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ABSTRACT

3D video enables a remote viewer to observe a 3D scene from any
angle or location. However, current 3D capture solutions incur high
latency, consume significant bandwidth, and scale poorly with the
number of depth sensors and size of scenes. These problems are
largely caused by the current monolithic approach to 3D capture and
the use of inefficient data representations for streaming. This paper
introduces MeshReduce, a distributed scene capture, stream, and
render system that advocates for the use of textured mesh data rep-
resentation early in the 3D video capture and transmission process.
Textured meshes are compact and can provide lower bitrates for the
same quality compared to other 3D data representations. However,
streaming textured meshes creates compute and memory challenges
to achieve bandwidth efficiency. MeshReduce addresses these issues
by using a pipeline that creates independent mesh reconstructions
and incrementally merges them, rather than creating a single mesh
directly from all sensor streams. While this enables a more efficient
implementation, this approach requires optimal exchange of textured
meshes across the network. MeshReduce also incorporates a novel
approach for network rate control that divides bandwidth between
texture and mesh for efficient, adaptive 3D video streaming. We
demonstrate a real-time integrated embedded compute implementa-
tion of MeshReduce that can operate with commercial Azure Kinect
depth cameras as well as a custom sensor front-end that uses LiDAR
and 360◦ camera inputs to dramatically increase coverage.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Infor-
mation systems—Information systems applications—Multimedia
information systems—Multimedia content creation

1 INTRODUCTION

Recent advances in high-performance hardware, better depth sens-
ing technology, and advanced graphics algorithms have brought us
closer to practical real-time 3D video streaming systems. A core
component of existing systems [30, 41, 47] is the ability to acquire
and digitize 3D scenes in real-time and stream this data over the
Internet at practical bitrates. Unlike traditional 2D videos, acquir-
ing 3D scenes requires multiple cameras capturing both color and
depth information from different viewpoints. These color and depth
streams are merged into a single 3D scene representation to enable
remote users to view the captured scene with 6 Degrees-of-Freedom.

In this paper, we present MeshReduce, a live 3D scene capture
streaming system designed with the following requirements:
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1. Low Latency: For interactive live streaming, we expect laten-
cies on the order of 2D video conferencing systems (<100ms).

2. Scalable: 3D video quality is often a function of number of
cameras and scene size. An ideal capture solution should
support dozens of sensors with commodity hardware.

3. Adaptive Streaming: The system must operate given practical
bitrates for Internet streaming, and the quality of the system
should adapt to bandwidth availability.

Existing 3D scene capture systems encompass a diverse range
of technologies, ranging from systems that directly generate point
clouds [23,27,32,50], to those producing textured meshes [11,16,41],
and extending to systems that stream compressed implicit volumetric
representations [51–53]. In comparing point clouds and textured
meshes, a key distinction lies in representation efficiency: textured
meshes typically require less data for storage and transmission to
achieve comparable quality. This efficiency is attributed to two main
factors: (1) the natural ability of mesh geometry to capture and
compactly represent planar features prevalent in real-world scenes,
and (2) the separation of geometry from texture data in textured
meshes, which facilitates the creation of efficient 3D bitstreams for
adaptive streaming. Conversely, while streaming implicit volumetric
representation has demonstrated advantages in streaming data rate
and compression latency, it introduces additional complexity on the
client side, particularly in the extraction of explicit surfaces from
implicit representations. Considering these aspects, MeshReduce
advocates the use of textured mesh representation for 3D streaming,
recognizing their balanced blend of efficiency and practicality.

However, streaming textured meshes is not without challenges.
This approach places the computational burden of converting a
sensor’s raw data (e.g., RGB-D or point cloud) into a mesh represen-
tation on the capture side (or sender side) of the streaming pipeline.
Existing systems [17, 41] rely on monolithic scene capture pipelines
and, as a result, incur high data rates (e.g., Holoportation requires
2 Gbps bandwidth for each scene [41]). These systems also scale
poorly with scene size and sensor count due to the high compute and
GPU memory demands, which in turn limits their capture quality
(i.e., support only a few sensors while most systems need more than
a dozen sensors for high-quality capture [11]). More importantly,
there hasn’t been much exploration on generating optimal bitrates
for network adaptive textured mesh transmission.
MeshReduce, as depicted at the top of Figure 1, implements a

distributed approach for scene capture (§3.1), effectively address-
ing the constraints commonly associated with monolithic systems.
At the core of this design are edge devices at each sensor, which
are responsible for performing individual 3D scene reconstructions.
These are then cohesively integrated by a hierarchical merging server
to form a unified textured mesh (§3.2). This approach allows us
to handle the compute and memory demands more efficiently by
operating on smaller, per-sensor scenes.

Key considerations in this architecture involve the strategic distri-
bution of computational tasks between the sensor-side compute
nodes and the hierarchical merging servers to optimize latency
and resource utilization. Furthermore, MeshReduce produces a
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Figure 1: Traditional vs proposed system. Unlike the existing cen-
tralized pipeline, MeshReduce adopts a distributed approach where
each sensor (RGB-D or LiDAR) is equipped with an embedded
edge device processing per-sensor scene, with hierarchical merging
servers merging all the partial scenes and preparing optimal 3D
textured mesh bitstreams for adaptive network transmission.

bandwidth-efficient texture atlas (§3.3) to maintain texture spatial-
temporal coherency and eliminate redundant camera views prior to
compression and streaming. An additional aspect of MeshReduce
involves rate control for streaming textured meshes (§4). This en-
compasses adapting to varying Internet bandwidth conditions, which
involves carefully considering how bandwidth is allocated between
texture and mesh components and selecting coding parameters that
strike an optimal balance between quality and bitrate.

We prototype MeshReduce using off-the-shelf depth cameras and
evaluate our own custom bitrate control and streaming schemes
that can all execute in real-time on Nvidia Jetson class embedded
processors. Current commercial depth sensors have a limited range
and field of view, making them impractical for capturing scenes
beyond capture domes [11]. We experiment with a custom LiDAR +
360◦ camera solution and show its promise in enabling wide-area
coverage. Compared to existing capture pipelines, MeshReduce
significantly reduces bitrate requirements (10-16×) for the same
visual quality, offers lower latency, and scales well with a large
number of sensors as well as larger area scenes. In summary, our
key technical contributions are the following:

• The design and implementation of MeshReduce, an end-to-end
3D scene capture system that provides Internet-friendly flexible
bitrates with low latency.

