests is low.

equivalent values for D, as in the case of ride-sharing dataset. Although due to high density of
ride requests for yellow cab, the lower part of the plot with low values of € has a much better fit in
comparison to ride-sharing dataset; in Figure 3.3 the overlap between black dotted points and the
red line is not prominent. This indicates that for human mobility dataset when density is below
some threshold the nice fractal-like pattern may not be observed and only once the threshold
exceeded would the mobility density provide the fractal pattern. This threshold would vary from
city to city as it would become clear in the experiments later.

Table 3.1 summarizes the correlation fractal dimension D, for the different cities we have
studied in this work. For each city, there is a consistent weekly pattern of ride requests and a
corresponding variation of its D, values. The values of D, ranges between minimum, D,min,
and maximum, Domax. The mean values for the cities fluctuates a lot, indicating the degree of
self-similarity of ride request patterns varies from city to city. The fractal range also varies across
the cities; however, except for Los Angeles, all other cities exhibit very similar fractal ranges,
from 500 meters to 3000 meters.

We notice cities like Mexico City, Paris, and Sao Paulo have D, > 1.5 which is much higher
than the rest of the cities. This implies that such cities are much densely populated leading to
higher rate in increase of points of interest where individuals are likely to travel. The bias due
to how much ride sharing services have penetrated in a city would show in the data as well. For
instance, New Delhi does not have a high D, value in comparison to some of the less densely
populated cities; this low market penetration is also visible in the D, plot for New Delhi in
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Figure 3.4: Correlation Fractal Dimension using yellow cab dataset for New York for four
consecutive time snapshots each spanning 300 seconds. Top row constructed with pick-up points,
and bottom row using drop-off points.

Figure 3.5 where the least square fit does not overlap the points as often the case in plots for other
cities.

The fractal dimension and the fractal range succinctly capture the characteristics of ride request
patterns in a city. Later in Chapter 5 we will show a real-world application on how the fractal
dimensions and associated fractal ranges can be instrumental in revealing effective solutions to
the real-time vehicle placement problem and facilitating the assessment of the effectiveness of
specific algorithms for this problem.

As mentioned in the temporal characteristics of each city — Los Angeles, and New Jersey
with maximum variation in degree exponent computed using experimental data and theoretical
model; here too we observe fractal range starting from much higher value like 1500, and 900 for
the same cities along with Paris, and Sao Paulo. In the context of spatial analysis, this could be
due to the sprawling nature of the city. Plots for the remaining 14 cities are provided in Figure 3.5
from a single time snapshot only.

3.5 Discussion
For human mobility, fractal dimension is a concise representation of a complex and random set

of points. Other ways of modeling density of points in space can be done using non-parametric
estimators like multivariate kernel density estimator although the underlying assumption of a
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gaussian surface may not always capture urban-level dynamics (Chan, Wood, et al., ). For
instance, gaussian or spatial auto-correlation techniques assume there to be peak in density of
ride requests at some geographical region and then gradual reduction as one moves away from
the peak. Such a pattern does not hold true across all urban areas since dense areas or areas
with a peak in volume of ride requests are spread in a non-uniform manner. For instance, large
parts of lower Manhattan in NY city can have high volume ride requests without any gradual
reduction. Conversely, parts of San Francisco city can have large geographical area alternating
between pockets of regions with high and low number of ride requests with varying spreads of
each. Such patterns tend to change from city to city and hence it is difficult to capture it using a
distribution or mutliple instances of the same distribution.

Also such an estimator may provide a good estimation of the density function but not a
succinct way to characterize distribution of pickup and drop-off points for a city. By aggregating
the points in grids/cells we also make this mode of characterization privacy aware such that there
does not exist a trivial way to trace back the exact geographical source or destination coordinates.

Fractal dimension describes the dispersion affect of human mobility. When comparing D,
for different cities, we noticed higher values of D, may not necessarily correlate with higher
population density but rather with how population density is spread across the geographical area
of a city. For instance if one were to look at light pollution map ' of Toronto and Paris, Toronto
has a much wider spread of density across its area with many spots of high human activity. On
the other hand, Paris’s spots of high human activity are more centralized and not as dispersed as
in the case of Toronto, and tend to disappear as we move away from central region of the city
resulting in a higher value of D>.

The possibility of characterizing a point-set as fractals is quite feasible (Belussi and Faloutsos,

). In numerous studies like (Mandelbrot and Mandelbrot, ) and (Schroeder, ), alot
of real datasets look like fractals including coast lines, country borders, the periphery of clouds
and rainfall patches. Importantly, one can efficiently compute D, (Belussi and Faloutsos, )
and then analytically approximate the number of neighbors for both pick-ups and drop-offs. The
spatial observations can provide context around the human mobility density pattern in any area
for civic authorities to perform planning in terms of new construction, transportation service, and
methods to intervene to divert traffic based on density of human mobility traces.

Thttps://lightpollutionmap.info
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Chapter 4

Scalable Synthetic Generation of Human Mo-
bility Datasets

Ride request data from ride sharing services can potentially be of great value to understand
human mobility patterns. Data gathered from ride sharing services could be used to provide
insights about traffic and human mobility patterns which are essential for intelligent transportation
systems (Stiglic et al., ). Ride requests in major cities with high penetration by such services
exhibit spatial and temporal variability. Modeling of such variability is a challenging problem for
researchers although there is existing work to predict human mobility patterns at coarser-grained
geographical locations (Isaacman et al., ). This chapter aims to combine both spatially and
temporally finer-grained human mobility patterns to propose a technique to efficiently generate
synthetic human mobility data at the city scale. Such granularity of data can help with unresolved
challenges related to intelligent transportation, such as: optimal algorithms for dynamic pooling

of ride requests (M. H. Chen et al., ), real-time pre-placement of vehicles (Phithakkitnukoon
et al., ), simulations, and city scale traffic congestion prediction (Maystre and Grossglauser,
) and avoidance (J. Tang et al., ). Access to large amount of actual ride request data is

essential to understanding and addressing these challenges.

As noted before, each city exhibits a different pattern of urban mobility — there could be
cultural or economical factors governing these patterns. If ride sharing services constitute a
significant percentage of the riders in a city, we can build models from ride request data to model
urban mobility for the whole city and provide societal benefit without compromising riders’
privacy.

Synthetic data can be very useful in multiple applications to train, test, or inform algorithms. It
is widely used to train anomaly detection systems, but also in microsimulation models! to inform
policy intervention, planning, sensor network deployment, and much more. Some general purpose
synthetic data generation methods also utilize ways of describing the data to be generated (Hoag,

), while others are designed to generate very specific types of data in a rather unstructured
way. In this paper, we focus on synthetic data sampling methods that preserve privacy and the
correlation between geographical locations in urban cities while incorporating constraints on time
for which the data is generated.

thttps://github.com/citybound/citybound
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Our proposed approach involves viewing ride requests as a (temporal) sequence of (spatial)
images of ride request locations. The approach uses GANs to match the properties of the synthetic
data sets with that of real ride request data sets. Many recent works using neural networks have
looked at demand prediction (Yao, Wu, et al., ; Zhou et al., ) and traffic prediction at
intersections (Yao, X. Tang, et al., ). In our work, we are looking at generating actual ride
requests for both spatially and temporally granular intervals. Also, we compare and validate the
spatial and temporal variations of the synthetic data sets with the real data sets.

4.1 Why GANs?

The proposed approach allows to capture the spatial properties of geospatial data. Specifically we
would like to compute the likelihood of a node to either possess a source or destination location.
Alternate approaches like kernel density estimation are also discussed later in this chapter to
generate synthetic ride requests to highlight some issues with alternate methods. Here we would
like summarize some of them — 1) we want an approach by which we could modulate the volume
of ride requests easily, this is possible with GANs as highlighted in Section 4.7; 2) we would
like to give the option to create virtual environments by modifying images of ride requests and
hence allow models to be trained on them, and subsequently use the synthetic data to understand
different what-if scenarios in the virtual setting; 3) the number of parameters to a model should be
minimal and with GANs we are able to generate synthetic data with just one tweakable parameter
which determines the volume/intensity of ride requests generated; 4) lastly, we want the ability
to learn ride request pattern locally for a region and not require global city-level information to
avoid any privacy issues.

With extensions like InfoGAN (X. Chen et al., ), we believe there exists numerous ways
to extend this work by finding hidden and semantic representations on human mobility image
datasets for better approximation of real data.

4.2 Data Sets from Ride Sharing Services

Our real ride request data sets consist of all the ride requests for an entire week for each city.
There is a strong repeating pattern from week to week capturing varying patterns for workdays
and weekends including Sundays. Hence the week-long data should be quite representative of
the general trend. For changes in weather or seasons, our model would still be able to capture the
variations as it does not rely on geographical changes like road or highway closures which might
be a consequence of weather. As long as the underlying data highlights enough penetration of
the mobility share, the seasonal changes would inherently be captured by the model. For most
of the cities, the ride sharing services have significant penetration, and hence we believe the ride
request data sets also reflect the overall urban mobility patterns for these cities.

In this chapter, our data sets are real ride requests for fifteen cities over one week period. Each
ride request in the data set includes: request time and pickup location (latitude & longitude), and
drop-off time and location (latitude & longitude). For this work we focus on ride request time
and pickup location for generating pickup locations; and ride request time and drop-off location
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to generate drop-off locations. After training independent GANs models for pickup and drop-off
locations, we generate synthetic locations using GANs and leverage graph generator approach,
Algorithm pENSPROPGEN, proposed in Chapter 2 to pair all pickup and drop-off locations to
obtain synthetic ride requests. The trajectory or optimal route for a ride is not within the scope
of this work. For the rest of this chapter, we use the term ride-locations to refer to both pickup
and drop-off locations wherever they can be used interchangeably.

We do temporal and spatial quantization of the raw ride request data. We partition the entire
week into 2016 time intervals of 5 minutes each, and lump together all the ride requests within
each interval. We partition spatially the area of the entire city into small squares with side length,
€, of 50 meters, and lump together all the ride-locations occurring within the same square area.
Lower values of € can be considered with added computational costs of model training; higher
values of € (>= 100 meters) may hide some of variational properties of ride requests in densely
populated cities. Each square area is then represented by a single pixel in a 2-D image with the
gray scale intensity of the pixel reflecting the number of ride-locations in that square area (in
a time interval). Occurrence of no ride-locations in an area is denoted by zero pixel intensity;
positive integers (1, 2,3, .. .) as pixel intensity denote the number of ride-locations in the square
area.

Combining the temporal and spatial quantizations, the real ride request data set for each city
becomes a time sequence of images with each image spatially capturing all the ride requests
occurring in a particular 5-min interval.

4.3 Generating Ride Requests Using GANSs

4.3.1 Image generating using GANs

Generative Adversarial Networks learn to generate high quality samples (Goodfellow et al., )
i.e. sample from the data distribution p(x). Previous works by (Denton et al., ; Ledig et
al., ) synthesized images of a higher quality using GANs which were hard for humans to
distinguish from real images. Conditional GANs are an extension of GANs to sample from a
conditional distribution given each image has an associated label which is true for our case of
ride requests.

In our framework, we would apply conditional GANs using ride request data in the form of
images; similar to as shown in Figure 4.1 but without the base map shown in color. Representing
ride requests as images allows us to not add other constraints to our model such as parks, water
bodies, mountains, or any other area where ride request origin or end is very unlikely.

4.3.2 Using GANs for ride request generation

GANSs learn a mapping from a random noise vector z to output image x. Conditional GANs learn
a mapping from noise vector z and a label y to x (Mirza and Osindero, ; Gauthier, ).
The additional variable in the model allows to generate and discriminate samples conditioned
on y. The generator accepts noise data z along with y to produce an image. The discriminator
accepts an image x and condition y to predict the probability under condition y that x came from
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Figure 4.1: Ride requests for a small region of downtown San Francisco for a typical week day.
Each figure shows the aggregated ride-locations (red dots) over a period of an hour. Each red dot
may represent one or more ride-locations. Ride density varies spatially and temporally.
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Figure 4.2: An illustration of how the geographical region of each city is divided into smaller
blocks of equal size and trained independently. Note: image above is not drawn to scale.

the empirical data distribution rather than from the generative model. The objective function can
be expressed as:

E [logD(x,y)|+ E [log(1-D(G(z,y),y))]
X,y~Pdata(X,y) 72~p(2),y~Dpy

where G tries to minimize to this objective function against an adversarial D that tries to maximize
it.

