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Abstract—In this paper, we show how beacon-based indoor
localization and additional environmental fingerprints like mag-
netic field data can be used to both accelerate and increase the
robustness of Augmented Reality (AR) relocalization. We show
how the combination of Visual Inertial Odometry (VIO) and
beacons can be used to construct a dense indoor magnetic field
map that can act as a fine-grained calibration for compasses
to quickly determine a mobile device’s orientation. Unique to
our approach is that we leverage accurate VIO trajectories to
provide full vector magnetic field mapping that can be collected
and used with devices placed in any orientation. We demonstrate
a system running on an iPhone that can acquire location with
80th percentile 3D accuracy of 27cm in LOS and 46cm in NLOS,
and our magnetic field mapping approach can instantly estimate
orientation with 80th percentile accuracy of 11.7 degrees. We
demonstrate an end-to-end system for generating a magnetic field
map and subsequently localizing and tracking mobile users using
beacons and VIO. This has the side effect of enabling multi-user
(even cross-platform) AR applications, as all users can now be
localized with respect to a common global reference without any
sharing of visual feature maps.

I. INTRODUCTION

Recent advances in VIO and Simultaneous Localization
and Mapping (SLAM) on devices ranging from headsets to
smartphones have made AR an easily accessible commodity on
an exciting number of platforms. Mobile AR APIs like those
found in Apple’s ARKit and Android’s ARCore currently
provide (1) VIO-based tracking, (2) scene understanding, and
(3) realistic rendering based on features and lighting from
the environment. This can support applications like gaming
and product visualization, where the user interacts with the
virtual objects for a single session. Advanced mobile AR and
platforms such as Microsoft Hololens and Magic Leap allow
virtual content to persist across sessions (power cycles of the
device) and across users (if the stored features are shared).
Persistence of data on mobile devices opens up a variety of
new applications where users can now, for instance, annotate
items in large areas with virtual signage and navigation in-
structions, or provide contextual control panels for things like
projectors and automation equipment.

Such persistence of virtual content is enabled by a re-
localization process. We refer to the process of estimating
the six-degrees-of-freedom pose estimation with respect to a

previously acquired map as relocalization. Relocalization is
performed by comparing visual features in the environment
obtained through the camera with previously stored features.

Unfortunately, an approach relying on vision has limitations
when visual features are poor. As a result, in many cases, this
relocalization process either takes an extended period of time
or fails due to lack of texture, changes in lighting, or changes
in the location of objects in the environment, like moving fur-
niture or people. In cases where vision struggles, we advocate
using localization infrastructure of range-based beacons which
do not drift over time, are robust to environment dynamics,
and are based in a global reference frame that is not device-
or session-dependent.

While range-based beacons can aid in location acquisi-
tion, they do not provide sufficient information to acquire
orientation. Orientation acquisition outdoors can easily be ac-
complished using a magnetometer; since the earth’s magnetic
field generally points in a constant direction outdoors, it can
be used as a global orientation reference. However, indoor
magnetic fields tend to fluctuate wildly across space, due to
the metallic materials inside the building structures, as well as
the objects inside. We show that with accurate 6DOF tracking
from VIO, we now have enough information to map the
3D magnetic field vector at a fine enough granularity that it
can calibrate orientation for future users. Existing works that
have constructed such maps of the magnetic field direction
typically employ a robotic system with the sensor mounted
at a known orientation, and rely on accurate wheel odometry.
These techniques are not practical for building scale, due to
the cost and effort involved. Leveraging accurate VIO, our
approach is the first that is able to determine the full vector
magnetic field map such that it can be used to calibrate a
mobile phone or headset compass held in any orientation. Our
system maps the magnetic field by having users simply walk
around wearing or holding the device normally. Subsequently,
devices can instantly localize themselves using the beacons
and instantly estimate their orientations using the on-board
magnetic sensor and the previously obtained magnetic field
map to drastically reduce vision-based search uncertainty.