• A series of systematic measurement studies to study key bottle-
necks of the scene capture pipeline and decompose the 3D scene
reconstruction pipeline (§3.1) and mesh merging (§3.2).

• A bandwidth efficient texture mapping pipeline (§3.3).

• Scene-independent, efficient textured mesh bitstream generation
using a predictive model of rate-distortion curves (§4).

• An open source implementation of MeshReduce and a first-of-its-
kind dataset with 3D scenes captured using multiple commodity
and custom LiDAR + 360◦ depth sensors.

2 RELATED WORK, BACKGROUND AND MOTIVATION

Many of the opportunities we explore in this paper stem from a gap
that exists between the graphics and networked systems communities.
The graphics community has focused primarily on the visual quality
of scene capture through textured meshes [38,41,51], which is often
best explored in a centralized fashion with lossless data sources. In
contrast, the networking and systems community has focused on
directly streaming low-level sensor data (e.g., point cloud) to end
users [22, 23, 32, 61]. In this work, we focus on streaming textured
mesh sequences as a 3D video.

3D Scene Capture: There has been extensive work on 3D scene
capture pipeline. Much of the prior work focuses on efficient algo-
rithms to generate high-quality scenes [11, 24, 33–35, 39] and often
ignores the computational complexity of capture pipeline. Recent
solutions tackle this with memory-efficient data structures for faster
reconstruction or consume less compute resources in limited environ-
ments without sacrificing the quality of the scenes [15,29,31,40,60].
Built on such extensive work, recent solutions introduce end-to-end
3D streaming pipelines using textured mesh representation such as
FVV [11], Holoportation [41], Fusion4D [16] and Montage4D [17].
However, these systems mostly focus on high bandwidth (e.g., ≈1-
2Gbps) locally networked scenarios and do not discuss the practi-
cality of live streaming on wide area Internet where only a few tens
of Mbps bandwidth is typically available. Another branch of work
leverages compressed implicit volumetric representations [52, 53]
for capture and streaming. While enabling Internet-friendly data
rate and real-time operation, these methods place compute and mem-
ory intensive surface extraction workloads on client devices. [48]
uses spatial-temporally offset cameras to increase coverage, qual-
ity, and capture frame rate. While using more cameras to capture
a constrained area with a single server to perform textured mesh
reconstruction, as also demonstrated in [41, 52], it is not scalable in
terms of area coverage due to implicit surface memory requirement
increases with respect to scene size rather than number of sensors.

3D Streaming Over Wide-Area Internet: Many of the prior work
on 3D streaming uses point clouds or RGB-D [21–23,32,61]. These
systems suffer from high bandwidth requirements and impose a
significant computation burden of 3D scene reconstruction on the
client side, which is not desirable. Also, these systems focus on
on-demand streaming and suffer from latency in live scenarios. VR-
Comm [22] proposes a real-time system with low latency but uses
RGB-D representation and suffers from bandwidth overheads as
well. Various techniques for maximizing streamed textured mesh
perceptual quality under network bandwidth constraints have been
explored. [54] proposes a bit-allocation algorithm that maximizes
progressive textured mesh quality. [10] explores network adap-
tive streaming of Level-of-Detail textured meshes. [13] adapts the
3D mesh capture pipeline to generate and stream varying quality
data based on network conditions. Output-sensitive approaches for
avatar streaming have also been explored recently. [28] leverages
feedback from the viewing client to guide the 3D capture and recon-
struction to produce merged avatars for better visual quality while
consuming less memory and bandwidth. Although this approach
shows promise in delivering a decreased bandwidth for the server
output stream, it does not scale in terms of area coverage when
many users are present and looking at an expansive area. Unlike the
prior work, MeshReduce adopts DCT (Discrete Cosine Transform)
energy to establish a rate control tailored for capturing and stream-
ing 3D textured meshes, delivering high-quality textured meshes at
reduced bitrates and latency. The aforementioned previous work on
adaptive streaming focuses on making optimal decisions on which
bitrate/quality to select for a given network condition. On the con-
trary, our work is more focused on generating those bitrates (by
analyzing the optimal Pareto curves) to enable adaptive streaming.
More importantly, MeshReduce focuses on capturing and streaming
unbounded and full scenes, whereas much of the existing work is
on isolated objects (e.g., faces or human bodies). Our approach
also optimizes the capture-side output by identifying the optimal
mesh reconstruction parameters and generates a spatial-temporal
consistent texture map that modern video codecs can leverage.

Mesh Reconstruction Pipeline: Creating textured meshes involves
three tasks: (1) Reconstruction, (2) Decimation, (3) Texture Map-
ping. The reconstruction task takes overlapping RGB-D frames
(from multiple sensors) as input and incrementally combines them
into an implicit surface representation (e.g., Truncated Signed Dis-
tance Function (TSDF) [12]). Once the implicit surface is created, a
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Figure 2: Breakdown of scene capture latency: (a) Decimation has the highest latency among all tasks, (b) Decimation latency increases as we
add more sensors to capture scenes for better quality, (c) Decimation can be used to get high quality at low bitrates.

polygon extraction algorithm, such as Marching Cubes [33], is used
to create a mesh. Decimation reduces polygon count from the initial
mesh while preserving the overall shape, volume, and boundaries
as much as possible. We can leverage decimation as an important
knob to remove a certain percentage of polygons in a given mesh
and reduce data rate. Texture mapping task maps each polygon to a
corresponding texture region. This mapping information is stored in-
side the mesh data structure and used to apply texture onto polygons
during rendering.

3 DISTRIBUTED MESH RECONSTRUCTION

In this work, our vision centers around adopting textured mesh
representation for efficient 3D streaming. MeshReduce is designed
to generate textured mesh data with low latency, addressing memory
and scalability issues, and achieving practical bitrates for Internet
streaming. A block-level overview is depicted in Figure 5.