4.3.3 Training Process & Architecture

Every image is assigned a label from the set {0, 1,2, ..., 23} representing the hour of a day. All
twelve instances of five minute snapshots within an hour are assigned the same hour label 2. To
accelerate our training using multiple machines, we exploit spatial parallelism by dividing the
entire geographical region of a city into an array of blocks. Figure 4.2 illustrates the division of
San Francisco downtown into nine blocks. Keeping our image size similar to MNIST (Salimans
et al., ), each block is set to represent an image of size 24 x 24 pixels, with each pixel
representing one 50m x 50m square area. Hence, each block covers an area of 1200m x 1200m.

Each block, representing a grey scale image of 24 X 24 pixels, depicts all the ride-locations in
that block. Separate images are formed for pickup and drop-off locations; models trained are also
separate for pickup and drop-oft locations. Each image of a block is labeled with a time interval
(for our experiments, the hour in a day) which is similar for both images created from pickup and
drop-off locations. The synthetically generated images from an array of blocks with the same
time interval label are combined by stitching together all the processed blocks of a city.

The generator network takes an input of a 100-dimensional Gaussian noise sample as well as
a one-hot vector encoding of the time snapshot to be generated. It has a single, fully-connected
hidden layer without any convolution (Goodfellow, ) consisting of 128 ReLU-activated

20ne could easily extend this approach to a label within the set {0, 1, ..., 287} if looking at labels associated with

any five minute slots of a day or the set {0, 1, ..., 2015} if looking at labels associated with any five minutes slots of
a week.
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neurons which then passes to a sigmoid activated output layer with the same number of output
neurons as the total number of pixels in each block.

The discriminator network has a single hidden layer of 128 ReLU-activated neurons with
a single sigmoid activated output neuron. We find that small networks are appropriate for the
training data and allow for a quick and stable convergence to be achieved between the discriminator
and the generator. Using relatively simple network architectures makes it possible to ensure that
the discriminator and generator are evenly matched such that the loss for either network does not
saturate early in the training process.

In addition to the standard GANs architecture of generator and discriminator, an additional
network is introduced which is referred to as the classifier (Lee and Seok, ); it is pre-trained
on the training data with the five minute label of the data serving as the classification target. In
this way the time information that is encoded into the synthetic data by the generator network is
then decoded by the classifier network. The generator is then trained on a weighted sum of the
loss from both the classifier and discriminator networks as shown in the following equation:

Blog D(G(z,y)) + (1 - B)log C(G(z,y))

where £ is a tune-able hyper-parameter.

This allows for more explicit loss attribution such that the generator receives two different
error signals; one indicating the realism of the synthetic data and the other indicating accuracy
relative to the conditioning values. By experiments using MNIST data and (Lee and Seok, ),
we found adding a classifier increases the efficiency of the training process and results in higher
quality synthetic data while incurring considerably less training time than other conditional GANs
architectures we have experimented.

4.4 Experimental Results

In this section, we present the cloud infrastructure used for running our experiments. We also
present performance results on scaling our GANs workloads on the cloud infrastructure.

4.4.1 Running GANs on AWS

All experiments are conducted on Amazon Web Services (AWS) using c¢5.18x instances with
each instance containing an Intel Xeon Scalable Processor with 72 virtual cores (vCores) running
at 3.0GHz and 144 GB of RAM. We use AWS for easier reproducibility and its large adoption by
academia and industry for large scale distributed processing.

In this work we set the block size for each of the four cities to be 1200 x 1200 meters; each
block is trained separately. Enlarging the block size will increase the computational time for
training; and the complexity of the model can potentially impact scalability. The total number of
blocks for each city are shown in Table 4.1. The number of blocks are mainly determined by the
size of the greater metropolitan area of each city.

To help enhance the scalability of our GANs workload across multiple nodes we make
use of Ray (Moritz et al., ) from Berkeley, a distributed framework for Al Applications,
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City Number of Blocks
San Francisco 1402
Los Angeles 1978
New York 765
Chicago 1155

Table 4.1: Training Workload for four cities. Each block is trained independently. Doubling the
value provided in the table for each city, would give the approximate number of models trained
because we have pickup and drop-off locations trained and generated separately.

to efficiently parallelize our workload across cluster of CPU nodes on AWS. Ray provides a
convenient API in Python to scale deep learning workloads for numerous libraries, and support
for heterogeneous resources like CPUs and GPUs. We also make use of Intel’s Math Kernel
Library (Intel, ) (MKL) which provides machine learning libraries for supporting operations
like activation (ReLLU), inner product, and other useful functions (Intel, ).

4.4.2 Training Time

Using Ray we scale our training runs by using from 2 to 8 ¢5.18x instances (containing from
144 cores to 576 cores) on AWS. The scalability results are shown in Figure 4.3. As can be seen
increasing the number of ¢5.18X Xeon CPU instances can significantly reduce the GANSs training
time up to 8 ¢5.18x instances. For the city of Los Angeles, the training time can be reduced from
over one hour to less than 20 minutes. For New York City the training time can be reduced to
just minutes. Running times for sampling ride requests from the trained models and stitching the
images of all the blocks together are significantly less than the training times, and are not included
in these results.

We also conduct our GAN’s scaling experiments using GPU instances on AWS. In our initial
experiments we observe no real performance improvements using GPUs. Training time using
GPUs on AWS was observed to be 5.93 hours on a p3.8xlarge instance using NVIDIA’s Multi-
Process Service (MPS) (Nvidia, ). With MPS, the GPU utilization is close to maximum
by running multiple of our small GANSs training jobs in parallel on a single GPU. Although, the
number of jobs which could be executed in parallel on a GPU are not that many in comparison to
Xeons. Scaling on GPUs requires more investigation. In this work, we show that it is possible to
achieve very nice scalability of our GANs workload using only CPU cores supported by Intel’s
MKL library and Berkeley’s Ray framework.

4.5 Validation of Synthetic Data Sets

We use our trained models to generate synthetic data for a day and validate it using real data by
computing metrics for temporal & spatial variations.
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Figure 4.3: Training Time Performance Results for training our GANs for pickup locations on

AWS with c5.18xlarge Xeon CPU instances. Results for training using drop-off locations show a
similar trend.

4.5.1 Temporal Variation

DPL provides a characterization of the temporal evolution of ride requests. In Table 4.2 we
observe the plot of the DPL exponents a (slop of the line) based on the temporal patterns of the
real and synthetic data sets. For the ride request graph to obey DPL properties, we use graph
generator proposed in Chapter 2 to connect source and destination locations for synthetic dataset.
We clearly see that the DPL exponent values « correlated quite nicely with that from the real data
sets most of the cities. For Los Angeles, the synthetic exponent is higher than the real observed
value?; the geographical region for LA is much larger and due to many prominent regions of
high request density, the model may likely suffer from bias towards generating more requests in
prominent regions leading to a faster increase of the number of edges connecting nodes present
in high density regions.

Another validation of our GANs approach is provided in Figure 4.4. Here we observe temporal
variation of ride requests in terms of the volume of ride requests generated for each hour of a
typical weekday. We see that for all cities, the temporal variation of the synthetic data sets match
quite well the temporal variation exhibited by the actual data set. Our model for Los Angeles
captures the total volume of ride requests over time intervals correctly but it may not necessarily
imply that the model also captures geographical spread of requests within each time interval. For
this reason we observe a high « for synthetic data generated in Table 4.2; it is critical to have
multiple metrics for a model to capture human mobility patterns.

3An increase of 0.1 in exponent translates to ~ 10% decrease in number of nodes.
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Figure 4.4: Plots for all cities highlighting the temporal variability of ride requests visible in
both real and our model (predicted) for ride request generation. The pattern is representative of
any typical day of a week.
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Figure 4.4: Plots for all cities highlighting the temporal variability of ride requests visible in
both real and our model (predicted) for ride request generation. The pattern is representative of
any typical day of a week. All plots start at midnight local time.
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Temporal Properties: Densification Power Law

City « (real data) a (syn. data)
Boston 1.417 1.341
Chicago 1.434 1.486
London 1.302 1.352
Los Angeles 1.053 1.614
Mexico City 1.189 1.274
Miami 0.985 1.185
New Delhi 1.195 1.403
New Jersey 1.063 1.099
New York (ride-sharing) 1.299 1.361
Paris 1.433 1.373
Rio De Janeiro 1.357 1.401
San Francisco 1.250 1.341
Sao Paulo 1.154 1.372
Toronto 1.354 1.571
Washington 1.331 1.429

Table 4.2: Comparison of densification factor @ between real and synthetic datasets.

4.5.2 Spatial Variation

The correlation fractal dimension (D;) gives a bound on the number of ride requests within a
geographical region. This is an essential characteristic to match for the data set we are generating
using GANSs. In Tables 4.3 & 4.4, we provide the fractal range (in meters) for each city within
which the fractal dimension remains constant. The fractal dimension is computed for every fractal
range increment of 100 meters. It is important to highlight again that the fractal range for each
city differs. The fractal range provides the € range for which the data exhibits statistical self-
similarity (Belussi and Faloutsos, ). The variation in the fractal ranges for the different cities
can be attributed to the geographical shape of the city for which the ride requests are generated.
We hypothesize that due to Los Angeles’s sprawling nature, a larger € is needed to observe
self-similar patterns in comparison to the other three cities, which have a more corridor-like
geographical region.

One may also interpret D, as a way to measure the fidelity of generated images to that from
real data. Comparison of the ranges of values of D,, in terms of min, max, and mean values,
for the real and the synthetic data sets are fairly close although not identical. In most instances
the mean value for D, for the synthetic data sets is quite close to the one calculated using real
data sets. In some cases where there is discrepancy between the synthetic and real values of D»,
it is due to the weakness of the model to capture geographical areas with low frequency of ride
requests. Recent works to improve capture learning of high-resolution details of an image (Karras
et al., ) can potentially benefit the learning for our ride request images.
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Real Data Sets

Synthetic Data Sets

City Fractal Range (m.) D> min. Dy max. Dj;mean | D, min. Dj; max. Dj; mean
Boston (600, 2500) 0.990 1.709 1.497 1.169 1.625 1.464
Chicago (600, 3000) 1.143 1.555 1.384 1.188 1.567 1.435
Los Angeles (1500, 4000) 0.955 1.625 1.352 1.047 1.488 1.314
Miami (600, 2500) 0.799 1.389 1.094 0.628 1.210 1.021
New Delhi (450, 2500) 0.657 1.620 1.207 0.353 1.242 0.918
New Jersey (900, 2500) 0.686 1.512 1.183 0.853 1.331 1.081
New York (450, 2500) 1.482 1.750 1.648 1.415 1.662 1.540
Paris (900, 4000) 1.463 1.829 1.763 1.539 1.785 1.697
Rio De Janeiro (600, 2500) 0.302 1.509 1.314 1.061 1.496 1.309
San Francisco (450, 2500) 1.277 1.730 1.548 1.207 1.678 1.442
Sao Paulo (900, 4000) 1.095 1.747 1.613 1.451 1.766 1.622
Toronto (500, 2500) 1.318 1.655 1.564 1.296 1.588 1.477

Table 4.3: Summary of measured correlation fractal dimensions (D) for four cities; computed
over a day for every hour using pickup locations of real and synthetic data sets.