We demonstrate the accurate location and orientation ob-
tained by our system with AR applications that do not rely
on visual point clouds for mapping. This is useful when the978-1-7281-1788-1/19/$31.00 © 2019 IEEE
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environment is dynamic, crowded, or has low lighting, where
visual mapping can fail, or in environments where an indoor
localization system is already in place. Hence, there is no need
for storing or sharing the visual point cloud for relocalization.
In the future, our approach could easily be integrated with
low-level visual relocalization to support areas with sparse
or no beacon coverage. Given a high-confidence location and
orientation, the search space for visual relocalization can be
dramatically reduced and the tolerance for matches can be
relaxed. Though demonstrated on a mobile AR platform, this
same approach would easily apply to headsets or similar
localization platforms that require full pose information.

The main contributions of this paper are:
1) A scheme where range-based beacons can provide fast

and robust relocalization.
2) A method for rapid pose acquisition that uses crowd-

sourced vectored (pose invariant) magnetic field maps.
We experimentally show the performance of this ap-
proach across a variety of environments and over time.

3) An end-to-end system implementation of an accurate
location and orientation acquisition system using beacons
and magnetic field, demonstrated with multi-user AR
application.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss emerging range-based bea-
con technologies and motivate beacons for improving mobile
AR. We then describe the state-of-art approaches for relocal-
ization using vision. Finally, we discuss approaches that use
magnetic field for location and orientation estimation.

A. Beacon ranging technologies

WiFi 802.11mc, which supports round-trip-time-of-flight
ranging [1], is currently implemented in Android Pie and
is rolling out in some of the newer WiFi Access Points.
Ultrasonic beacons can provide accurate localization [2] on
unmodified mobile devices. Since they operate at the speed
of sound, their time-synchronization requirements can be
met using RF signals such as 802.15.4 or BLE [3]. Ultra-
Wideband (UWB) ranging is commonly used in localization
system implementations due to readily available chipsets and is
reducing in power with emerging standards such as 802.15.4z.
Bluetooth Low Energy ToF ranging [4] holds promise as a
highly prevalent ranging technology for peer-to-peer devices.
We advocate leveraging range-based beacons as these emerg-
ing technologies are finding their way into commodity devices
that are used and deployed indoors.

B. Vision-based relocalization

Relocalization, also referred to as pose acquisition or reg-
istration, using vision based approaches is performed by
matching features in the field of view with pre-mapped vi-
sual features. Several research studies have shown accurate
relocalization using machine learning techniques [5], [6] and
by fusing additional sensing modalities such as WiFi and

magnetic field [7]. Most of these approaches have demon-
strated accurate and efficient relocalization on datasets, but are
computationally intensive for mobile devices. However, ARKit
2 by Apple and ARCore by Google have shown persistent AR
by performing relocalization using pre-stored maps. Vision-
based relocalization is promising, since it does not rely on
external infrastructure. However, vision will always suffer in
environments devoid of features, with changes in lighting, and
when the scenery changes over time. In addition, vision-based
relocalization in large areas requires searching through many
candidate feature matches, which can become expensive if an
initial location estimate is not provided. It is often the case
that the user must walk around and view several areas of a
scene before visual relocalization is able to take effect. We are
optimistic that vision will continue to improve, but that there
are certain environments like office cubicles, hospitals, or parts
of airport terminals where even humans have trouble figuring
out their location without exploring. Due to the limitations of
a purely vision-based approach, we advocate combining visual
approaches with range-based beacons.

C. Magnetic field sensing

Several prior works leverage the spatial variation and tem-
poral stability of the magnetic field inside buildings for esti-
mating location [8]–[12]. These approaches map the magnetic
field magnitude as a function of location during the system
setup and subsequently use it as a signature to estimate
location. Since the magnetic field signature is not unique, it
is integrated with other sensors or matched against a time
series pattern as the user walks around [8], [10], [13], [14].
Our work differs from these approaches since we localize
using beacons, and use the mapped magnetic field direction to
estimate orientation.

Prior work has shown that orientation can be estimated using
magnetic field by looking for opportunities when the change
in orientation from the magnetometer is consistent with the
gyroscope, indicating that the field is stable in that region [15].
The authors found on average two opportunities per minute
when the field is stable. This requires the user to walk around
and is not suitable for instant orientation acquisition. Robotic
systems with sensors mounted in a known fixed orientation
and accurate odometry use the magnitude and the direction of
the magnetic field [16], but robots are neither affordable nor
flexible enough for all applications. The closest to our work
is [17], which presents a pedestrian-held system for magnetic
field mapping. However, it relies on the phone being rigidly
held and carried along a specific pre-determined route through
the room. Our approach obtains the vectored magnetic field
maps in any indoor space with a phone, where the user is
free to walk through the room at any speed and any walking
pattern.