3.1 Decomposing Mesh Reconstruction

Compute Latency Analysis: In order to optimize the mesh capture
pipeline effectively, a deep understanding of the compute latency
of different tasks is crucial. As illustrated in Figure 2 and Figure
3a, we analyze the computation latency across various tasks in
the textured mesh capture pipeline. In this experiment and our
system implementation, we use TSDF to integrate sensor depth
readings, followed by Marching Cubes for surface extraction. TSDF
integration is implemented with voxel hash data structure [40]. Mesh
decimation is based on Quadric Error Metric (QEM) [19]. Texture
processing uses the projective texture process, and its encoding is
handled by H.264 hardware encoder [44]. Mesh encoding is done
with Edgebreaker algorithm [14, 49].

This experiment involved capturing a 5x5m area using multiple
RGB-D cameras, with the reconstruction resolution set to 1cm. Our
findings indicate that mesh decimation stands out as the most
time-consuming task. This is primarily due to our single-core im-
plementation of the QEM algorithm, which involves calculating
the Quadric Error for each vertex in a sequential manner, select-
ing the optimal edges for a collapse based on these metrics, and
then iteratively updating the mesh and recalculating error metrics
after each collapse. While simpler and more straightforward, this
method contributes to the significant time consumption observed in
the mesh decimation task. As evidenced in Figure 2a, even with a
single camera scene at 50% decimation, the latency exceeds 200ms,
and this latency further escalates with higher levels of decimation.
While our actual system implementation includes a more advanced,
parallel version of the QEM algorithm similar to [63] for enhanced
efficiency, it remains the most significant contributor to overall la-
tency, shown in (§6.2), Figure 2 serves as a crucial reference point,
illustrating the computational demands and latency issues inherent
in the single-core approach to QEM-based mesh decimation.

This latency becomes more acute (>1s, see Figure 2b) when we
decimate more complex meshes, i.e., more complete mesh created
from more sensors. On the other hand, decimation significantly
reduces polygon count while maintaining quality. A qualitative
example of decimation value in reducing polygon count vs. texture

(a) Scene capture latency (b) GPU memory usage

Figure 3: Challenges of streaming textured meshes in a centralized
scene capture architecture: (a) High scene capture latency, (b) High
GPU memory usage with the increase in the number of cameras.

quality can be seen in Figure 4. We also objectively evaluate the
decimation impact in reducing bitrate while maintaining quality
(Figure 2c). For a low complexity scene, Multi-View SSIM of the
rendered quality is reduced by only 0.02 relative to the original when
90% of the triangles are removed. Even a high-complexity scene can
be decimated by 50% without having a significant perceptual quality
difference. This shows that decimation can be used as an important
knob to trade mesh and texture bitrates when streaming over a
network since decimating mesh significantly reduces bandwidth
(more details on texture vs. geometry adaptation in §4).

High-res texture 
High-res mesh

High-res texture 
Low-res mesh

Low-res texture 
High-res mesh

Figure 4: Decimation example showing significantly reduced poly-
gon count with little impact on quality (middle compared to the top).
Reducing texture resolution, on the other hand, degrades the quality
significantly (bottom). The left side shows the original model.

GPU Memory Limit: Another key finding is that the reconstruc-
tion task leads to GPU memory bottleneck. While previous mesh
reconstruction approaches were CPU-constrained, recent advance-
ments (e.g., voxel hash data structures, data-parallel polygon extrac-
tion) [33, 40, 51] have significantly accelerated this process. This
acceleration is evident as shown in Figure 2a, which shows a latency
of less than 1 millisecond in the reconstruction process.

However, this increase in speed comes with a substantial trade-
off in GPU memory usage. The mesh reconstruction process now
requires considerable GPU memory, especially for implicit surface
storage and polygon extraction. This demand significantly constrains
the system’s capacity, limiting it to handling only 3-5 cameras at a
time, even with advanced GPUs like the NVIDIA RTX 3090 (shown
in Figure 3b). This limitation becomes especially pronounced when
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considering the potentially cubic increase in GPU memory usage
with every doubling of the capture resolution in three dimensions.

Having an understanding of the bottlenecks of the existing mesh
reconstruction pipeline, we now discuss our principles of leverag-
ing edge (sensor side) embedded compute to enable a telepresence
system that operates at interactive latency while providing wide area
coverage. This is achieved through (1) decomposing mesh recon-
struction to sensor side compute nodes and (2) composite meshes
reconstructed from heterogeneous sensors into a unified 3D scene.
Splitting the Capture Pipeline: In order to alleviate the GPU mem-
ory and latency bottlenecks shown above, we split the traditional
monolithic capture pipeline across edge nodes where each node per-
forms a smaller single-camera mesh reconstruction and decimation.
The system then merges these per-camera reconstructions into a
single mesh on hierarchical merging server. Each edge node has
sufficient resources to reconstruct a single sensor scene and decimate
with minimal latency due to limited scene coverage. Another im-
portant result of this design is that the merging process at the server
is fast even on the CPU and does not necessitate GPU compute,
making it DRAM-bounded (which is abundant in practice).

The above distributed pipeline can be deployed in two ways: (1)
each camera transmits its RGB-D streams to a central server farm
that has a cluster of compute nodes, where each node performs per-
camera scene reconstruction, and another node merges all of them
into one, or (2) the per-camera compute node is co-located with the
camera and transmits the reconstructed mesh and RGB bitstreams to
a central location for merging. MeshReduce takes (and advocates)
the latter approach for the following reasons: (i) RGB-D consumes
more bits for the same quality than mesh streams, and converting
to mesh representation as early as possible in the pipeline is more
efficient, and (ii) we envision the future 3D sensors to perform the
sensor-side reconstruction pipeline in the embedded hardware, much
like current generation cameras performing video compression.

3.2 Mesh Aggregation and Merging
Once the per-sensor reconstructions are available at the merging
server, the next step is to merge all the partial reconstructions into
a single model. In multi-view sensor setups, mesh reconstructions
often contain overlapping regions, similar to previous work that
explored merging multiple meshes to form complete 3D scans [55].
Ideally, merging these meshes seems like a straightforward pro-
cess of concatenating mesh data structures and removing duplicate

polygons. This approach, however, presumes a perfect simulation
environment where sensors are idealized, consistently yielding iden-
tical triangle configurations (i.e., same vertex positions for the same
surface) as produced by surface extraction algorithms such as March-
ing Cubes. In contrast, real-world conditions introduce significant
complexities. Factors such as sensor noise and imperfect calibration
lead to variations and misalignments in the generated mesh, making
the simple mesh merging process infeasible. In addition, it is chal-
lenging to determine mesh intersection and union, given the partial
meshes do not have clear boundaries and are not watertight.