City Fractal Range (m.) Real Data Sets Synthetic Data Sets
D, min. D), max. Djmean | Dy min. Dj; max. D, mean

Boston (600, 2500) 0.614 1.639 1.283 0.604 1.573 1.284
Chicago (600, 3000) 0.328 1.467 1.214 0.388 1.5 1.224
Los Angeles (1500, 4000) 0.118 1.503 1.033 0.214 1.456 1.042
Miami (600, 2500) 0.271 1.277 1.004 0.312 1.261 0.923
New Delhi (450, 2500) 0.134 1.475 1.048 0.055 1.160 0.827
New Jersey (900, 2500) 0.465 1.523 1.125 0.549 1.476 1.04
New York (450, 2500) 0.617 1.716 1.497 0914 1.594 1.413
Paris (900, 4000) 0.672 1.831 1.617 0.831 1.779 1.591
Rio De Janeiro (600, 2500) 0.383 1.470 1.287 0.417 1.428 1.183
San Francisco (450, 2500) 0.496 1.696 1.361 0.570 1.684 1.334
Sao Paulo (900, 4000) 0.360 1.695 1.511 0.599 1.655 1.519
Toronto (500, 2500) 0.799 1.609 1.426 0.530 1.581 1.339

Table 4.4: Summary of measured correlation fractal dimensions (D) for four cities; computed
over a day for every hour using drop-off locations of real and synthetic data sets.
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Figure 4.5: Random walk starting at node s with three random steps to reach node rs3. Final
point is selected uniformly random within the blue colored grid.

4.6 An Alternate Method for Synthetic Generation

As mentioned before to capture spatial properties, we compute the likelihood of a node to either
possess a source or destination location by using geospatial information from OSM’s public
data (OpenStreetMap, ) on node density. To avoid confusion with a node of the Ride
Request Graph, we shall refer to an OSM node® as Point of Interest (Pol). A Pol is defined by a
tuple of latitude and longitude. Pols are used to define standalone features such as traffic signals,
businesses, schools, hospitals, and many others. Alternatively, any other dataset providing a
quantitative measure over geographical space which is correlated with the likelihood of ride
requests can also be used.

Algorithm 2 performs node selection using vector of probabilities pr € R", n = |S|, where S
is a subset of nodes of interest. pr is computed by aggregating all Pols present at a RRG node,
and then normalizing to get the probability mass function across nodes in S. Algorithm 2 takes as
input the number of synthetic points m to be generated, and associates each synthetic point to an
initial node; this is determined from prior probability vector pr. Once the initial node is chosen,
Algorithm 3 performs a random walk starting from initial node centroid such that the synthetic
points are spread out in the geographical area (Figure 4.5). Since Pol data could be sparse, we use
a kernel density estimation function K¢ over the geographical space to guide the random walk.

In Algorithm 2 method randomChoice generates m points with replacement using the prior
probabilities vector pr; geoCoords returns the latitude and longitude associated with the node
label; perturb performs a uniform random selection within the final node (blue area in Figure 4.5)
to determine the final location of the newly generated point.

In Algorithm 3, method randomStep chooses a node amongst the neighbouring eight nodes
(or less) of the current node, curr, by normalizing the probabilities returned by the kernel density
estimates; it returns the new node new, and a reward r. We kept reward equal to the probability
estimate for current node, r = K(curr). Note that every node is defined by latitude, longitude
coordinates of its centroid.

4OSM data is publicly available at http://download.geofabrik.de/

Shttp://wiki.openstreetmap.org/wiki/Node

6We used Gaussian Kernel Density Estimation library http://statsmodels.sourceforge.net/devel/
generated/statsmodels.nonparametric.kernel_density.KDEMultivariate.html
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Algorithm 2 To capture spatial properties. Inputs: Kernel density estimation function K, number
of synthetic points m € N, prior probability vector pr € R"

1: procedure sPATIALPROPGEN(K, m, pr)
2: labels = randomChoice([O0, ... ,len(pr)],m, pr)

3: pts =[]

4: for each pointi € [0,m) do
5: [ =labels|i]
6: s = geoCoords(l)
7: p = RANDOMWALK(K, s, max,, max;)
8: add(pts, perturb(p))
9: end for

10: return pts

11: end procedure

Algorithm 3 Random Walk. Inputs: Kernel density estimation function K, start location s,
maximum reward, and maximum number of steps max, & max;

1: procedure RANDOMWALK(K, s, max,, maxy)
2: let tot F= 0

3: let Nsteps =0

4: let curr = s

5: while tot, < max, and ny,.,; < max; do
6: curr , r = randomStep (curr, K)

7: Nsteps = Nsteps + 1

8: tot, = tot, +r

9: end while

10: return curr

11: end procedure

4.6.1 Temporal Variation

In Table 4.5 we note very similar set of values for densification factor for both real and synthetic
datasets for the three cities. We used Algorithm pENSPROPGEN to pair pickup and drop-off
locations as done after generating synthetic data from GANs as well. Note that numerous
parameters in Algorithm 3 had to be hand tuned apart from picking volume of ride requests from
real data for each time snapshot for which synthetic data had to generated and the exact location
of each ride request for selection of Pols. The obfuscation of real-data is possible but it is a
parameterized approach. For reasons stated in Section 4.1, we believe GANs would still be our
preferred approach.

Temporal Properties: Densification Power Law
City « (real data) a (syn. data)
New York (ride-sharing) 1.098 1.110
Paris 1.054 1.045
San Francisco 1.104 1.087

Table 4.5: Comparison of densification factor @ between real and synthetic datasets.
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Figure 4.6: Temporal variability of ride requests for a typical day in New York using real data
and a pandemic-hit day during Covid-19 when there was a lockdown imposed.

4.7 Modulating Volume of Ride Requests Using GANSs

Covid-19 has affected ride-sharing services immensely in terms of reduction in volume of ride-
requests. Looking at publically available New York yellow cab data for April 20207 when New
York city had imposed a lockdown, we noticed more than fifty percent reduction in ride-requests
in comparison to what we observed in a typical week of 2016, which was used for most of our
analysis and training. We used our GANs model to generate ride requests by tweaking the ride
intensity parameter with the goal that the model would closely imitate the hypothesis that there
was greater than fifty percent reduction in volume of ride requests, and also to understand how
the pattern of ride requests over a day would look like.

In figure 4.6 we compare the volume of requests for a typical day using real data and a
day when lockdown was imposed in New York using synthetic data. Notice the high peaks of
requests are flattened during busy hours and rate of increase of requests is much less during the
pandemic/lockdown. The observed densification factor (@) during the pandemic was still similar
to as observed during a non-pandemic day which was also our observation using real data for a
DPL plot; it is expected for the edges versus node growth to oscillate on the same straight line
defined by « in the DPL plot. Despite the fact that we do not have real pandemic data to verify
the temporal pattern but intuitively looking at Figure 4.6 makes sense since busy hours would
not experience a similar surge in requests during a lockdown as on a typical day. This example
further highlights a what-if scenario which can easily be exploited by applying a GANs modeling
approach.

4.8 Discussion

The emergence of ride sharing services and the availability of extensive data sets from such
services are creating unprecedented opportunities for: 1) doing city-scale data analytics on
urban transportation for supporting Intelligent Transportation Systems (ITS); 2) improving the

"https://wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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efficiency of ride sharing services; 3) facilitating real-time traffic congestion prediction; and 4)
providing new public services for societal benefit. Moreover, the power of neural networks for
machine learning has allowed the creation of useful models which can capture human behavior
and dynamic real-world scenarios.

Simulations are a very useful tool to understand city level dynamics. Simulating the city or
urban dynamics means implementing it step by step, in order to produce something which looks
similar to a real setting. And, doing large number of simulations gives a good estimate of the
evolution and dynamics of the human mobility pattern.

The model used to generate synthetic data generated here is not constrained in the geographical
or temporal space. Although it may be useful to define specific regions and times for which data
should be generated based on the application. The model here can also act as a feature vector for
a particular geographic region for other applications.

The key contributions here include:

* We map the ride requests of ride sharing services into a time sequence of images that

capture both the temporal and spatial attributes of ride request patterns for a city.

* Based on extensive real world ride request data, we introduce a GANs based workflow for
modeling and generating synthetic and realistic ride request data sets for a city.

* We further show that our GANs workload can be effectively scaled using Xeon CPU clusters
on AWS, in reducing training times from hours to minutes for each city.

* Using previous work on modelling urban mobility patterns, we validate our GANs generated
data sets for ride requests for four major US cities, by comparing the spatial and temporal
properties of the GANs generated data sets against that of the real data sets.

* We apply publically available Pol data to generate synthetic ride request data to highlight
that it is possible to generate mobility data even if real data was not accessible for any new
city.

There are other promising avenues for further research. Some open research topics include:

* Using the GANs generated data sets for experiments on new algorithms for dynamic ride

pooling, and real-time traffic congestion prediction.

* Using the GANs generated data sets for conducting experiments on what-if scenarios
related to traffic congestion prediction and mitigation, and planning for future development
of transportation infrastructures.
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Chapter 5

Real-world Applications of Human Mobility

Here we formulate and propose models to handle some real-world applications related to human
mobility. The two problems discussed here require large scale human mobility data to understand
different what-if scenarios. With significant increase in urbanization and penetration of ride-
sharing platforms, it has become essential for public authorities and private entities to focus on
ways to better utilize their resources, i.e. drivers and vehicles. In particular the two problems
discussed here we do a limit study on their effectiveness to tackle growing human mobility
demand:

1. Dynamic Ride Pooling: Increase in ride pooling can potentially benefit society. Human
mobility and transportation is a major issue for many large urban areas in the world. As
ride sharing services become ubiquitous, other than providing convenient and affordable
transportation for the mobile population, there is the potential for such services to also
contribute societal benefits. In this problem, we take a data-driven approach to investigate
the subject of dynamic ride pooling. Dynamic ride pooling in real time without advanced
knowledge of ride requests is a challenging problem. The pooling decisions must be made in
real time for a large number of vehicles. Ride requests occur dynamically and continuously
and can be widely distributed spatially in terms of pickup and drop-off locations. The
pooling decisions must take into account both temporal and spatial proximity of the ride
requests. Increasing the proximity scope for harvesting poolable ride requests can improve
the amount of pooling and overall pooling benefits. However this can also lead to increase
of travel time penalty for riders. Good benefit-cost trade off is essential.

2. Vehicle Placement: Ride-sharing companies specifically have turned their attention towards
the problem of optimizing rider experience. In particular, they have begun to examine
ways to minimize rider wait times. Future vehicular technologies like autonomous cars
can also benefit from algorithms to reduce wait times. The real-time nature of placing
vehicles introduces two challenges: first, drivers should proactively predict where future
pickup requests will be located and go to these locations in anticipation of future pickup
requests, eliminating passenger waiting due to vehicle travel time. Yet to accurately predict
future requests in the next few minutes, drivers must account for not just overall patterns
in ride requests, but also real-time temporal and geo-spatial request fluctuations, which
are influenced by human mobility dynamics. Second, these vehicle (driver) placement
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decisions must be made quickly, which precludes any significant coordination between
different vehicles.

5.1 Dynamic Ride Poooling

In chapters 2 and 3 we have established that human mobility patterns for a city vary both temporally
and spatially, and there is strong spatial clustering in densely populated areas even for very short
time intervals (Jauhri, Foo, et al., ). We make use of this key observation in formulating our
dynamic ride pooling methods. We take advantage of the temporal similarity of spatial patterns
of ride requests in formulating the pooling methods discussed in Section 5.1.3.

5.1.1 Travel Distance Distribution

The distribution of travel distances provides insight about when should a vehicle actively look for
pooling opportunities. If the distribution of trip distances is uniformly distributed, then it would
make sense to pool riders at any point after initial pick up as the penalty of extra travel time
would amortize over riders. However, if the density of travel distance distribution is skewed, e.g.
towards shorter distance trips, then the pooling methods must be more judicious.

We fit the travel distribution to a doubly Pareto log-normal (DPLN) distribution (Reed and
Jorgensen, ) which yields a good fit with parameters. The major insight drawn from this
distribution is the extremely long tail. This is shown for all ride requests (San Francisco) received
over an hour in Figure 5.1a. Given the long tail, the benefits of pooling as a vehicle moves
away from the initial pick up point diminishes, and plateaus after a certain point. A small peak is
visible around 23km which also corroborates prior work (Matsubara et al., ). Inlog-log scale,
Figure 5.1b, we observe that the DPLN distribution may not be the best fit. The distinguishing
feature of a DPLN plot are two linear plots, and a hyperbolic middle (Seshadri et al., )
which are difficult to infer from the plot. Spatial clustering (many dense communities) of ride
requests (Jauhri, Foo, et al., ) along with long tail distribution (shown in Figure 5.1a) of
travel distances provide statistical support for our proposed pooling methods described later.

