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ABSTRACT

Public spaces like concert stadiums and sporting arenas are ideal
venues for AR content delivery to crowds of mobile phone users.
Unfortunately, these environments tend to be some of the most
challenging in terms of lighting and dynamic staging for vision-
based relocalization. In this paper, we introduce FLASH', a system
for delivering AR content within challenging lighting environments
that uses active tags (i.e., blinking) with detectable features from
passive tags (quads) for marking regions of interest and determining
pose. This combination allows the tags to be detectable from long
distances with significantly less computational overhead per frame,
making it possible to embed tags in existing video displays like large
jumbotrons. To aid in pose acquisition, we implement a gravity-
assisted pose solver that removes the ambiguous solutions that are
often encountered when trying to localize using standard passive
tags. We show that our technique outperforms similarly sized passive
tags in terms of range by 20-30% and is fast enough to run at 30
FPS even within a mobile web browser on a smartphone.

1 INTRODUCTION

Mobile Augmented Reality (AR) platforms like ARKit and ARCore
have opened the door for new types of interactive content that are
easily accessible to the masses. One compelling use-case is the
inclusion of AR effects in entertainment venues, like sports arenas,
theaters, and concert halls. Figure 1 shows two potential scenarios
where users could see additional content overlaid on a live action
event. The first scenario is a car race where fans in the bleachers
could look through their phones and see annotations about the statis-
tics of passing cars with comparative overlays of racing lines and
breakpoints laid out on the track. Many of these effects are already
being added to television coverage but would be equally (if not
more) valuable for fans physically present at the event. The second
example shows additional effects that could be added to a live indoor
concert performance where the background lighting and staging is
often wildly variable. In this case, we see an image capture from
the BTS boy band tour “Love Yourself; Speak Yourself,” where the
creative directors applied live AR effects to footage shown within a
stadium in real-time. One could imagine a personalized version of
these effects delivered through mobile AR with the ability for the
crowd to directly interact with and influence the content. Alongside
these entertainment use-cases, one could also imagine adding AR
signage for navigation, friend finding, advertisements, concessions,
etc.

One of the biggest challenges in making these types of applica-
tions work in practice is the ability to accurately estimate the pose
of the user’s camera. With current mobile AR applications, this
is done through image matching-based optical registration or with
purpose-built AR tags. Unfortunately, in entertainment scenarios,
the conditions are extremely challenging for most vision-based tech-
niques due to changes in the visual appearance of the event from
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Figure 1: FLASH example use-cases. Sporting event (top) and Live
entertainment (bottom).

dynamic lighting and set changes. For robust tracking, we advocate
using a small amount of dedicated visual infrastructure in the form
of optical tags. However, standard tags would need to be extremely
large and artificially illuminated. To enable truly robust camera pose
estimation in entertainment environments, we need to overcome the
following three challenges. First, a marker needs to be robust to
lighting changes and to not be affected by dramatic scene changes.
Some systems currently attempt to localize based on visual features
naturally occurring in the venue. This is difficult in environments
like theaters or concerts, where the background changes dramatically
with new sets. Second, markers need to be detectable from a long
distance and across a wide viewing angle. This is especially critical
in entertainment applications to avoid making them too obtrusive
such that they would detract from the main event or disrupt the flow
of a story. Third, the marker should be able to provide an accu-
rate camera pose estimate without having to significantly move the
camera. Most optical markers have been designed with tracking
the tag as the primary goal, as opposed to estimating the pose of
the camera. When detecting 2D tags, there is often an ambiguity
due to detection noise that makes it difficult to determine which of
two potential camera poses is the correct solution. We see that in
practice, the lower residual solution is often not the correct pose of
the two. In entertainment environments, this effect is compounded
by long distances to the marker as well as the fact that content is



likely placed around the entire field of view and not just attached
directly to the marker. In robotic systems, this ambiguity problem is
typically solved through motion filtering, but that is not practical in
a seated scenario.

In this paper, we present FLASH, an active optical AR anchor
system specifically designed for entertainment venues. Instead of
relying on passive visual markers, we propose using an active optical
marker that can be displayed on digital signage within a stadium.
Active optical tags, like LightAnchors and InfoLED [1,41], use
blinking light patterns to encode an identification code (ID) of the
tag that can be determined by processing a video sequence [1,6,33].
Instead of encoding the tag value spatially like passive tags (QR
codes, AprilTags, AR Tags, etc), active tags encode their data over
time across video frames. This means that the tag is still decodable
with a much smaller surface area, hence providing significantly more
range.

Current active optical tags were not designed for the purpose of
camera registration and lack the features needed to estimate viewing
pose. The one example of an active tag that does address camera
pose [33] is extremely computationally intensive (using GPU accel-
eration on a native app), requires a constellation of multiple tags
for pose (camera pose can’t be computed from a single tag), and
suffers in terms of range of motion since it doesn’t have trackable
features that can be identified on each frame. FLASH takes the
geometry-based recognition features of passive tags and applies
them to active tags to create a more versatile option for mobile AR
entertainment applications. We propose using a quad on a video
display where the center component flashes at half the typical cam-
era frame rate. The quad could be completely passive (a black box
on a white background) or it could be drawn as part of the video
feed. While conceptually quite simple, this allows us to optimize
a decoder specifically to more easily locate and decode tags com-
pared to passive alternatives. It also provides the structure needed to
determine camera pose from a single target as opposed to requiring
a constellation of markers. To combat the ambiguity problem, we
present a perspective-n-point solver that utilizes the gravity vector
easily available on mobile phones. Given that our goal is to display
these tags on existing video monitors, we design a decoder that
works with standard display refresh rates.