III. SYSTEM OVERVIEW

The relocalization problem is equivalent to the problem of
estimating the six-degrees-of-freedom pose of the device in
an external fixed frame. Upon startup of an AR app, the AR
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Fig. 1. System architecture for fusing beacon ranges and magnetic field sensor
data to improve AR

session assumes a reference frame (AR frame) and the pose
is locally tracked in this reference frame. To relocalize, we
estimate the transformation between the AR frame and beacon
frame (external fixed frame) using the following inputs: (1)
range from beacons, (2) magnetometer, and (3) pose tracking
using visual inertial odometry (VIO) from the AR API. In
addition, we use a map of the beacon locations and a map
of the magnetic field, which is updated continuously as the
system is used. Our architecture is shown in Figure 1.

Range from beacons: Our approach uses time-of-flight
distances or range measurements from beacons. We use the
map of beacon locations as the external fixed reference frame,
which we refer to as the beacon reference frame FBEAC .
Magnetic Field: We use the magnetometer data on the mobile
device for acquiring the orientation of the device. This sensor
measures the 3D magnetic field in a frame of reference that
is fixed with respect to the device, FDEV .
Visual Inertial Odometry: Apple’s ARKit and Android’s
ARCore APIs provide motion tracking by fusing tracked visual
feature points with inertial sensor motion data, referred to as
visual inertial odometry (by ARKit) or concurrent odometry
and mapping (by ARCore). The output of VIO is the position
and orientation of the device with respect to the AR refer-
ence frame at startup, FAR. Next, we characterize various
parameters of ARKit’s VIO tracking accuracy under different
environments.

Drift: Figure 2(a) shows a 200m trace of VIO, where the
overall drift is 5m. The drift is due to cumulative errors in the
angle estimates, which are higher when the user takes turns
while walking. To account for this drift, we assume the error
in angle between two position updates separated by time δt is
drawn from N (0, δt · σ2

θ) where σθ is empirically evaluated.
Distance estimation: Figure 2(b) shows the VIO tracking

over a rectangular trace of perimeter 100m in an office envi-
ronment. We observe that the VIO traces are scaled to different
extents as compared to the ground truth trace (shown by the
black dots). This error in scale is due to incorrect distance
estimation, which often occurs when a single camera is used
and depth cannot be estimated correctly. Across all the exper-
iments we conducted in real-world settings with trace lengths
ranging from 10m to 300m, we estimated the error in VIO
distance estimation, shown in Figure 2(c). This data implies
that when the position changes by δd, the distance as estimated
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Fig. 2. Visual inertial odometry characterization

by VIO is drawn from a distribution N (0.98δd, (0.05δd)2).
Errors in relocalization: Figure 2(d) shows two scenarios

where there are abrupt jumps in position due to incorrect relo-
calization or loop closure. In the scenario on the left, we placed
a phone on a cart and rotated the cart without any translation
movement. In the scenario on the right, we walked through
a hallway facing identical cubicles in periodic intervals and
saw jumps due to different physical locations being visually
identical. However, we do not observe abrupt jumps in longer
traces, since there is a limited time-memory for the features
and relocalization requires the features in memory to match
currently visible features. This also highlights some of the
challenges and limitations of heavily vision-based localization.

IV. ESTIMATION

In this section, we describe the Estimation block introduced
in Figure 1. The estimation block has two outputs: (1) the
transformation between the beacon and AR frame of the
mobile device, which together with the VIO tracking gives the
device’s pose in the external fixed frame, and (2) the magnetic
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field map. The sensor data used for estimation are collected
in three different frames of reference: FBEAC (ranges), FAR
(VIO), and FDEV (magnetic field), shown in Figure 3. FBEAC
is the external fixed frame which is defined by the beacon
locations. When a mobile device renders AR content, the
AR Scene Rendering API renders the content in FAR with
coordinates Xobj

AR. For persisting or sharing the rendered con-
tent, we convert the content to the beacon frame FBEAC to
Xobj
BEAC and store its coordinates (or share with another user).