5.1.2 Ride Pooling

Refer to Table 5.1 for terms and symbols used in this chapter.

The dynamic ride pooling problem involves identifying which ride requests and how many
ride requests should be bundled into a single vehicle. This involves making decisions on the fly, in
real time, in response to spontaneously occurring ride requests. This is done by first identifying a
primary ride request and use it as the reference for further pooling of other additional secondary
ride requests. The pooling of multiple ride requests into a single vehicle is referred to as a plan
P.

Each pooled vehicle is associated with a plan #, and each plan has its associated benefits and
costs. The potential benefits include service efficiency and profitability. With ride pooling, the
average cost for servicing a ride request can be reduced, and fewer vehicles are needed to service
the same amount of total ride requests. The potential costs for ride pooling include inconvenience
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Symbol

Definition

m
time(‘event’, i)

loc(‘event’, i)

00, /)
S,
P
p

k
€t
Esr
€dr

€9

rect(€y, €)

Count of all ride requests.

Timestamp of ride request i associated with an event. ‘event’ here could be
any of the four values: ‘src’: source or pick up; ‘des’: destination or drop
off; ‘src_p’: pick up when pooled’ ‘des_p’: drop off when pooled.
Location of ride request i associated with an event. ‘event’ could either be
‘src’ or ‘des’ i.e. pick up or drop off locations of ride request i.

Angle between the trajectories of ride requests i & j.

All the ride requests received in the ¢-th time window.

Plan is a group of pooled ride requests in one vehicle.

Primary ride request i.e. the first request in any plan. Ride request time of p
is always earlier than any secondary request in plan #.

Maximum number of requests allowed in a plan.

Length of a time window (minutes).

Radius of the circular source region, that centers at [oc(‘src’, p) (primary
request’s pick up location).

Radius of the circular destination region, that centers at [oc(‘des’, p) (pri-
mary request’s drop off location).

Maximum angular difference (in degrees) between the trajectory of the pri-
mary ride request and the trajectory of any secondary ride request.
Rectangular region with width €, and length ¢;.

Table 5.1: Terms and Symbols
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Figure 5.1: Double Pareto lognormal fitting results with parameters
a =0.033,8 =2.54,v = 1.572, 7 = 0.494 for travel distance distribution of ride requests
received for a period of an hour in San Francisco. DPLN fit is depicted by the red line.

to the riders in terms of longer wait time for pick up and/or longer travel time for drop off. Also,
to accommodate large number of pooled ride requests in one vehicle, larger sized vehicles may
be needed. Hence, dynamic ride pooling requires performing trade offs between the benefits and
the costs. The goal is to maximize the benefits while minimizing the costs. Given the set of all
ride requests, the task is to find mutually exclusive subsets, or plans £, of ride requests, such that
each subset can be pooled into one vehicle.

We do not focus on the problem of finding optimal routes for each plan. Given travel times
for different road segments, there are plenty of known navigation algorithms (Bast et al., )
which work well in practice. The optimal route problem is strongly dependent on the quality
of the pooling plans. A sub-optimal plan of requests would yield sub-optimal overall solution
regardless how optimal the route finding algorithm is. Therefore, our focus is on solving the
problem of finding groups of ride requests which can be effectively pooled.

Effective pooling must take into account both temporal and spatial proximity of ride requests.
This means that in searching for requests which can be pooled, one should only consider ride
requests that occur very close in time, and with pick up locations that are very near each other.
Also, the drop off locations should not be too far apart. In order to perform real-time and on-
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demand ride pooling, we need to impose a very small time window as the temporal proximity
constraint. This means that pooling can only occur for rides that are requested within a small time
window of size ¢, typically on the order of few minutes. All rides requested within the same time
window ¢ is denoted S;. The next time window ¢ + 1 immediately follows ¢ with same duration of
€; with its ride requests denoted as S;,;. Here we fix ¢ at 5 minutes and only consider pooling of
ride requests occurring within each 5 minute interval. Next subsection presents several options
for the spatial proximity constraints.

5.1.3 Pooling Methods

For any ride pooling plan P, all ride requests in the plan must satisfy certain specified proximity
constraints. We have already specified the temporal proximity constraint of ;. Here we present
three options for specifying the spatial proximity constraints. There are two aspects to the spatial
proximity constraints, one for specifying proximity of all the requesting or pick up locations,
i.e. between pick up locations of the primary request loc(‘src’, p) and any secondary request j
given by loc(‘src’, j). The other aspect for specifying proximity of all the destination or drop off
locations, i.e. between loc(‘des’, p) and loc(‘des’, j). We now introduce three specific pooling
methods based on how each defines the size and shape of the source (pick up) region and the
destination (drop off) region as its spatial proximity constraints for pooling. Each pooling method
starts with a reference or primary ride request p and specify its source and destination regions
relative to the pick up and drop off locations of p.

Restricted (RES)

The first pooling method, called Restricted (RES) pooling, is illustrated in Figure 5.2. The source
region is a circle centered at the source of p with radius €,, and the destination region is another
circle centered at the destination of p with radius €;. Therefore, any ride request that starts
in the source region of p and ends in the destination region of p satisfies the spatial proximity
constraints and becomes a candidate for pooling with p. Hence, given a primary ride request
p, and other ride requests within the same time window given by the set S; — {p}, any request
j €S8, —{p} is added to the plan P if:

1. dist(loc(‘src’, p) —loc(‘src’, j)) < €

2. dist(loc(‘des’, p) — loc(‘des’, j)) < €gr
where €, and €4 define the circular source and destination regions centered around pick up
and drop off locations of the primary ride request, respectively; disz() returns the straight line
between the two points. Keeping €, and €4 small will result in smaller source and destination
regions, which can ensure that all requests in each P are highly proximal. This means all the ride
requests in £ can be serviced without incurring too much time penalty for riders. However, this
can unnecessarily limit the potential benefits of ride pooling. In Section 5.1.7 we explore more
in depth the various possible configurations (different values of €, and €4,) for the RES pooling
method.
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Figure 5.2: Restricted Pooling: The source region is defined by a circle with radius €, and centers
at the pick up point of the primary request p. The destination region is defined by another circle
with radius €4 and centers at the drop off point of p. Secondary ride requests can be pooled with
p, if their pick up and drop off points are located inside the source and destination regions of p,
respectively. Both secondary ride requests shown (s, s2) meet this requirement.

Directional (DIR)

The RES method is quite restrictive and misses many additional pooling opportunities. By simply
enlarging the RES circular regions is not the most effective way to increase ride pooling. We
introduce a more efficient way to enlarge the source and destination regions by incorporating
directionality. The Directional (DIR) pooling method is illustrated in Figure 5.3. The source
region for DIR is defined by a rectangle, containing the source location of p (primary ride
request), with width €,, and length ¢;, and a companion trapezoidal destination region, containing
the destination location of p, and defined by an angular parameter €y. By imposing this angular
parameter as a constraint, more potential ride-pooling candidates can be identified along the
direction that matches the trajectory of the primary ride request p. As shown in Figure 5.3, the
trapezium has an open side; this means a secondary ride request does not have to end near the
destination of the primary ride request, as long as the angle of the secondary request relative to
the primary is less than €y, it can be included in the plan. This facilitates much larger destination
regions without incurring significant travel time overhead to pick up and drop off additional riders.

Therefore, for the DIR pooling method, any ride request that starts in the source region of p
and ends in the destination region of p satisfies the spatial proximity constraints and becomes a
candidate for pooling with p. Hence, for a given primary ride request p, and any other request
Jj € 8; — {p} in the same time window ¢, j is added to the plan P if:

1. loc(‘src’, j) € rect(ey, €)
2. 10(j,p)l < e
where rect(e,, €) defines a rectangular source region with width €,,, and length ¢, |6(/, p)|

defines the angular difference between the trajectories of ride requests j and p, and €y defines the
maximum angular difference allowed between any j and p.

Hybrid (HYB)

The Hybrid (HYB) pooling method is a combination of RES and DIR. HYB first pools using
RES then pools additional candidates using DIR. The intuition is that RES first takes care of
pooling all spatio-temporally proximal ride requests. Then, DIR efficiently captures the additional
directionally proximal ride requests. DIR is only applied to the requests that did not get pooled
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Figure 5.3: Directional Pooling: The source region is defined by a rectangle with width €, and
length ¢; that starts at the pick up point of p and stretches its length along the direction towards
the drop off point of p. The destination region is an adjacent trapezium (with an open side) that
contains the drop off location of p. The slant of the trapezium is defined by the angular parameter
of €. Secondary ride requests can be pooled with p if their pick up and drop off points are inside
the source and destination regions and their trajectory angles towards their drop off points are
withing €y relative to that of p. The two pooled ride requests s; and s, meet this requirement.
Note that the pick up points of both s; and s, are within the rectangle. The angle between the
trajectory of p and each pooled ride s; satisfies 0(p, s;) < €.

&}

Figure 5.4: Hybrid Pooling: The two circular regions are used for the RES pooling phase. The
rectangular and open trapezium regions are then used for the DIR pooling phase. Two pooled
rides are shown with one satisfying conditions for RES pooling, the other for DIR pooling.

circle radius e, circle radius

with RES, because doing otherwise can incur additional costs to the RES plans. Figure 5.4 shows
the HYB pooling regions.

5.1.4 Pooling Metrics

To quantify the benefits and costs of a plan, we define the following four metrics. The first two
metrics measure the benefits achievable by a pooling method. The third metric concisely captures
the potential for pooling. The fourth metric is a per-rider cost metric measuring the inconvenience
experienced by each rider participating in pooling.

Total Travel Distance Reduction

The total travel distance saved by a plan is calculated by taking the difference between the sum of
individual travel distances if no pooling occurred and the total travel distance of the pooled plan
(accounting for picking up and dropping off all the riders):
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dist_red(P) = Z travel_dist(i) — travel_dist(P)
ieP

The total travel distance reduced by pooling as a percentage over all the ride requests for an
entire week is defined as:

Ypdist_red(P)
ZTZI travel_dist(j)

total _dist_red_ % = 5.1
Vehicle Count Reduction

Number of vehicles reduced by a plan is:
veh_red(P) =|P| -1

The total number of vehicle count reduced as a percentage over all the ride requests for an
entire week is defined as:

Ypveh_red(P)

m

total_veh_red % =

(5.2)

Average Poolability

Poolability is defined as the percentage of ride requests that are poolable over all ride re-
quests (Jauhri, Foo, et al., ). If a ride is poolable, it will belong to a plan # along with the
primary ride request. Real-time pooling is possible if poolability can be calculated within the
small time window, €; (next Section 5.1.5, explains time windows with more details). Poolability
for a given time window can be calculated as:

2, [Pl
S|

poolability(P;,S;) =

where % is the set of all the plans for the time window ¢.
Average poolability over all time windows is given by:

avg_poolability = mean(z poolability($,S;)) (5.3)
t

Equation. 5.3 provides the average poolability over all time windows. This is a more relevant
metric to highlight the benefits of on-demand real-time pooling in comparison to aggregate
poolability across time windows i.e. fraction of all ride requests poolable over all ride requests
received across all time windows.
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Average Trip Time Penalty

We model the average trip time penalty to be the delayed arrival time at destination for a rider
when participating in a pooling plan. This penalty for any request i can be calculated as:

arrival_penalty(i) = time(‘des_p’, i) — time(‘des’, i) (5.4)

where ’des’ denotes the event of arriving at destination if i were not pooled and ’des_p’ denotes
the same but pooled.

It is important to note that arrival_penalty(i) may have a negative value. This usually
happens when a plan is able to pick up a request earlier than its original pick up time, that
is time(‘src_p’,i) < time(‘src’,i). Also, Equation 5.4 only makes sense when i is poolable;
non-poolable rides are not considered when calculating average trip time penalty.

The overall average trip time penalty is computed by taking the mean across all pooled riders:

2 Qiep arrival_penalty(i)
2p P

avg_penalty = (5.5)

5.1.5 Experimental Details

Following are some important details regarding our experimental setup. First, in order to meet
the temporal proximity constraint in real-time pooling, pooling methods have to divide the entire
week into small time windows with €; =5 minutes. Pooling would only occur among ride requests
occurring in the same time window; this ensures that ride requests get pooled together only if
they occur near the same time. Note that the division into short time windows is also helpful in
capturing the dynamic temporal patterns of the pooling metrics over an entire week.