Realistically, when overlaying meshes are produced by different
sensors with a partial overlapping field of view, it is common to
observe non-perfect mesh overlaps. Figure 6(a) shows an example of
overlaying two meshes with partial overlap; regions that demonstrate
interleaving red and blue colors consist of two layers of mesh with
inaccurate reconstruction due to sensor noise and calibration error,
along with Z-fighting. To merge these two independent meshes into
one, one approach can be grouping the two sets of mesh vertices
into clusters based on their proximity and then replacing each cluster
with a representative vertex. This is similar to the idea of vertex
clustering in mesh decimation. However, vertex clustering based on
vertex proximity leads to worse geometry accuracy as it does not
consider the error introduced in this process.

To mitigate this, we opt for a two-step procedure. First, we
use raycasting, implemented with Bounding Volume Hierarchy for
efficiency, to accurately identify and remove overlapping regions,
obtaining meshes with no overlap. Then, we use a nearest-neighbor
search, implemented with the KD-Tree data structure, to merge the
boundaries of the meshes, forming a seamless model.

Overlap Removal: The raycasting step is crucial for determining
which parts of a mesh surface are inside or obscured by another
mesh. This approach is particularly effective when dealing with the
complexity of intersecting non-watertight surfaces. For this step, we
gather all cameras’ intrinsic and extrinsic parameters to construct
rays based on the pinhole camera model. These rays are then cast
across the partial meshes to detect intersections.

The outcomes of the raycasting process are twofold: Firstly, if a
ray results in no hits or just a single hit, it indicates the absence of
overlap, signifying that the scanned volume is captured exclusively
by one camera. Secondly, more than one hit suggests a potential
overlap. However, this does not sufficiently confirm an actual over-
lap, as the ray might intersect multiple triangles, either representing
different objects or the same surface as seen from various camera
perspectives.

To discern whether a potential overlap is indeed an actual overlap,
we analyze whether the rays intersect with triangles within a prede-
fined range threshold. An overlap is confirmed if the intersecting
hits fall within this range. Conversely, overlaps are disregarded if
the hits lie beyond this range. The value is carefully chosen based on
the accuracy and precision of the sensors involved, ensuring a bal-
ance between accurate overlap detection and the avoidance of false
positives. We empirically set this threshold as double the amount
of sensor precision. Once we have determined the case where there
are multiple triangles within this set threshold, we remove the ones
that have a further distance with respect to the camera. At the end of
this process, we also perform island removal, based on connected
triangle areas, to remove any floating surfaces as a result of the
overlap removal process. The surface area threshold is determined
as double the mesh reconstruction resolution from the TSDF block.

Hierarchical Mesh Merging: Once we successfully eliminated
overlapping regions in the meshes, the remaining partial meshes
each distinctly represent separate volumes of the space, as shown in
Figure 6b. Our goal now is to create a seamless model by integrating
the partial mesh boundaries. We use nearest-neighbor search (with
KD-Tree data structure based on radius) to identify and collapse
close vertices. We locate and operate only on mesh boundaries
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Figure 6: (a) Overlapping mesh from multiple camera angles. The surface has an interleaving topology due to camera calibration error and
sensor noise. Redundant triangles incur higher bandwidth requirements and negatively affect perceptual quality. (b) cleaner and more efficient
geometry representation after using raycasting to remove redundant triangles. Blank region due to camera occlusion. (c) zoomed in qualitative
demonstration of mesh merging. Two independent mesh volumes are connected on edges, forming a complete and smooth 3D scene.

(by checking boundary conditions, i.e., the number of connected
neighbors of a triangle edge) instead of the whole mesh model
for efficiency. This ensures the traversal of only necessary mesh
vertices for merging. In our implementation, the radius search
threshold is determined as the square root of the reconstruction
resolution. However, it’s important to note that this parameter is
highly dependent on the specifics of the scene and typically requires
fine-tuning through empirical experimentation. The end result of
this process is depicted in Figure 6c.

To address the scalability of the mesh merging design, we intro-
duce hierarchical mesh merging that uses multiple merging servers
at different layers to ensure each server is capable of handling the
merging workload with enough throughput. The process begins with
each server conducting parallel localized merges of partial meshes.
This initial step effectively reduces the overall data volume, setting
the stage for more manageable subsequent processing. This hier-
archical approach mitigates latency limitations in mesh merging
by distributing the workload across multiple servers and allowing
for concurrent processing. As a result, it enables a scalable and
distributed pipeline that can efficiently handle large-scale mesh in-
tegration tasks. The choice of the number of servers and layers is
highly scene-dependent and needs to be tested and determined based
on sensor arrangement and server capability.

3.3 Bandwidth-efficient Texturing and Atlas Generation

Spatial-Temporal Coherent Texture Generation: After merging
partial meshes from each sensor view, we focus on generating a
bandwidth-efficient texture map and atlas using the camera RGB
frames. This process serves two purposes. Firstly, it creates a 3D
to 2D texture map that enables a rendering client to project textures
onto the geometry during rendering. Secondly, it forms a bandwidth-
efficient and spatial-temporal consistent texture atlas by excluding
redundant camera views.

We employ projective texturing to establish a mapping between
3D triangle vertices and 2D camera image coordinates. Traditional
methods often utilize an angle test to determine this mapping, as-
signing triangle vertices to image coordinates by selecting cameras
that minimize the angle between the camera’s view vector and the
triangle vertex normal, thereby ensuring minimal angle distortion [7].
This approach, however, can lead to spatial incoherence in the tex-
ture atlas, as neighboring triangle vertices might be mapped from
different camera views. Such a scenario becomes particularly prob-
lematic when overlapping views are removed to enhance bandwidth
efficiency, resulting in a loss of spatial coherence in the texture atlas.
Such a scenario results in suboptimal compression efficiency for
block-based 2D video coding methods like H.264 or VP9 ( [4, 59]).