When the device renders content retrieved from a previous
session or another user, Xobj

BEAC , it converts it to FAR as
Xobj
AR before sending it to the AR API for rendering. Hence

we have to estimate the six-degrees-of-freedom transformation
between FAR and FBEAC . FAR and FBEAC have one axis
parallel to the gravity vector. Though this is provided to
us by ARKit, if that is not the case, we can compute the
gravity vector by filtering the accelerometer data when the
phone motion is low [15]. Having this axis aligned, we reduce
the six-degrees-of-freedom frame conversion problem to a
three-degrees-of-freedom translation, TAR→BEAC and a one-
degree-of-freedom rotation, θAR→BEAC . Figure 3(a) shows
the translation in 3D and the rotation.

XBEAC = R(θAR→BEAC).XAR + TAR→BEAC (1)
where

R(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2)

and

TAR→BEAC = [Tx, Ty, Tz]
T (3)

Ideally, if there is no drift in VIO and no noise in VIO
or range measurements, (T, θ)AR→BEAC would be time-
invariant. However, in reality, the transformation is time-
varying, and for accurate rendering we have to continuously
update
(T, θ)AR→BEAC(t). In our state estimation, we are estimating
XBEAC(t) and θ(t). We read XAR from the VIO API and
use these quantities to compute (T, θ)AR→BEAC .

We chose a Particle Filter (PF) approach for our state esti-
mation for the following reasons: (1) it is an online approach
and we are only required to maintain the previous state at any
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time (2) it allows us to accommodate for arbitrary noise mod-
els used to describe VIO and beacon errors, (3) it can continue
to work in under-defined cases with as few as 1-2 beacons,
and (4) it is agnostic to update rate and allows us to handle
asynchronous ranges from the beacons without requiring us to
receive synchronous ranges and perform trilateration.

The device state at time t is represented by N 5-dimensional
particles (x, y, z, θ, s), with weights wit, i ∈ [1, N ], where
(x, y, z) is the 3D position of the device in FBEAC ,
θAR→BEAC is the rotation of AR frame with respect to world
frame, and s is the scaling factor of AR compared to true
distance.

The general PF algorithm has four functions: initialization,
motion model update, measurement update, and resampling
[18]. The states are updated from VIO measurement (XAR)
and the weights are updated from the range measurement.
During initialization, the location (x, y, z) is initialized from
the range measurement. The angle θAR→BEAC is initialized
from the magnetic map value at location (x, y, z). With
motion inputs, each particle gets updated in the direction
indicated by its belief of θAR→BEAC . Eventually, particles
with θAR→BEAC close to the true value will be closer to
the true location and hence weighed higher when a range
measurement is received. As per Equation 1, we estimate
TAR→BEAC from θAR→BEAC , XBEAC which we get from
the states x, y, and from XAR, which is the location of the
device in FAR got by reading the VIO data.

We use the estimated device pose to also create and update
the magnetic field map. The magnetic field map at all locations
is initialized to a uniform distribution in [0, 2π]. Eventually,
when the user moves, the particle filter converges and we use
the estimated θAR→BEAC , or the rotation between the AR and
beacon frames to build the map, and the estimated locations to
build the map. Below, we describe the magnetic field mapping
process after θAR→BEAC has converged.

Step 1: Reading the magnetic field sensor: First, we read
the 3D magnetic field MDEV in the device frame of reference
FDEV . This frame is fixed with respect to the device as shown
in Figure 3(b).

Step 2: Converting the field from device to AR frame:
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When the device moves, the AR frame of reference (FAR)
remains constant but the device frame of reference (FDEV )
changes. We transform the 3D magnetic field in device frame
MDEV to AR frame MAR using the orientation, which
is tracked by VIO. The result of this process is shown in
Figure 4. We see that when the device is rotated about 360°
in all orientations, the magnetic field measured in the device
frame rotates about a sphere but the magnetic field in the AR
frame is fixed.

Step 3: Converting the field from AR to beacon frame: We
convert the magnetic field from the AR frame FAR to the
beacon frame FBEAC using the estimated θAR→BEAC , which
provides the rotation between the two frames of references
about the z axis. We project the magnetic field MAR to 2D
on the x−y plane and then rotate by θAR→BEAC to compute
MBEAC . This process is illustrated in Figure 5(a).