After all the ride requests in our (week long) data set are separated by time windows, pooling
methods are applied under specific rules. In each experiment, requests from the same time
window are processed one at a time in chronological order. Each request is viewed as the primary
request seeking for other pooling candidates. Once a plan, P, is established, the decision of the
order of pick up and drop off for each passenger and the exact routes to take in between these
locations are as follows:

1. The order of pick up follows the order of request times.

2. The order of drop off is based on the distances away from the last pick up location, from
nearest to farthest.

3. Routes to take in between any two geographical points are queried from GraphHopper, an
open-source route navigation and planning tool (Karich and Schroder, ) that runs with
maps and speeds using PBF! files by OpenStreetMap (OpenStreetMap contributors, ).

GraphHopper is also useful in calculating the travel distance and arrival time of each request if
no pooling occurred. This is necessary for computing both the distance saved and extra distance
incurred when a request participates in a pooling plan.

The above steps are repeated for different combinations of pooling methods, cities, maximum

pooling degrees (maximum number of riders in a plan), and shapes and sizes of source and

1PBF files are available at http://download.geofabrik.de/
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destination regions. We refer to a specific combination of methods and parameters as a pooling
configuration. A pooling configuration consists of a pooling method and all its associated
parameters. The short form notation METHOD < e, €,,, k > is used through out this chapter to
facilitate comparison between different pooling configurations.

In our parameter space (€, €4y, €y, €1, €9, kK, and METHOD), two out of the seven parameters
are kept to constant values for all experiments. The radius of the circular destination region, €z,
used in RES, is fixed at 1000 meters. This is because increasing €, in RES does not provide
enough benefits and at the same time incurs additional time penalty. The benefits of expanding
the area of pooling regions to search for more pooling candidates can be achieved with increasing
€, for RES pooling, and in DIR pooling by using open ended trapezium (shown in Figure 5.3).
Also, the maximum angular difference, €y, is fixed at 20 degrees which gives a reasonable size to
explore in the destination region in DIR pooling. The length of the rectangular source region in
DIR, ¢, varies for each pooling configuration, is explained in Section 5.1.7.

5.1.6 Experimental Goals

The goal of running such experiments on a real world data set is to find answers to the following
questions,
* What are the best values to use for €, and €,,? €’s should ideally be kept small to exploit
spatio-temporal proximity, but expanding these search regions can capture more pooling
candidates.

* What is the best value of k? What is the effect of limiting k to small values since a typical
vehicle may only be able to pool up to 3 or 4 passengers in the real-world setting? What if
k is unrestricted, how much pooling is there?

* When selecting a pooling method for a particular city, how does one know which pooling
method and configuration might be the best choice?

* How do all these factors correlate and vary in different cities, in different areas of a city, on
different days of the week, at different times of the day?

* What is the best combination of these parameters that gives the best trade-off between
benefits and costs?

These are all important questions in order to achieve effective dynamic ride pooling and we
tackle them in this chapter.

5.1.7 Experimental Results & Analysis

Pooling Parameters & Configurations

We first characterize how each of the parameters ¢;,, €,, kK behave individually. This can be done
by sweeping a range of values for each parameter while holding all other parameters constant.
Below are independent sweeps of the three parameters that are of interest, €5, (radius of RES
circular source region), €,, (width of DIR rectangular source region), and k (maximum degree of
pooling) for the city of San Francisco.
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Figure 5.5: RES< %, NR, 10 > for San Francisco

Figure 5.5 shows the results, in terms of the four pooling metrics (Equations 5.1, 5.2, 5.3,
and 5.5), for the RES pooling method with the sweep of €, from 100 to 1000 meters. The other
parameters are fixed at €5, = 1000m, and k = 10. €, width of rectangle is not relevant (N R) for
RES. This set of pooling configurations is denoted RES< %, NR, 10 >.

Figure 5.5 shows some very interesting trends as we increase the radius of the source region
€ from 100m to 1000m. As the size of the source region increases, there is significant increase
in the benefits of RES ride pooling. All three benefit metrics rise sharply but start to encounter
some diminishing returns around €5, = 500m. Unfortunately the cost in average travel time
penalty also increases, but at a slower rate. The rate seems to accelerate starting at, interestingly,
also around €5, = 500m. These results suggest that for RES pooling, the choice of €5 = 500m
provides the best benefit-cost trade off.

We next examine the pooling parameter €, the width of the rectangular source region for
DIR pooling. In this work, the length of the rectangle ¢; is computed based on the primary ride
request by the following equation:

€t

€= ( ) X dist(loc(‘des’, p) — loc(‘src’, p)) (5.6)

time(‘des’, p) — time(‘src’, p)

Essentially € is set as a portion of the straight-line distance between the drop off and pick
up points of p. This limits the size of the rectangle so as to ensure all pick ups of pooled ride
requests can be done within the time window of ¢;. Figure 5.6 shows the results for DIR pooling
as we vary €, from 200m to 2000m, while keeping k = 10. Value of €, is not relevant (N R) for
DIR pooling. We denote this set of pooling configurations as DIR < NR, *, 10 >.
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Figure 5.6: DIR < NR, «, 10 > for San Francisco

Figure 5.6 exhibits very similar trending for the three benefit metrics as Figure 5.5. However
the benefit curves for DIR are significantly higher than that for RES, although there seems to be
slightly stronger diminishing returns at large values of €,. Corresponding with higher benefits,
the trip time penalty is also higher for DIR, due to the overhead for picking up and dropping off
more riders. However the penalty curve for DIR seems to stay quite linear missing the steeper
rise of RES. These results clearly indicate there is significantly greater pooling opportunities and
benefits with the DIR pooling method as compared to RES. The down side is the greater trip time
penalty that will need to be addressed.

Finally we examine the parameter k, the maximum pooling degree allowed per vehicle, by
varying k from two to nine. Figure 5.7 shows the results for the set of pooling configurations of
DIR < NR, 2000, = >. We see very similar trending of the benefit and cost metrics in Figure 5.7
as in Figure 5.6. Similar to increasing pooling region size, increasing the maximum pooling
degree also increases the benefits. There is substantial gain in allowing more ride requests to be
pooled in each vehicle. However, there is a clear “knee” in the curves for all three benefit metrics
at around k = [4,5]. The cost curve is still mostly linear. These results indicate that there is
significant benefit even at low values of k = [2,3]. On the other hand the benefits continue to
increase, with some diminishing returns, at high values of k = [8, 9].

Pooling Method Comparison

We next focus on comparing the different pooling methods and determining the best pooling
configurations, in terms of achieving the best benefit-cost trade off. Figure 5.8 compares the
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Figure 5.7: DIR < NR, 2000, = > for San Francisco

benefits and cost of the three pooling methods RES, DIR, and HYB, using their respective
configurations of : RES < 100, NR,3 >, DIR < NR,2000,3 >, and HYB < 100,2000,3 >
in San Francisco. Comparing to RES, DIR achieves roughly 7x improvement on total distance
saved and 9x improvement on number of vehicles reduced. These improvements come with a
9x increase in average travel time penalty. Although the roughly 3-minute average travel time
penalty is quite tolerable. Going from RES to DIR essentially relaxes the spatial proximity
constraints and exposes more pooling opportunities. However, the increased benefit comes with
greater penalty.

Comparing to DIR, HYB achieves very comparable benefits. However the average travel time
penalty for HYB is approximately 10% lower than that of DIR. Using RES, HYB first captures all
the spatio-temporally proximal requests at much lower travel time penalty. HYB then uses DIR
to significantly increase poolable ride requests beyond that of RES by pooling many directionally
proximal ride requests.

With fixed values of €, = 100m, €,, = 2000m, and k = 3, Fig 5.8 clearly shows that among
the three pooling methods, HYB is the preferred choice. The next subsection further explores the
HYB pooling method by sweeping the parameters to search for best HYB pooling configurations.

5.1.8 Best Pooling Configuration

In this search for the best HYB pooling configurations, we vary the values of €, from 100m to
1000m, and k from 2 to 10, but fix €, = 2000m. Using €,, = 2000m maximizes the size of the
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Figure 5.8: Metric comparison between RES, DIR, and HYB

DIR pooling regions. Smaller values unnecessarily limit opportunities for pooling. The resultant
set of pooling configurations is denoted HYB < %, 2000, = >. Figures 5.9a, 5.9b, and 5.9c, show
the results of HYB < %,2000, = > for San Francisco, New York, and Los Angeles, respectively.

Looking at the results, we see both similarities and differences across the three cities. All
the benefit metrics increase with increasing €, (size of source region) and k (maximum pooling
degree). For k there is a strong diminishing return beyond k£ = 3. There is also a slight diminishing
return beyond €5, = 500m. The travel time penalty curves for all three cities also exhibit very
similar patterns, with an interesting inflection point around €5, = 500m. The “dip” is more
apparent as k increases. This has to do with the balancing of pooling attributed to RES v.s. DIR.
When €, is small (100m) most of the pooling comes from DIR which gives great benefits but
also has heavy penalty (shown in the previous subsection). As €, increases, RES can finally start
to capture all the spatiotemporal proximal requests while bringing overall average penalty down.
This indicates that €5, = 500m yields the best balance between RES and DIR where strengths of
both methods are leveraged. It seems quite clear the sweet spots of kK = 3 and €;, = 500m would
be the best pooling configuration.

We also observe significant differences across the three cities. The three cities exhibit quite
different levels of poolability. In New York, 50-60% of all ride requests are poolable, while in
Los Angeles only 30-35%. San Francisco is between these two extremes. We see very strong
correlation between poolability and the two benefits of total travel distance reduction and total
vehicle count reduction. Again, New York has much higher levels for both benefits as compared
to Los Angeles. What makes New York so ride pooling friendly and why is it so much more
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Figure 5.10: Temporal pattern of the four pooling metrics over a week for three cities.

difficult to do ride pooling in Los Angeles? These are good questions for future research.

We conclude that the best pooling configuration is HYB < 500,2000,3 >. Across the three
cities, HYB < 500, 2000, 3 > yields on average 15.76% of total travel distance saved and 31.22%
of number of vehicles reduced, while incurring an average trip time penalty of only 135.84
seconds. This translates to roughly one out of every three vehicles can be removed from the roads
if riders are willing to ride pool and accept a travel time penalty of approximately two minutes!
These results are quite encouraging and imply that dynamic ride pooling is a must for densely
populated urban areas.

5.1.9 Temporal Patterns

There are interesting weekly temporal patterns for all four pooling metrics. Figures 5.10a, 5.10b,
5.10c, and 5.10d, plot the weekly temporal patterns of the four metrics for the three cities, using
the pooling configuration of HYB < 500, 2000, 3 >. The plots start at 5:00 PM. PST (12 A.M.
UTC) on a Friday and each data point is an aggregated value over a 4-hour period (hence a total of
42 data points for a week). All of these plots share similar weekly patterns and correlate well with
the weekly pattern shown for ride requests. It makes sense that during times of higher ride request
volumes there is greater poolability and potential for pooling benefits. For instance, poolability
can reach up to 60% on weekend afternoon hours. Figure 5.10d depicts that the average penalty
is higher during low ride request volumes. The temporal pattern should be quite useful in guiding
the implementation of ride pooling algorithms that can potentially be temporally adaptive.
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5.1.10 Trip Distance & Duration Distributions

Another interesting perspective to look at the pooling results is creating distributions of requests
(trips) by their route distances and savings. Figure 5.11 shows the distribution of all requests
by their route distances in San Francisco over a week. Notice the bump around trip distances
of 23 to 25 kilometers; we believe this could be due to large volume of trips between the San
Francisco International Airport (SFO) and the downtown areas. Pairing this with the distribution
of distance saved binned by trip distances (Figure 5.11, with HYB < 500, 2000, 3 >), another
insightful observation can be made; approximately 5% of all requests are responsible for over 30%
of the total travel distance savings! This could be very useful information in the implementation
of pooling algorithms that can maximize the benefit/cost ratio.