To address this issue, our method prioritizes spatial coherency by
selecting the same camera to texture map adjacent triangle vertices
whenever possible, especially when overlapping camera views are
within a predetermined angle threshold. This approach ensures a
more cohesive texture atlas, resulting in better compression. How-

ever, we revert to the angle test for better visual quality in situations
where cameras are significantly divergent in their angles. Addition-
ally, to further enhance video compression ratios, we replace pixels
that don’t correspond to any triangles with a uniform color (black
in our case). We efficiently identify these regions by reusing the
raycasting results from the mesh merging step, as detailed in §3.2,
to pinpoint areas that do not register a hit. This strategy leverages
video codecs’ spatial and temporal redundancy capabilities, as such
uniform areas are compressed more efficiently. Figure 7b illustrates
an example of our spatially coherent texture atlas.

Texture Processing Placement: In deciding the optimal placement
for texture atlas generation within our scene capture pipeline, we
initially considered streaming RGB videos directly from the sensor
side to the Internet, aligning with our system’s distributed design
approach. This method could reduce the computational load on
the hierarchical merging server. However, we have decided not to
choose this design based on two key factors:

Firstly, streaming textures directly from the cameras incurs a
higher bandwidth overhead. In contrast, processing textures at the
hierarchical merging server allows for the creation of a stitched
and spatial-temporally coherent panoramic video, which is more
bandwidth-efficient. The traditional 2D video codecs, such as H.264
or VP9, utilized in this process are more effective at compressing
a unified panoramic view rather than separate views due to their
ability to exploit spatial and temporal redundancy across views.

Secondly, the computational tasks at the hierarchical merging
server, like mesh merging and compression, are predominantly CPU-
intensive. At the same time, texture processing, especially using
hardware codecs like NVENC [44], is GPU-intensive. By handling
texture processing at the hierarchical merging server, we can paral-
lelize these CPU and GPU tasks effectively, optimizing the overall
efficiency and resource utilization.

3.4 Wide Area Coverage

Today’s RGB-D (e.g., Azure Kinect [1]) sensors are not suitable to
capture scenes at scale due to their limited field of view and range.
In practical scenarios, it is important that we can capture wide-
area environments by simply deploying a few sensors. To address
this issue, we custom build a new wide area sensing module using
LiDAR and 360◦ camera (see Figure 10). While providing sparse
point clouds compared to RGB-D sensors, LiDAR excels in its
long-range and wide field-of-view depth sensing, making it an ideal
candidate for wide area coverage. However, LiDAR sensors lack
color information, which is critical for telepresence applications. To
address this limitation and provide color information, we co-locate
a 360◦ color camera for each LiDAR sensor. By fusing data from a
combination of these RGB-D and LiDAR + 360◦ sensors, we obtain
textured mesh for wide area room-scale environments.
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Figure 7: Texture atlases of existing approach [20] vs. MeshReduce.
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4 RATE CONTROL FOR TEXTURED MESH STREAMING

Given our proposed distributed sensor network for 3D capture, one
of the core challenges is being able to adapt how we transmit data
either between the internal wireless links or across the Internet in
the presence of variable network conditions. This requires efficient
bitstream generation for transmission with the goal of approaching
optimal bitrates for rate adaptation algorithms. In Figure 5, we
show this capability where all the red edges have textured mesh
transmission over links with variable bandwidth.

4.1 Rate Control Problem Formulation
Traditionally (e.g., in 2D video), the streaming quality is optimized
for a given target bitrate using a rate-distortion function: L =
D +λR, where R is the bitrate, D is the distortion caused after
compression and λ is a tuning parameter to trade video quality with
bitrate. Naturally, this function can be extended to 3D rate control as:
L = D +λtRt +λgRg, where Rt and Rg represent the bitrates for
texture and geometry respectively. Unlike point clouds, where colors
are baked into the same data structure, texture and mesh are two
independent data structures. Thus, they need to go through separate
compression pipelines. Note that our goal is to maximize the final
rendered quality, given the combination of texture and geometry
bitrates. This requires adjusting λt and λg to minimize the overall
distortion. Therefore, the rate control problem for 3D traffic requires
us to answer two key questions: (1) how do we divide the target
bitrate (i.e., available bandwidth) between texture and geometry, and
(2) what are the coding parameters for both texture and geometry to
produce optimal quality for a given bitrate.

4.2 Rate Control Model
A natural solution to find the optimal rate-distortion curve (i.e., bi-
trate vs. quality) is to explore all possible coding parameters that
produce the best quality for a given bitrate offline and use those
parameters to generate suitable bitrates online based on the avail-
able bandwidth. The relevant coding parameters include resolutions,
encoding levels (e.g., quantization parameter) for texture and mesh,
and an additional decimation parameter for mesh. Figure 8a shows
an example of a rate-distortion curve for one scene that is decimated
and encoded at different levels and resolutions. Each point in the plot
denotes a combination of <resolution, decimation, compression>
level, and different combinations are the best fit for different bitrates.
The points corresponding to these best parameters at different bi-
trates can form a convex curve that represents an optimal Pareto
frontier of coding efficiency.

Having a ‘one-size-fits-all’ Pareto frontier curve for any scene is
ideal when preparing the bitstream for fine-grained rate adaptation
over a wireless network. However, the rate-distortion curves are a

(a) Convex curve representing opti-
mal bitrate vs. quality pairs.

(b) Bitrate vs. quality for two scenes
with different complexity.

Figure 8: Impact of coding parameters on bitrate vs. quality for
textured mesh: (a) exploration space with optimal rate distortion
curve, (b) Rate distortion with two scenes (S1, S2) with two dec-
imation levels (10%, 50%) encoded at different bitrates. For the
same bitrates, S1 and S2 produce different qualities, and hence they
need different coding parameters to produce same bitrates at same
optimal quality.

function of the underlying scene complexity, and the optimal coding
parameters for one scene can be suboptimal for others (Figure 8b). A
naive approach to deal with this is computing the Pareto frontier by
exploring the entire state space through exhaustive search. However,
exhaustive search is an extremely compute-intensive task because it
involves exploring thousands of coding parameters to find the best,
creating a major challenge for finding optimal rates in real time.