Step 4: Building the magnetic field map: The magnetic
field mapping process generates a map of the 3D magnetic
field vector in the beacon frame. However, we store the map
as a function of 2D locations to make the mapping process
more tractable. We justify this choice in Section V-A1, by
showing the impact of using a 2D map rather than a 3D
map. As the system is in use, we obtain multiple traces
from different users that span the same locations. The map
at a location (x, y) is represented as the circular mean angle
Mµ(x, y) and circular standard deviation angle Mσ(x, y) of
all the magnetic angles logged at location (x, y). Figure 5(b)
shows the magnetic field map of an office floor.

Orientation acquisition from the magnetic field map: Once
the magnetic field is mapped, we use the map for orientation
acquisition. When the particles are initialized, we initialize
θAR→BEAC from the map as:
θAR→BEAC ∼ N

(
MBEAC(x, y)−MAR,M

σ(x, y)
)

(4)

In summary, upon startup, the device acquires its location
from beacons, acquires its orientation from the magnetic field
map, and as users walk around, the device pose is continuously
tracked by fusion of beacon ranges and VIO, and the magnetic
field map is continuously updated.

(a) UWB Beacon (b) UWB Tag with tablet

Fig. 6. Beacon and Tag Hardware

V. EVALUATION

To evaluate the system, we use Decawave UWB beacons
for localization. However, any of the various emerging TOF
ranging technologies could work. Decawave currently has
a small UWB and BLE module [19] that can be easily
attached to phones in order to range with UWB and provide
position information over Bluetooth. In our prototype, we
use a DWM1000 module connected to a Raspberry Pi Zero
W shown in Figure 6. We evaluated our system in two
environments. The first was a Cafe of size 145m2 (1560ft2)
which had 5 UWB beacons deployed in LOS of the test areas.
The Cafe was located in a building with new construction and
had large open areas with tables, chairs, counters, and pillars.
The second was an Office area of size 400m2(4300ft2) with
10 beacons deployed in NLOS of the test areas. The office
area had cubicles with office furniture and workstations. Test
points and beacon locations were mapped accurately using a
total station theodolite for ground truth. Four different users
held devices in hand and walked at normal pace (4-5km/hr),
clicking a button while crossing each test point.

A. Magnetic field feasibility

The magnetic field’s spatial and temporal variation deter-
mines its feasibility for orientation acquisition.

1) Spatial variation: The spatial variation of the magnetic
field along with the localization accuracy impacts the accuracy
of the orientation acquisition. For instance, if the average
localization error is 10cm, and the magnetic field varies by
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Fig. 8. Temporal variation of the magnetic field over 10 weeks. The plots
show the histogram of the circular standard deviation across time for all test
locations in the environment.

around 50° for locations that are 10cm apart, then this spatial
variation of the magnetic field along with the localization error
could result in a 50° error in orientation acquisition. To test
the spatial variation, we experimentally evaluated the magnetic
field variation along the vertical (parallel to gravity vector) and
horizontal axes. Figure 7(a) shows the variation along the z-
axis for device height of 0.7m to 1.8m above ground (1m about
nominal standing height) across four environments (office,
lobby, bookstore, cafe). Since the z-deviation is generally
within 5°, we store the magnetic field map in 2D, rather than
3D, to keep the map size tractable without losing significant
accuracy. Next, we characterize the variation over horizontal
distance in several environments, including outdoors, garage,
mall, cafe, and airports. We first compute the magnetic field
angle difference between all pairs of locations that are a fixed
distance apart. This captures the spatial variation for different
distances. We then compute the CDF of the spatial variation
for a fixed distance and extract the 50% spatial variation

(representative of generate case, shown in Figure 7(b)) and
the 95% spatial variation (representative of worst case, shown
in Figure 7(c)) for distances from 0− 12m. For instance, the
Cafe line in Figure 7(c) shows that across all location pairs
that are 1m apart, 95% have a field difference of less than 40°.
As one might expect, with a larger change in distance, there is
a higher change in field across all locations. However, beyond
a certain distance, these changes are random. The change
in magnetic field for a distance corresponding to 30cm (the
approximate positioning error from our localization system
shown in Figure 9(a)), is within 3° for 50% and varies from
around 3 − 12° for the different environments for 95%. This
reinforces the notion that the magnetic field can be highly
variable indoors and that certain measurements generalize well
across recorded paths while other areas need dense recordings.