5.1.11 Societal Benefits of Pooling

Dynamic ride pooling has significant potential for societal benefits. For example, reducing total
travel distance by 15% leads to proportional reduction in fuel consumption and CO, emission.
Taking 31% of vehicles off the roads can reduce traffic congestion in a city. Notice our results
indicate that as the ride request volume increases there is greater potential benefit for ride pooling.
Ride sharing services can reduce their overall operation cost and improve their efficiency. This
then leads to lower cost for the riders. There is the potential for a simultaneous three-way win
that benefits ride sharing companies, mobile population, and densely populated cities.

5.2 Vehicle Placement

In this section, we formulate the fine-grained (at a timescale of less than a few minutes and spatial
scale of a few hundred meters) real time vehicle placement problem, and propose a distributed
online learning approach to this problem. An online learning algorithm gives us the flexibility to
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consider real-time ride request patterns in making our placement decisions. Historical information
can help inform these decisions, but the utility of such historical information may vary a lot geo-
spatially.

5.2.1 Problem Definition

We consider a geographical surface that is divided into equally sized cells of side length € each,
as shown in Figure 5.12a, to get an aggregate of a X b cells. We suppose a consecutive set of time
snapshots, taken at intervals 7., where each time snapshot ¢ specifies a set of drop-offs at different
cells, represented by the matrix D, € Z**? and pickups P, € Z**? of ride requests. Each (i, j)
entry in D; or P, is the sum of all drop-offs or pickups that occurred at ¢, in cell (i, j). In this
work, we have kept the length of each time snapshot interval to be a few minutes, reflecting our
goal of keeping rider wait times under two minutes. The real time vehicle placement problem is
to decide how to move vehicles from drop-off cells at time snapshot ¢ to neighboring cells such
that pickups happen at those cells at # + 1. Formally, our goal is to place vehicles in the “best”
neighboring cells, i.e., so as to maximize a reward at time snapshot ¢ that is defined as:

1
Ri(P.Ty) = - > min(P,[i, j1, T, [i, j1) (5.7)
LJ

where: T, € Z**?; each entry represents the number of vehicles placed at each cell, or zero oth-
erwise. n; = )¢ Z? D, [i,j]=X¢ Z? I';[i, j]; the number of drop-offs at # — 1 or equivalently,
the number of placements at ¢. For any ¢, P, is known and the goal is to find I'; using D,_; such
that R; is maximized. The reward R; thus represents the average number of successful pick-ups
per cell.

The algorithms decide the placement of each vehicle without knowing where future pick-ups
will occur. Moreover, for every drop-off by a vehicle at time 7 — 1 at cell (i, j), its corresponding
placement at r may be either (7, j) itself or one of the neighbouring cells. This constraint is
shown by the bolded cell outlines in Figure 5.12a. The number of neighbouring cells at which
the vehicle can be placed is determined by the vehicle’s ability to travel to the neighbouring cell
within the time snapshot interval; it is thus determined by the length of the snapshot interval
(t¢) and €. This constraint also ensures that vehicles incur negligible cost (e.g., gasoline used)
in moving to the exact pick-up location, as they only move to neighbouring cells. We denote the
radius of the permitted neighbourhood by €’. The goal of our online algorithm is then to choose
the vehicle placements within any time interval [¢# — 1,¢) so as to maximize the reward (5.7),
subject to the constraint that vehicles cannot move too far from the cell where they dropped off
passengers at time t — 1. Any excess placements for 7 are not considered in the reward function
for pickups after t; for ¢ + 1, placements are computed using drop-offs at 7 only.

The real time vehicle placement problem generalizes other known problems in computer
science. For instance, in the k-server problem one must place k servers within a metric space so
as to fulfill requests that can come in at any point in the space (Manasse et al., ). Viewing the
servers as vehicles, our problem is a dynamic version of the k-server problem: we must adjust the
vehicle placements in real time as new requests arrive, subject to constraints on the travel time of
the vehicles.
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Figure 5.12: Illustration of vehicle pick-ups and drop-offs.

5.2.2 Proposed Algorithms

In this section, we examine in detail three potential algorithms for the real-time vehicle placement
problem. We make use of the fractal analysis in the previous section to analyze their effectiveness.
For each drop-off, the possible set of neighboring cells to which the vehicle can potentially be
moved are restricted; see Figure 5.12a. If the drop-off location is in the (i, j) cell, then the set of
neighboring cells within a square-shaped neighborhood centered at (i, j) and containing ¢ cells
is denoted as (0, (i, j), ¢). Figure 5.12a illustrates neighborhoods with ¢2 = 3x3 cells.

Baseline Algorithm: Our simplest baseline (Algorithm 4) assumes a uniform weight across
all neighbouring cells without considering any past history on the number of requests in those
cells.

Algorithm 4 URand-NH (Uniform Random with No History)

Require: Search radius €’; cell length €; D;, P; Vi € {1,..., k}.
1: for each time snapshot # = 1,2, ..., k do

2: T4 =0, eRP

3: for each non-zero entry (7, j) € D; do

4. Pick asetof cells N = n (1, (i, j), ZT‘,)

5: Choose a cell € N uniformly at random with coordinates (i’, j’).
6: Lol 71 =T [, ']+ 1

7 end for

8: Obtain rewards for Ry (P41, T41)

9: end for

Poisson Process Based Algorithm: To capture the temporal pattern of ride requests, we
consider a placement approach that models ride requests for every grid as a Poisson Process,
as used in (Zhang et al., ) (Algorithm 5). Numerous works (Oliveira and Barabdsi, ;
Castellanoetal., ) have recommended against modeling human behavior as a Poisson process,
due to the assumption made in the Poisson Process that consecutive events happen at regular time
intervals. Contrarily, human activity tends to be bursty for short time intervals accompanied by
long intervals of inactivity (Barabasi, ; Alfi et al., ). For this reason, our maximum
likelihood estimator (MLE) estimator is based on limited, and most recent history of inter arrival
times of ride requests. Formally, let N(z),# > 0 be the number of ride requests (events) that
occurred by time ¢.
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Lemma 3. The probability of at least one event occurring in the time snapshot t is given by:
Pr{N(t) > 0[A}=1—-¢ M (5.8)

Proof: See (Harchol-Balter, ).

Algorithm 5 PP-LH (Poisson Process with Limited History)

Require: Search radius €’; cell length €; D;, P; Vi € {1, ..., k}; history length m; min. samples u.
1: for each time snapshot t = (m + 1), (m+2), ..., k do

2: M=0eR¥P

3: Ty =0, eR¥>P

4: M=3",_, D;+P;

5: Estimate A for each cell entry having a value > u in M by computing MLE using inter-arrival times.
6: for each non-zero entry (i, j) € D; do

7: Pick a set of cells N = (1, (i, j), 2?6,)

8: Choose a cell (i/, j’) = argmax; jyen Pr{N (1) > 0|A[i, j]} (see Equation 5.8).

9: Lo [, j' 1 =Tent [, '] + 1

10: M[i,j']1=0 > Not discarding (i’, j’), degrades performance since it might be considered again.
11: end for

12: Obtain rewards for Ry (P41, T41)

13: end for

For any instance when none of the neighbourhood cells have an estimator € A, the algorithm
falls back to uniform random strategy (like for URand-NH) from within the set of neighbors.

Follow The Leader (FTL) Algorithm: Follow The Leader is a sequential prediction strategy,
which always puts all the weight on the cell with the highest reward so far. It has been applied
to multiple online problems for time series predictions (De Rooij et al., ). If there is a tie
among the leaders, i.e., there are multiple leaders in the neighbourhood with equal reward values,
a leader is chosen uniformly at random. If all cells are zero, FTL-CH also falls back to a uniform
random strategy.

Algorithm 6 FTL-CH (Follow The Leader with Complete History)

Require: Search radius €’; cell length €; D, P; initial history length m.
1: for each time snapshot t = (m + 1), (m+2), ..., k do

2: M=0eR¥P

3: T =0, eRP

4 M=3'7D;+P;

5: for each non-zero entry (7, j) € D; do

6: Pick a set of cells N = n(q, (i, j), 2T€/).

7. Choose a cell (i/, j') = argmax(; jyeny M[i, j].
8: Tt [V, j' 1 =Tr [, '] + 1

9: end for

10: Obtain rewards for Ry (P41, T41)

11: end for

5.2.3 Analysis & Results

In this section we analyze the performance of our proposed algorithms. We use the fact that our
ride request data exhibits self-similarity to provide an average bound on the algorithms’ reward
functions.

Reward Analysis: Given the observation of self-similarity, we are primarily interested in
approximating queries such as: what is the average number of neighboring cells which are
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intersected by some neighborhood shape (like square or circle) of a certain length. Let nb(€’)
denote the average number of points within an enclosed square O of radius €’ where €’ € (€1, €)
for which self-similarity is observed. Note € > €. An important consequence of this is:

We now evaluate the performance of our algorithms under this self-similarity assumption.
We assume throughout that our performance is determined by the placement strategy, i.e., the
number of drop-offs is smaller than the number of pick-up requests in a given neighbourhood.
Otherwise, if the number of drop-offs is too large, any strategy is likely to perform well. We show
in our numerical analysis (Section 5.2) that this assumption holds in our dataset.

Theorem. Suppose that the total number of drop-offs in a given cell of radius €' is no more than
the expected number of pick-up requests in a cell. Then the expected performance of FTL-CH
is strictly better than URand-NH for any pickup matrix P, with 1 < Dy < 2: Eprp.ca[R:] >
Evrana-ne [ R:], and the expected number of fulfilled pick-ups per drop-off with FTL-CH exceeds
that for URand-NH.

Proof: In a given grid with radius €’, the expected reward for the Follow The Leader with
Complete History (FTL-CH) algorithm at time ¢ is given by the minimum of the number of
drop-offs in that grid at time ¢, which we denote by D, and the number of pickups at time ¢ + 1
within the cell (i, j) chosen by the FTL-CH algorithm: all drop-offs at time ¢ are placed in cell
(i, j) at time ¢ + 1. The expected number of pickups in this cell is then proportional to €2 from
Lemma 2, and the expected reward is min {D, CeP 2} for some constant C > 0.

If D < CeP2, then the expected reward with FTL-CH is D, which is also the maximum
possible reward. Thus, the uniform random strategy cannot perform any better.

To show the second part of the theorem, we note that for the uniform random strategy, the
expected fraction of total pick-ups in the grid that can be fulfilled by one drop-off is €2/ €,
i.e., the reciprocal of the number of cells in a grid. Then the expected number of pickups
fulfilled is the expected total number of pickups multiplied by this fraction, i.e., Ce’??72¢? =
CeP2 (e/€')*™P2 < CeP2, the expected number of pickups under FTL-CH, since 1 < D, < 2 and
e<¢€.

Theorem. Suppose that the expected number of future pickup requests in each cell at time t is
given by the number of requests experienced in the past interval of [t — 1,t), and the interarrival
times of a sequence of pickups follow an Exponential distribution. Then the expected performance
of FTL-CH is equivalent to that of PP-LH: Eppp.cu[R:] = Epp.ru[R:].

Proof: Using Lemma 3 with # = 1, we claim that the placement cell chosen by PP-LH will
on average have experienced higher pick-ups than any of its neighbouring cells for a fixed time
interval. This is true because with the interval [ — 1, f), the maximum likelihood estimator for the
Exponential distribution is the inverse of the mean inter-arrival times. The resulting A estimate
will be large for cells which have high rate of events, or equivalently cells which observed more
events in the given time interval. From (5.8), we then see that PP-LH will choose the cell with
the largest A estimate, i.e., the cell that experienced the most number of events. Thus, the average
reward obtained by PP-LH will be equivalent to that of FTL-CH 2.

2For a more detailed proof refer to Lemma 1 in https://classes.soe.ucsc.edu/cmps290c/Spring09/
lect/10/wmkalai-rewrite.pdf.
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5.2.4 Experimental Results with Real Data

We apply the three algorithms to the ride request data sets and find the achieved rewards in
each, indicating the effectiveness of the algorithms. Figure 5.13 plots the reward functions for
the three algorithms for each 3-minute (7¢) time interval over a week. € = 500 meters which
effectively means there are 10? possible cells (total cells = (ZTE')Z) for any vehicle to be placed in.
In Algorithms 5 and 6, m = 20 and 3 respectively.