To address the above challenge, we propose a low-complexity
feature-based predictive model for rate control. We formulate the
problem as a multi-objective classification problem, where we train
an offline model that can predict optimal coding parameters for
texture and mesh online (i.e., during live streaming). The coding
parameters are multiple classes, and each parameter value needs to
be classified to produce the suitable bitrate. Given the wide vari-
ety of prediction mechanisms, particularly in the machine learning
space, a key design decision we need to make is which algorithm
to use— we can use either a simple and lightweight but slightly
less accurate model (e.g., SVM classifier), or use a more accurate
but more compute expensive (e.g., neural network style) model for
prediction. Given the real-time constraints of our live application
scenario, we adopt the former approach of simple ML models in
order to be lightweight. However, unlike neural networks, which au-
tomatically extract features from raw frames, training these models
requires manual feature extraction that again brings computation-
related challenges that we describe below.

Low Complexity Feature Extraction: In order for the end-to-
end feature extraction and prediction to be achieved in under a few
milliseconds, we need features to be computationally low complexity.
To this end, we adopt a simple frequency distribution based features
as a proxy to represent a scene signature. Specifically, we use the
below Discrete Cosine Transform (DCT) energy function from [26]
to compute spatial information in each frame (both for depth and
RGB texture frames).

Edct =
j=h

∑
i=w

e[(
i j
wh )

2−1]|DCT (i−1, j−1)|

where, where w and h are the width and height of each block, and
DCT (i, j) is the (i, j)th DCT component when i + j > 2, and 0
otherwise [26]. Figure 9 shows an example of different scenes with
different complexity and the corresponding DCT energy of the scene
in each frame. We find that DCT energy tends to be high for complex
scenes and vice versa, and hence, it can be used as a rich feature in
classifying the coding parameters. We also compute DCT energy
temporally (to accommodate for temporal redundancy), same as the
approach outlined in [36], and other features such as variance and
gradient of temporal energy (to capture motion), and along with the
target bitrate as features to train the classifier.



Figure 9: DCT energy as a feature to measure scene complexity. A
low DCT energy indicates a low complexity scene and vice versa.

Joint Rate Allocation Model: Given the raw RGB-D frames and
the target bitrate, the goal is to select a set of coding parameters
such that the bitrates generated by texture and mesh using those
coding parameters sum up to the target bitrate. Here, we use coding
parameters resolution and compression levels for texture and an
additional decimation level for mesh. The inputs for the model
are the above features extracted from the depth and RGB frames,
along with the target bitrate, and the output is predicted coding
parameters for texture and mesh. A key advantage of jointly training
the classifier to predict the parameters for both texture and mesh is
that it eliminates the need to manually tune λt and λg (as described
in §4.1) to split the bandwidth between the two. The classifier model
outputs parameters for both.

Our current implementation shows a simple proof-of-concept
that rate control is a non-trivial multi-dimensional problem. We
provide one such predictive solution, but there is tremendous room
for improvement (in terms of scene features and more fine-grained
parameter control) for the textured mesh streaming systems that we
leave for future work.

5 IMPLEMENTATION AND SYSTEM SETUP

MeshReduce’s end-to-end system (Figure 5) consists of capturing,
mesh merging, and streaming to prepare a 3D video bitstream. It also
involves a rendering server on the client side to perform viewport-
based remote rendering. The procedure of the pipeline is (1) sensor-
side compute nodes reconstruct, decimate, and encode the mesh and
an RGB video to the hierarchical merging server, (2) the hierarchical
merging server processes all the sensor node partial meshes and
forms a texture atlas, (3) the merging server uses rate control model
to generate adaptive bitrates for texture and geometry streams for the
Internet delivery, (4) client-side rendering server receives a unified
3D scene and remotely renders view based on client viewport.

We built MeshReduce in C++ on top of Open3D [45], Intel Em-
bree [56], Google Draco [2], WebRTC [9]. We use four Azure Kinect
cameras [1] for high-resolution capture, recording color and depth
frames at 3840x2160 and 640x576 at 30FPS. For wide area capture,
we deploy the OS-Dome LiDAR [42] (2048x128 resolution) com-
bined with a 360◦ camera (Ricoh Theta X [46]), as shown in Figure
10. Kinect sensors are calibrated with stereo calibration. LiDAR and
camera are calibrated with line and plane correspondences [62].

For each sensor side compute node, we use a Jetson Orin Nano
embedded computer to perform per-camera mesh operations. We
use Google Draco [2] for mesh compression, and h264 nvenc [44]
for color/texture video compression. Each node streams color and
mesh bitstream to the merging server over a TCP connection.

The merging servers are Linux machines with an AMD 5950x
CPU, 64GB RAM, and NVIDIA RTX 3090 GPU that receive color
and mesh bitstreams from separate sensors. Once the bitstreams are
received, the mesh is decoded using Draco [2] for mesh merging,
and the color frames are decoded using h264 nvdec [44] to prepare
a texture atlas. Once the merged scene is ready with both mesh
and texture atlas, the mesh is again decimated and compressed with
Draco [2], and the texture atlas is compressed with h264 nvenc [44].
The resulting product is an internet-friendly texture mesh bitstream.

Additional System Optimization: We implement local parallel

LiDAR: OS-Dome

Jetson Orin Nano

360° Camera: 
Ricoh Theta X

Integrated 
Wireless

Figure 10: Left shows MeshReduce’s custom LiDAR and Camera
setup to enable wide-area capture. Right side shows a large area (8
x 5 meter) 3D capture with this setup mounted on the ceiling.

Figure 11: A qualitative result of two high-resolution people recon-
structed in 3D from our testbed (using 4 RGB-D cameras), compos-
ited with a photogrammetry background, and rendered from three
arbitrary viewpoints.

decimation and compression on each sensor compute node to reduce
the latency. We do this using our split-merge design idea without
modifying the decimation or compression algorithms, where we
locally decompose the depth maps into M depth patches according
to the machine core count and reconstruct a mesh out of each patch
on a separate core. We then parallel decimate, compress, and stream
each reconstruction to the hierarchical merging server. We evaluate
the quality vs latency impact of such local decomposition in §6.2.