2) Temporal variation: Since orientation acquisition relies
on matching with a previously acquired map, it is important
to study the temporal variation of the field. Figure 8 shows
the temporal variation over 10 weeks across four environ-
ments (book store, office floor, underground parking garage,
outdoors). As expected, the outdoor environment has the least
variation. The garage has the highest variation, due to cars
(large metallic objects). In the two indoor environments, most
regions have temporal standard deviations of less than 4°. In
some environments, like stores with moving metal shelves,
the magnetic field will often change after a reconfiguration.
Through crowd-sourcing, our approach can continuously up-
date and average magnetic field values from multiple users to
adapt over time.

B. Localization accuracy

Figure 9(a) shows the localization accuracy of the phone in
both environments, Cafe with LOS+NLOS, and Office with
only NLOS, by fusion of beacon ranges and VIO. Users
walked continuously between test points, stopping for at least
one second at each test point and pressing a button on the
app. Since the users held the device in hand above the test
point marked on ground, this introduced 10 − 15cm error
between the device’s true location and the test point. In the
Office environment and Cafe, we measure 80% error of 46cm
and 27cm respectively.
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(b) Orientation acquisition in Office space
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Fig. 9. Location and orientation acquisition accuracy
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Fig. 10. Magnetic field map captured in the two deployments. Office environment (a-b) and a Cafe (c-d)

C. Magnetic field orientation accuracy

Figure 10 shows the magnetic field map in the two envi-
ronments. The map is represented by the mean and standard
deviation of the magnetic field. For the Office space, the
standard deviation is 2° and 10° for 50% and 95% of the
locations, respectively. For the Cafe, the standard deviation is
5.3° and 20.3° for 50% and 95% of the locations respectively
for a grid size of 30cm. As shown in subsubsection V-A1,
this Cafe has very high spatial variation compared to typical
environments.

Figure 9 shows the accuracy of the magnetic-field based
orientation for maps of varying spatial density. The Magnetic:
30cm grid map and Magnetic: 3m grid map show the angle
error for two different grid sizes. The Magnetic: constant field
map shows the performance if we assume the entire map has
the same field, for which we used the mean of the field across
the map. This is effectively equivalent to representing the map
by a single sample. In the Office environment, we observe
that the 80% point for 30cm is 12.5° and with a constant
field is 30°. In the Cafe environment, we observe that the
80% point for 30cm is 11.0° and with a constant field is 54°.
Across both environments, the 80% error is 11.8° for a 30cm
grid size. We also see that the 3m grid performance is closer
to assuming a constant field than using a 30cm grid which
highlights the utility of our approach in areas with high spatial
variation. To reduce map storage, regions of the environment

with high spatial variation should have a fine grid, while
other regions can have a coarser grid. We also do not require
complete coverage of a map, since a recorded trajectory can
be extrapolated to support other nearby starting points with a
confidence derived from the typical spatial variance captured
in that area.

D. Demonstration application

We built the end-to-end system using UWB beacons and
demonstrate it with an AR app, shown in Figure 11(a). Our
setup has four beacons deployed at fixed locations. Two
persons walk around with mobile devices attached to UWB
tags. The devices are localized with respect to the beacons,
and the real-time location pose information is available on an
external console with a user interface. Figure 11(a) shows a
find-a-friend application where both mobile devices are able
to share persistent AR content. We see that mobile device A is
able to see the mobile device B in real-time in AR (with a red
blob located around the mobile device B). Figure 11(b) shows
the location of both devices being available on an external
console. We see that a user is able to click at locations on
the user interface (shown as orange triangles) and the mobile
device is able to see new virtual content (fire) pop up in
real-time at the user-defined locations. This demonstrates the
sharing of persistent AR content among the two mobile devices
and the external system.
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Fig. 11. AR demonstration application

VI. CONCLUSIONS AND FUTURE WORK

This work presented a proof-of-concept for using beacons
integrated with VIO to provide persistent AR on mobile
devices. One of our key contributions is that we can leverage
VIO to capture the full pose of a mobile device allowing us to
record the full magnetic field vector and not just magnitude.
Though our system was designed for persistent AR, we can
also apply this approach to creating other dense sensor maps
for applications like indoor WiFi/cellular coverage and 3D
scanning of spaces. In the future, we will explore ways to
seamlessly integrate the beacon map and visual point-cloud
maps so that the two systems can be combined for more
effective relocalization.
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