The weekly 7-day pattern of these functions can be clearly seen. All three algorithms tend
to be more effective when there are large numbers of ride requests. Supporting the claims in
Theorems 5.2.3 and 5.2.3, PP-LH and FTL-CH perform similarly for all cities. On average, the
reward percentage for PP-LH is 0.75% better than FTL-CH. In San Francisco, PP-LH guarantees
that 11.7% of pickups occur almost instantaneously, roughly within thirty seconds of the ride
requests, since our cells are of length e = 100 meters. The average rewards using PP-LH for
Chicago, Los Angeles, and New York yield similar results of 11.1%, 7.2%, & 10.2% respectively.
Los Angeles has the lowest expected reward as well as the lowest average correlation fractal
dimension D, (Figure 3.1).

5.2.5 Experimental Results with Synthetic Data

Using synthetic data generated using the GAN approach in Chapter 4, we conducted experiments
for the vehicle placement for day of data and compared it with real data. In Figure 5.15, synthetic
data tends to mostly predict higher than real data but the trend over a typical data is captured for
most of the time snapshots.

5.3 Discussion

There are several important insights from this work. 1) History of past pickups and drop-ofts
helps; although when accompanied with some sort of randomization does not necessarily help to
boost the performance of the algorithm. For instance, uniform random selection of the leader as
in the case of our FTL-CH, does as good as selecting a leader with the lowest index (Blum and
Monsour, ). 2) We believe randomization is essential but some weighting mechanism needs
to be considered which can be characterized with the help of self-similarity. 3) Having limited
most recent history is almost as good as having complete history. One obvious extension is to
consider vehicle placement actions not just in the next time snapshot but on a longer time scale.
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Figure 5.13: The PP-LH algorithm out-performs FTL-CH slightly and URand-NH significantly
across all cities in terms of the reward (Eq. 5.7) for a week with three minute time snapshots.
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Figure 5.13: The PP-LH algorithm out-performs FTL-CH slightly and URand-NH significantly
across all cities in terms of the reward (Eq. 5.7) for a week with three minute time snapshots.
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Chapter 6

Toolkit for Studying Human Mobility

Based on our observations, we provide an open source toolkit for generation of synthetic data
using pre-trained models for fifteen cities analyzed in this work, along with algorithms used for
dynamic ride pooling and real-time vehicle placement problem for experimentation and analyzing
different what-if scenarios.

Given societal issues of privacy, the General Data Protection Regulation (GDPR), and the
impact of Covid-19 pandemic, the case for availability of synthetic data is even stronger. The
data provided within the toolkit is both temporally and spatially vague to reverse engineer and
compromise the privacy of a real riders or drivers.

In the sections below we shall provide code pointers and tweakable parameters for temporal
and spatial analysis done in Chapters 2 and 3; different components of the GAN training and
generation of data; pooling approaches and tweakable knobs associated with it; an entire suite
of online placement algorithms apart from the three highlighted in Chapter 5. Apart from
generating synthetic data, any researcher can also try to use the different components of the
toolkit with their own datasets as well. All datasets and source code are available at https:
//9ithub.com/ajauhri/mobility-modeling.

6.1 Temporal and Spatial Modeling

For temporal modeling there are primarily two parameters which can be changed. The first is
the node length or € which determines the cell length which is used to grid a city. Each cell
becomes a node in the Ride Request Graph so if one goes to very high values of node length, the
densification power law property may not hold true. With square grids of very large area one can
practically cover huge geographical chunks of a city including downtown and residential areas,
and if all such points of interest become part of one node, the densification over time is less likely
to be captured in the proposed ride request graph models.

The other modifiable parameter is the width of the time snapshot. We mostly tried five minutes
time intervals but these too can be changed. With greater percentage of human mobility captured
for a city, we strongly believe both spatial and temporal patterns will be observed for smaller time
snapshots and node lengths. Spatial modeling also has the same modifiable parameters as for the
temporal modeling. Relevant files here are:
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* Temporal modeling — mobility-modeling/src/modelling/temporal.py
* Spatial modeling — mobility-modeling/src/modeling/fractals.py

For spatial modeling, we did not analyze much about the Hausdorff Fractal Dimension. In
cases where it is equivalent to correlation fractal dimension, it would imply strict self-similarity.
Methods to measure both fractal dimensions are provided in fractals.py.

6.2 Synthetic Data Generation

This section focuses on the synthetic data generation model described in chapter 4 along with
how data is pre-processed before training, and post-processed after.

6.2.1 Extraction of Blocks

Corresponding file — mobility-modeling/src/synthetic/extract.py

We start by dividing the city into n blocks. For each block i we create a separate image
(2-dimensional matrix) for each time snapshot ¢, B!. Each image of the block is further divided
into smaller blocks or nodes (as used in RRGs) of length e, Bi(a, b) where a and b are the unique
horizontal and vertical coordinates of the node within the block. Each Bi(a, b) € Z represents
the number of requests or drop-offs occurred within the node located at coordinates (a, b) within
[t — 1,¢) time snapshot.

After creating images for each block for each time snapshot, we normalize all images using
the block and time snapshot which had the maximum number of rides:

n}i;x Zb B!(a,b)
a,

6.2.2 Trainer

Corresponding file — mobility-modeling/src/synthetic/train.py

Training is separate for each block and can be parallelized on CPUs as mentioned in chap-
ter 4. The discriminator takes a batch of training examples in the form of images with each
image flattened to a single dimension equivalent to the number of nodes within the block, and
returns a single floating point value. Generator takes as input the noise vector of configurable
dimensionality concatenated with one hot encoding of desired label of time snapshot for which
the data is to be generated; the output dimension is equivalent to the flattened image used as input
to the discriminator. The Classifier also takes flattened image as input and generates a vector
equivalent in dimension to the one used by generator for one hot encoding the time snapshot.

We pre-train the classifier for 5k iterations, and subsequently the GAN for 10k iterations.

6.2.3 Generate Distribution

Corresponding file — mobility-modeling/src/synthetic/gendist.py
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Based on the models trained in the previous step, we now generate data for each time snapshot
used as the label for generator’s input apart from the noise vector. Due to restricted training
dataset, we sampled data multiple times to get the aggregated image/matrix for a single time
snapshot i.e. one hour.

6.2.4 Sample

Corresponding file — mobility-modeling/src/synthetic/sample.py

After generation of data for each time snapshot we sample ride requests by pixel values for
each node within a block into potential number of rides originating or ending at that node. We
compute the maximum activation using:

w; = max fj(a, b)
t,a,b

where S!(a, b) is the value of node located at coordinate (a, b) of the ith block at time snapshot
t using the synthetic data from the trained model for the block. Using the maximum activation,

we apply:

ﬂ;(d,b) X w; X ¢

The multiplication is just to amplify the signal from places where there is very less likelihood
of ride request originating or ending. We can modify ¢ as per the requirement to increase or
decrease the overall traffic volume of the underlying data for any block within a city as shown in
Section 4.7. We have kept ¢ constant for all blocks within a city but it would be interesting to
understand if and when should it be a function of region or time as oppose to being a constant
value.

6.2.5 Stitch

Corresponding file — mobility-modeling/src/synthetic/stitch.py

Final step is a sanity check which is to combine all the blocks generated by the sampling
process such that they resemble the city. Stitched results of synthetic data generated for a single
time snapshot for San Francisco and New York are given in Figure 6.1.

6.2.6 Graph Generator

Corresponding file — mobility-modeling/src/synthetic/dpls.py

After generation of spatially distributed points, we mark them as pickup or drop-off points
and connect them using our proposed graph generator. This generator takes as arguments two
parameters to determine the number of edges coming out of a node, and probability that a
destination node should be chosen from rich set or not. Rich set here signifies the small set of
nodes which are more likely to be busier in terms of ride requests than majority of other nodes to
capture the small world effect.
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(a) Stitched synthetic requests in SF (b) Stitched synthetic requests in NY

Figure 6.1: Stitched results of synthetic data generated.

6.3 Dynamic Ride Pooling

Ride pooling component of the toolkit includes Restricted, Directed, and Hybrid pooling tech-
niques along with implementations to compute relevant metrics like total distance reduction, total
vehicle reduction, average poolability, and average penalty.

These metrics have been added to aid different what-if scenarios. For instance, using the
GANss based approach one can amplify the number of ride requests for any city, and then measure
the savings. All savings can be computed for each of the pooling techniques. The following is
the list of modifiable parameters for pooling:

1. --src_radius specifies the source search region (in meters) in the restricted or hybrid
approach.

2. --dst_radius specifies the destination search region (in meters) in the restricted or hybrid
approach.

3. --directional_pool boolean flag to enable directional pooling.
4. --tunnel_width specifies €, (in meters) for the directional or hybrid pooling approach.

5. --pool_degree the maximum number of rides which can pooled together.

As noted earlier ¢ is analytically computed using Equation 5.6 and €y is set to 20 degrees but
can be modified. The relevant files for pooling are:

* mobility-modeling/src/applications/pooling/compute_poolability.py
* mobility-modeling/src/applications/pooling/grouping.py

6.3.1 GraphHopper

To run any of the pooling experiments, one would need to run the GraphHopper with the required
PBF files. For instance, if running experiments for the city of Los Angeles, GraphHopper’s server
can be started using:
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./graphhopper.sh web california-latest.osm.pbf

This would allow the pooling component of the toolkit to query approximate travel times and
distances for computing metrics like distance reduction, and rider penalty.

mobility-modeling/src/applications/pooling/graphhopper.py has the relevant
utility functions to process the output from GraphHopper.

6.4 Vehicle Placement

For vehicle placement problem we provide an entire set of algorithms in the toolkit. We believe this
can help the community for further analysis and potential improvement of online non-stochastic
algorithms.

As stated in the original problem, the vehicle placement tries to anticipate where a ride request
may originate in the next few minutes from a drop-off location such that it can start to move towards
that direction. For this problem both the time and the distance which can be moved by the vehicle
can be changed as desired. Apart from the three best performing algorithms highlighted in the
previous chapter, in the toolkit we provide a dozen other algorithms to experiment with.

6.4.1 Sleeping Experts

In the sleeping experts problem setting, there exists a set of experts; at any given time step each
expert may be awake (making a prediction) or asleep (not predicting) (Blum, ). In the
vehicle placement setting, we start with w weights associated with each expert for each placement
node; for each placement decision one of the experts would be chosen based on the weights
associated with it to decide the drop-off location. The decision making process continues for all
drop-offs within the time snapshot without adjustment to weights. Subsequently after the end of
a time snapshot, we adjust the weights. To do so we record all experts’ predictions within the
time snapshot such that we can penalize accordingly. Only when a correct pickup node is in the
predictions from one of the experts, will other experts be penalized if the pickup was not present
in their predictions. No penalty is exercised if none of the experts predict a good pickup node.

6.4.2 Follow the Perturbed Leader with Complete History

Follow the perturbed leader (Van Erven et al., ) adds a random perturbation to the reward
for each of the potential placement nodes and then chooses one with the maximal value. The
perturbation is configured by the constant p. In the conventional FTL settings, the node with
highest reward based on prior history amongst the potential placement nodes is chosen as the
prediction node for placement. In experimentation with vehicle placement, we found this approach
to vary in performance from city to city when compared with Follow the Leader with Complete
History. For instance in Rio de Janeiro the perturbed leader performs much better in comparison
to perturbed leader in San Francisco as shown in Figure 6.2. Also, there are instances when
perturbed leader does as well as non-perturbed leader with complete history in Rio de Janeiro.
Another interesting insight which can be drawn from Figure 6.2 is the performance of follow
the leader with limited history of three previous time snapshots. The intention to highlight this
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Algorithm 7 SE-VH (Sleeping Experts with Variable History)

Require: Search radius €’; cell length €; D, P; initial history length m; initial weight w; penalty p s.t. p < w; weight reset period r; history

LoFdanswn=

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

size for each of the n experts H = [hy, hy ... hy,].
. for each time snapshott = (m+ 1), (m+2), ...,k do

It =0, e RP
if #%r == 0 then
E. = w, € R for each expert e € |E|.

end if
for each expert e € |E| do
O.,={a:{b:0}} > double dictionary in python.