6 EVALUATION

6.1 Evaluation Methodology

Dataset: We collect several samples of 3D video under different
environments (e.g., conference room, office space, corridor, and
hallways) by capturing RGB-D frames from multiple sensors. We
construct point cloud and textured mesh frames from the synchro-
nized RGB-D frames. To evaluate the quality after introducing
coding artifacts, we create reference frames with a 1cm voxel res-
olution to extract mesh from the depth frames. Figure 11 shows
an example of a rendered scene, composited from two people cap-
tured from our four camera testbed in a lab area, with a pre-scanned
photogrammetry model as background, using our mesh merging
algorithm. We do not apply color correction or perform any smooth-
ing between the mesh segments, but there are well known graphics
techniques that can be used to improve the final image quality.
Evaluation Metrics: Our key evaluation metrics are the system’s
final rendered quality, bitrate, and latency. We evaluate quality using
a Multi-View SSIM metric that computes quality from multiple view-
points to cover the 3D scene. Latency is the time needed to generate
mesh bitstreams starting from the RGB-D frame acquisition.
3D Quality Evaluation: Unfortunately, there are no well-defined
metrics for 3D visual quality assessment. We propose adapting
SSIM (structural similarity index metric) [58], a popular 2D video
quality metric that measures the perceptual quality difference be-
tween two videos. We compute the SSIM of the 2D rendering of
the 3D scene from a predefined set of views. We refer to our metric
as Multi-View SSIM, which reports the average SSIM across the
predefined viewpoints. The views are selected based on Voronoi
path planner [8] to avoid locations and angles that do not accurately
capture useful locations for viewers (e.g., under a table, looking into
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Figure 12: Latency, Quality, and Bandwidth trade-offs of MeshReduce and its benefits compared to baseline streaming systems. MeshReduce
achieves significantly higher quality while maintaining low latency and bandwidth. Points on the graphs are the chosen experiment latencies.

a corner, etc.). Our collected datasets come with a predefined set of
viewpoints (on average ≈30).
Baselines. We implemented and compared against the following
variants of existing work1.

• Holoportation [41], a state-of-the-art textured mesh streaming
system for real-time 3D telepresence. It uses lightweight com-
pression (LZ4 [5]) for texture and geometry streaming.

• PointCloud-based, a live point cloud based 3D reconstruction
system. The closest similar system is LiveScan3D [27]; however,
it does not discuss much about compression and streaming. We
apply MPEG VPCC [6] compression when comparing the rate-
distortion results. The majority of the volumetric video streaming
work [23, 32, 61] also falls under this category.

• Holoportation++, a custom-designed and optimized version of
the original Holoportation system. The Holoportation system
does not use efficient compression mechanisms for both texture
and geometry. We introduce Edgebreaker (Draco) mesh compres-
sion along with parallel decimation and h264 nvenc for texture
compression to Holoportation and call it Holoportation++. This is
distinct from MeshReduce as it does not distribute mesh creation
followed by the merging step.

6.2 End-to-End Results
Figure 12 shows the end-to-end scene capture latency against the
quality and bandwidth requirement of MeshReduce compared with
its alternatives. We fix the bandwidth at 100 Mbps in Figure 12a
by choosing different coding parameters for each method that re-
sult in different latency and quality because of their respective re-
construction pipeline and data representation. Under this setting,
MeshReduce improves the quality by 18% and 27% when compared
to state-of-the-art Holoportation and Pointcloud-based 3D streaming
systems. This translates to 0.1 and 0.15 SSIM, which is a significant
improvement given that even a 0.05 SSIM value can show a consid-
erably noticeable difference in terms of perceived visual quality [58].
On the other hand, the optimized version of Holoportation performs
close to MeshReduce but at the expense of 4× higher latency.

Figure 12b shows the bandwidth consumption for each method.
Here, we fix the quality for each method at ≈0.92 average Multi-
View SSIM, which results in different latency and bandwidth re-
quirements. MeshReduce requires 40× and 3× less bandwidth
compared to Holoportation and point cloud based systems. Similar
to earlier, the bandwidth requirement of Holoportation++ is close
to MeshReduce but suffers significantly from latency because of its
monolithic mesh reconstruction as well as the decimation on the
entire mesh model at once. Figure 12c shows the quality achieved

1Other related work, such as viewport adaptive 3D streaming [23], focuses
on rate adaptation algorithms and are slightly orthogonal to our work since we
mainly focus on capturing and preparing bitstreams efficiently. MeshReduce
can be used in these solutions for the capture side.

for each system at different bandwidths for a latency of 100ms.
MeshReduce can have perceivable quality (i.e., above 0.8 SSIM
value) even at as low bitrates as 20 Mpps, while providing higher
quality as we increase the bandwidth. On the other hand, both Holo-
portation and point cloud systems are below the perceivable SSIM
threshold (i.e., less than 0.8) under 60 Mbps.

At a given latency, a significant part of the improvements of
MeshReduce is from mesh decimation, effectively reducing the
required bandwidth while not affecting the quality when compared
with Holoportation. While the Holoportation++ system does have
decimation, it does not use the sensor side compute node and suffers
from high latency. On the other hand, the point cloud based system
suffers mainly because of its compression inefficiency.

Latency Breakdown on Different Edge Devices: Table 1 shows
MeshReduce’s sensor side performance with different platforms. We
demonstrate MeshReduce can effectively distribute capture work-
loads and run on Jetson embedded platforms under 100ms latency.
It is important to note that pipelining the compute stages can further
improve system throughput.

Table 1: MeshReduce latency on different platforms (ms)
Compute Jetson Jetson Desktop i9

Stages Orin Nano AGX Orin RTX 3070
Mesh Reconstruction 15 10 2
Texture Processing 7 4 3
Texture Encoding 27 12 8
Mesh Encoding 10 8 3

Mesh Decimation 32 20 11

Ablation Study: Figure 13 shows the impact of MeshReduce’s
components at fixed 100 Mbps bitrate and 100ms latency: (1)
MeshReduce without texture atlas optimization (TAO) from §3.3,
and (2) MeshReduce without the local depth decomposition at the
sensor for parallel decimation. The figure shows that both compo-
nents are critical to the performance of MeshReduce. MeshReduce
without TAO performs poorly compared to full MeshReduce be-
cause of the compression inefficiency of spatially incohesive texture
atlas. On the other hand, MeshReduce without local decomposition
has to trade with lightweight decimation to achieve the same latency
and bitrate, resulting in poor quality.