M, =0eR™b
Me =320 o Di+Pi
end for
for each non-zero entry (i, j) € D; do
Pick random expert e from |E | with each expert being picked with probability 721;:25[[’{ }] .
Pick aset of cells N = n (1, (i, j), 2?5/).
Choose a cell (i’, j') = argmax; jyeny Meli, j].
Cot [0, j 1 =Tot [, '] + 1
for each expert e € E do
Find expert’s opinion (i’, j’) = argmax ,,, yyen Me [m, n].
O [i'][j'].add((i, j))
end for
end for
for each non-zero entry (7, j) € P;y do
if T4 [i, j] > O then
for each expert e € |E| do
if O.[i][j] = 0 then
E[Oc[i][j]] = Ec[Oc[i]l[j1]1 - p
end if
end for
end if
end for
Obtain rewards for Ry (P41, T41)
end for

Algorithm 8 PFTL-CH (Perturbed Follow The Leader with Complete History)

Require: Search radius €’; cell length €; D, P; initial history length m; perturbation constant p < 1.
1: for each time snapshot # = (m + 1), (m+2), ...,k do

LR anHwy

10:
11:

M =0 e R¥P

I =0, ¢ Raxb

M = Zf;ll D,' +P,’

for each non-zero entry (i, j) € D; do
Pick a set of cells N = (1, (i, j), 2751)
Choose a cell (i', j') = argmax; jyeny M [i, j] +uniform(0,1+ pl).
Coni [, 71 =T [, j' ]+ 1

end for

Obtain rewards for Ry (P41, T41)
end for
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Figure 6.2: Comparison of three variations of Follow the Leader online algorithms; with
complete history, with limited history from previous three time snapshots, with complete history
but with perturbed leader.

algorithm was to depict the importance of recent history and how important can it be to make
decisions in the near future. Also, in scenarios where one experiences sudden anomalies like rain,
or snow, follow the leader with limited history can potentially be more relevant in comparison to
follow the leader with complete history since people may tend to request a ride and wait at more
convenient spots which may not be captured in complete history of the past.

643 Exp3

With Multi-Arm Bandit setting we aim to balance exploration and exploitation for the placement
problem. Exp3 (Seldin et al., ) is one way to achieve this. The distribution in P is a mixture
of the uniform distribution and a distribution which assigns to each placement action a probability
mass exponential in the estimated cumulative reward for that action. The uniform distribution
allows for exploration using y as a knob to control the amount of exploration, and the other
probability distribution allows for exploitation. % is to compensate the reward of actions.

6.4.4 Most Recently Used

As a variation from choosing the most frequent leader, we also looked at most recent variant for
the placement problem. For every entry in the two-dimensional array M we store the highest or
most recent time snapshot for where there was a pick-up request or zero if no request happened.
For placement we choose the neighboring cell with a most recent pickup.

6.5 Discussion and Limitations

In this chapter we have tried to provide technical details around the toolkit which we hope can
be of great value for the research community. The toolkit serves as another medium to convey
information about some of the intricate details of the characterizations and models used in this
work.
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Algorithm 9 MAB-Exp3 (Multi-Arm Bandit Exp3)

Require: Search radius €’; cell length €; D, P; area of neighboring region K ; probability of choosing an arm 7y.
1: for each time snapshot ¢ = (1), (2), ..., k do

2 W=1eR¥P
33 X=0eR¥P
4: P=(1-yx¥+ L.
5: T4 =0, e R¥¥P
6: for each non-zero entry (7, j) € D; do
7. Pick a set of cells N = n(0O, (i,j),zf, .
8: Get boundary coordinates xg, Xe, Ys, Ye = Boundary (o, (i, j), 2%)
9: W;=W][xs: Xe, Vs, Yel.
10: Npandits = (Xe = Xs5) X (Ye = ¥s)
11: for each (m,n) € N do
. _(1_ W [m,n] Y
12: Pm.n] = (1-y)x sum(Wo) ¥ Npandirs
13: end for
14: Choose a cell (i, j') randomly according to the probabilities in P constrained to N cells only.
15: Coat [, 71 =T [, j']+ 1
16: end for

17: Obtain rewards for Ryy1 (P41, Lr41)

18: For each correct placement (i/, j'), X [/, j'] = X[/, j'] + 1
X

19: W =W xexp(y x &)

20: end for

Algorithm 10 MRU-LH (Most Recently Used with Limited History)

Require: Search radius €’; cell length €; D, P; initial history length m.
1: for each time snapshot t = (m + 1), (m+2), ..., k do

2: M=0eR¥P

3: Ty =0, eR>P

4. forx € {0,1,...a} do

5: fory € {0,1,...b} do

6: M [x,y] = argmaX;c[s—1—p, 1] Pi[x, y] # 0
7. end for

8: end for

9: for each non-zero entry (i, j) € D; do

10: Pick a set of cells N = n(q, (i, j), 275/).

11: Choose a cell (i', j') = argmax; jyeny M[i, j].
12: Cot [0, j' 1 =Tet [, ']+ 1

13: end for

14: Obtain rewards for Ry (P41, T41)

15: end for
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Although the toolkit can be applied to any dataset, one needs to be cognizant about the fact
that if used with sparse datasets which does not capture the temporal and spatial variability of
ride requests as likely to be observed in any urban area using a representative dataset, the toolkit
may not provide appropriate qualitative measures. Reasonable penetration in terms of percentage
of all journeys within a city is necessary for the models proposed here to clearly characterize the
variations.

When trying to analyze how accurate is the synthetic data, it is important to look at volume of
journeys over time, DPL plots, and fractal dimension plots. Looking at only one or a subset will
not highlight issues in the synthetically generated dataset which could be due to not fine-tuned
hyper-parameters in either of the generators or just how well the proposed GANs approach is able
to capture the distribution of ride requests.
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Chapter 7

Conclusions and Future Directions

Our overall thesis statement was based on analysis of real-world datasets from ride-sharing
services, to understand and characterize human mobility patterns at the city scale, and gain
insights on how to improve ridership experience, and overall system efficiency. We achieved those
characterizations in chapters 2 and 3 along with highlighting the intuition on how they reflect city
level characteristic of mobility patterns. In chapter 4 we propose a scalable efficient method for
synthetic data generation and validate synthetic data using temporal and spatial characterizations.
More importantly, these characterizations are able to identify certain deficiencies in our modeling
approach. In chapter 5 we extended our characterizations and applied those to create techniques
to improve rider and driver experiences using real-world applications. Finally, in chapter 6 we
highlight how the toolkit can be used with any dataset to understand its properties, and application
to different what-if scenarios related to human mobility.
The remainder of this chapter discusses future areas to explore.

7.1 Implications of Fractal Theory on Human Mobility

In chapter 3 we only looked at correlation fractal dimension. It would be interesting to understand
the implications of Hausdorff fractal dimension Dg, or more aspects of fractal theory on human
mobility pattern. From our initial analysis, we observed Hausdorff fractal dimension to be
not equivalent to correlation fractal dimension leading to not strictly self-similar points in the
2D geographical space. Fractal dimension theory has been applied to other domains such as
dynamical systems, diagnosis of diseases, earthquakes, and analysis of the human retina, just
to name a few. Hence, a more comprehensive application of fractal theory to human mobility
may uncover more interesting properties similar to the one highlighted for vehicle placement in
chapter 5.

7.2 Sampling from GANs

Generative Adversarial Networks are used in different what-if scenarios like vehicle placement
and understanding temporal patterns of ride requests. Capturing fine details of an image is
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more critical for the applications proposed here and also for capturing both temporal and spatial
characterizations at the city-level. Some interesting work like in (Bhattarai et al., ) does
provide an additional learning objective to better capture whether or not certain images correctly
represent the underlying data or not. As seen from results in chapter 4 where synthetic images
tend to be biased towards certain geographical areas, we believe sampling can be an interesting
research to pursue given that these synthetically generated images in our scenario should not only
look aesthetically pleasing but also valid as per the spatial and temporal characterizations which
capture very minute details of these images.

7.3 Application of Differential Privacy to Human Mobility

As important and useful it is to analyze the ride sharing data to derive insights about human
mobility patterns, it is all the more important to ensure correct handling of data and to ensure
that it does not reveal any user habits or location-identifiable information. Even though the data
used here for generating synthetic dataset, does not directly include user information but it still
exposes critical location specific information within small cells, and local characteristics of a
place. Application of differential privacy to ride request data to make it resistant to privacy
attacks (Mir et al., ) but still ensuring it depicts the city level characterizations for both
temporal and spatial patterns can be a non-trivial problem to tackle.

Differential privacy is a method to ensure that the outcome of data analysis for a dataset
(R1) is almost similar to analysis on a dataset (R2) even though these two data datasets differ by
only one user’s features. This means looking at the outcome of the dataset should not lead to
determining absence or presence of individual user’s features. This should hold even if the user
has unique behaviour.

Differential privacy can be achieved by addition of noise to a dataset through Laplace mech-
anism; it has been well studied that the addition of noise is a reliable way to conserve privacy
of data. A dataset is said to be e-differentially private when the noise added to it depends on €
and S(f), where S(f) is defined as the sensitivity of a function or the change needed to make a
user’s data indifferentiable, and an appropriate value of € which determines the level of privacy
and therefore the accuracy of the data.

7.4 Roaming Fleets of Vehicular Computing Systems

The potential convergence of Cloud-Edge Computing, Internet-of-Things, and Connected Vehi-
cles, is creating a fascinating research opportunity. The explosive proliferation of mobile devices
that rely heavily on cloud services will necessitate highly distributed cloud edge servers to avoid
saturating the core network bandwidth and to reduce service delivery latency. The emergence of
diverse sensing platforms for supporting the Internet-of-Things will necessitate highly distributed
sensor data processing and analytics in real time and at the cloud edge. We anticipate the emer-
gence of powerful general-purpose Vehicular Computing Systems (VCS) that can be deployed in
5G connected vehicles for supporting both mobile cloud-edge computing and distributed in-situ
data analytics.
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This research focuses on the system architecture and potential applications of VCS and
roaming fleets of VCS-equipped connected vehicles (VCS Fleets). We plan to explore VCS as
mobile cloud-edge servers and edge sensing/analytics platforms. VCS in connected vehicles can
become the new mass market for mobile computers. We plan to explore the integration of VCS
with 5G picocell base stations in connected vehicles. This will enable connected vehicles to
become part of the 5G connectivity infrastructure with adaptive roaming capability. We also
plan to research the potential applications of VCS Fleets in urban environments. One potential
application of VCS Fleets is facilitating large scale federated and continuous learning for diverse
intelligent services targeting the vehicular environment. We believe VCS Fleets can potentially
become a highly distributed, mobile, and adaptive connectivity and computing infrastructure for
supporting human mobility services and societal benefits.

7.4.1 Applications

* Learning applications which require constant communication of real-time information
spread over geographical space shall also be explored (Hull et al., ). For instance,
the emergence of ride-sharing services and the availability of extensive data from such
services has created unprecedented opportunities for conducting large scale data analytics
on urban transportation, gaining new insights on human mobility, and facilitating new public
services for societal benefit. Moreover, applications for which online learning algorithms
are considered require multiple streams of data. Network latency for many such algorithms
is a bottleneck. To this end, we plan to deploy communication intensive applications with
quantifiable benefits without need to access the cloud.

* Computational and network overhead can lead to issues with analyzing real time video
content. We plan to add textual information to live geo-tagged videos collected and
processed with deep neural networks deployed in a VCS Fleet. Tagged with textual
descriptions, these real-time videos of urban streets collected by vehicles can be used
by civic authorities for analysis; these descriptions would help authorities quickly target
urban areas which are of concern and/or require maintenance. The video stream would
be updated continuously, and so would the descriptions associated with it. Apart from
civic authorities, security personnel, people with disability, and the general public can gain
insights about live events in any urban area without having to manually analyze single
frames of a constrained area. This is a novel application which combines two areas of
learning: video and linguistics, and can nicely leverage VCS Fleets.
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