Impact of Local Decomposition: The multi-core parallelization
of decimation by locally decomposing the mesh reconstruction de-
creases latency significantly but also has an impact on quality. Figure
14 shows the latency and quality loss due to the decomposition and
merging when compared with the single reconstruction. As we in-
crease the decomposition size, the latency decreases significantly.
However, we observe a noticeable quality of around 0.02 SSIM
only after a decomposition of more than 5×5 decomposition size.
This shows an interesting trade-off between quality and latency to
decimate the geometry for providing adaptive bitrates.



Figure 13: MeshReduce’s individual
components performance breakdown.

Figure 14: Impact of multi-core local decomposi-
tion on quality and latency.

MeshReduce’s small 
memory footprint

MeshReduce can scale to 
large scenes

Figure 15: MeshReduce is DRAM bounded
and can scale to a large number of cameras.

6.3 Scalability with Large Scenes
A key outcome of MeshReduce is that it eliminates the GPU memory
bottleneck by effectively splitting the mesh reconstruction task. Each
sensor-side compute node has enough GPU memory to reconstruct
its own view (since our maximum per-sensor scene GPU memory
requirement is 3.5 GB, see §2). While the merging server still pro-
cesses all the per-sensor reconstructions, the merging step can be
bound only by CPU and DRAM (though GPU-based raycasting ap-
proaches can further reduce latency). Since the commodity devices
are often shipped with large amounts of DRAM, MeshReduce’s
reconstruction pipeline can scale well to many challenging scene
capture scenarios — large-scale scenes, many sensors, etc. Figure 15
shows an experimental result on the scaling limits of MeshReduce
with synthetic scenes (each of 6m×9m) captured with several cam-
eras at 1cm voxel resolution. For small-scale scenes (i.e., up to 5
cameras), the DRAM usage is as small as under 2 GB. However, even
at 400 cameras, the DRAM usage is around only 43.2 GB, which
is only a fraction of the DRAM capacity even on today’s server de-
vices. Supporting such large scenes demonstrates that MeshReduce
is efficient for room-scale 3D telepresence applications and enables
campus-wide building-scale remote exploration of spaces.

While MeshReduce supports a large number of sensor scenes,
one caveat is the computational complexity of merging tasks. In our
experiments, we observe a merging latency of 1.2 seconds (mainly
from the raycasting task) when we scale to 400 cameras. However,
this would be mitigated with our hierarchical merging design, and
MeshReduce’s real-world evaluation focus is streaming small-scale
3D scenes with low bitrates and low latency, and hence we leave
optimizing of latency for large scenes/sensors for future work. Exist-
ing high complex scene rendering solutions such as R2E2 [18] can
be applied to render such large scenes with low latency.

6.4 Rate Control Sensitivity Analysis

MeshReduce
Lookup-Table

Figure 16: MeshReduce’s rate
control model performance.

We compare the rate-
distortion performance of
MeshReduce with an offline
generated Pareto-optimal
rate-distortion curve over
ten scenes from our dataset.
We first generate the optimal
curves by selecting the
best coding parameters as
described in §4. Then, we use
MeshReduce’s rate control
model to predict the coding
parameters and generate
rate-distortion curves with
the predicted parameters. For each scene, we compute the SSIM
difference between the quality of the optimal curve and our
predicted curve for different bitrates (ranging from 10-100 Mbps),
and plot the distribution of the difference in SSIM. We also show the
SSIM difference for an alternative lookup-table solution; the coding
parameters can be profiled for different scenes with different DCT
energy and stored in the table for online lookup. Figure 16 shows a

cumulative distribution of the difference in SSIM for each model
compared against the optimal rate-distortion curve. MeshReduce
can achieve within 0.15 SSIM of the Pareto-optimal curve with an
average of 0.08 SSIM difference. This is noticeably better than the
lookup table, which has an average SSIM difference of 0.11 and a
maximum difference of 0.2 SSIM. The lookup-table suffers mainly
because it is difficult to store the coding parameters for all possible
scene dynamics accurately.

6.5 Hardware and Cost Analysis
This section discusses the hardware cost analysis of centralized
capture systems and our proposed MeshReduce. We analyze small
and large conference rooms that need 4 and 8 capturing sensors.
In the centralized systems, the central server needs server-class
GPUs that support up to 40GB of memory for 4 sensors (see Figure
3b) and 80GB of memory for 8 sensors. Therefore, they incur a
high cost with GPUs such as (e.g., NVIDIA A100). On the other
hand, MeshReduce leverages distributed compute located at the
capturing sensors so that the final computation requirements at the
hierarchical merging server are significantly lowered and need only
consumer-grade servers and GPUs (e.g., NVIDIA RTX 3090). It is
worth noting that the system might have dozens or even hundreds
of cameras in VFX production workflows. In these cases, a cen-
tralized approach is totally infeasible and requires lengthy offline
post-processing. MeshReduce could still support these types of ap-
plications in real-time with marginal additional cost, given that these
systems are often on the order of hundreds of thousands of dollars.

7 CONCLUSION AND FUTURE WORK

In summary, this paper introduces MeshReduce, an open-source
3D scene capture system that fuses RGB-D streams from network-
connected sensors in real-time. Our key insight is that independently
created mesh reconstructions can be merged incrementally in a
distributed manner instead of at one centralized source without a
significant loss in quality. Our approach leads to a more compact
intermediate representation of the 3D data. MeshReduce’s texture
mesh excels in capturing planar surfaces and managing geometry and
texture data separately, enhancing adaptability to network changes.

Future directions include developing rate adaptation algorithms
for 3D streaming, using progressive meshes [25] and texture
mipmaps [38], akin to layered video streaming [3]. This would allow
gradual improvement in geometry detail based on compute/network
capacity. Additionally, we can adopt viewport prediction for stream-
ing user viewport [23], and explore 3D video adaptive streaming to
accommodation-supporting interactive 3D displays [43].

Finally, there is a large body of work on light-field 3D reconstruc-
tion [57] and a rapidly growing community exploring neural scene
reconstruction [37] techniques. We believe our distributed architec-
ture could be applied to both by adapting our merge function.
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