In order to maintain correct AR overlays on live video data, we
design FLASH to be significantly faster per frame compared to
current passive tags. To achieve video framerates, FLASH uses a
higher edge-to-quad contrast ratio, which is possible due to the active
illumination of the tag. Since the contrast ratio is higher, we can
tune our quad detector to operate with fewer false positives, which
means less time wasted attempting to decode non-tags compared
to typical passive tags printed on paper. This boost in efficiency
makes it possible for us to operate FLASH at full frame rate (30 FPS)
even within a mobile browser on a modern smartphone, while still
providing 6DOF localization using the quad corners. This means
that with Web frameworks like AR.js [23], it is possible to see AR
content without even installing an app on most phones (with the
recent addition of MediaDevices.getUserMedia() on iOS, itis
supported in over 95% of the browser user base) [26]).

We discuss the design and then evaluate FLASH along a number
of dimensions. We show that it is able to increase range by 25-35%
over AprilTags of a similar size, as well as almost doubling the total
viewable area. Most importantly, we show that FLASH is lighting
invariant and significantly more immune to hand shake since it
doesn’t suffer as significantly from motion blur. We also provide
an in-depth analysis of how camera and tag geometry contribute to
pose ambiguity and show that our gravity assisted solver is able to
select the correct solution even in the presence of noise.

In summary, the contributions of this paper are:
1. Design and evaluation of a hybrid active optical marker for

long-range, wide-angle, highly dynamic environments

2. A camera-tag system that is compatible with standard video
screens

3. A gravity-assisted pose solver for mobile AR applications

4. An open-source implementation that runs within a mobile
phone Web browser.

2 RELATED WORK

We classity previous work for content registration in AR into two
main approaches: (1) marker-based and (2) model-based. We also
discuss some of the recent advances in computer vision pipelines in
Web browsers which are complementary and enabling technologies
in subsection 2.4 as well as some of the custom hardware solutions
used for headsets.

2.1 Marker-based

Visual markers (also called fiducial markers) have, for a long time,
been used as a practical solution for content registration in AR [14].
Over the last few decades, researchers have proposed many different
markers, such as AprilTags [22], AR Tags [9], and ARToolKit [38]
(to name just a few). These tags can be very effective and easy to
use, but they have limited range and can often be quite obtrusive.
Other systems, such as Vuforia [40] can learn features from arbitrary
images and thus do not have that problem. However, these image-
based systems tend to be more limited in the number of tags they
can support and are often less robust compared to tags specifically
designed for positioning.

Common to all previous visual markers is the fact that they are
highly dependent on lighting conditions and can, depending on their
size, only work over short ranges. Researchers have also explored
the idea of using active tags [1, 3,6, 15,24,33,41], which can be
more robust to lighting conditions. Of these approaches, visible
light communication (VLC)-based techniques [15,24,39] only offer
relatively coarse localization, work at short ranges, require very low
camera exposure settings to avoid saturation (which is not ideal
for AR), and require high blinking rates (1KHz+ rates) that are not
compatible with commodity displays. Other active visual tags [1,
6,33] are not practical in common mobile devices as they either
require a special vision sensor [6], high camera frequencies (not yet
compatible with current ARKit/ARCore) [1], support relatively short
ranges [1,41], or are computationally very expensive and suffer from
hand shake motion [33]. Visual MIMO [3] is another related active
tag technique. It uses a combination of spatial and temporal coding
to enable high data rate communication, but it is also designed for
high frame rate cameras (hundreds of FPS or greater) over short
distances. All spatial coding techniques trade off data density for
range. FLASH attempts the extreme opposite, where data is decoded
from potentially a single pixel across multiple frames.

2.2 Model-based

Model-based methods are attractive as they don’t require markers
in the environment. For example, authors have shown methods for
camera pose tracking for outdoor AR [25], and these can be used
for pose estimation given a known 3D model of the environment
and initial camera position. Instead, simultaneous location and map-
ping (SLAM) can provide pose estimation with respect to a known
3D model using visual or depth [12,20, 35] sensors. Many recent
headsets [16,19,36] and mobile AR platforms like ARKit [2] and
ARCore [11] use SLAM to determine the device’s pose without the
use of initial camera positions. SLAM requires acquiring a model of
the space before a location can be determined (increasing acquisi-
tion latency) and doesn’t work well in low-feature environments or
when the scene changes. Active optical markers complement these
approaches to reduce the time and robustness of model acquisition.

Determining a camera pose from known correspondences be-
tween 3D reference points and their 2D image projections is a well
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Figure 2: FLASH active tag embedded in slides during a talk and detected in a browser on an iPad (left). Zoomed in view of the tag in its "on” state
shows its simple anatomy (middle). Three small tags with ID 170, 154, and 163 displayed on a laptop (right).

studied problem in computer vision, known as the perspective-n-
point (PnP) problem [10]. Classical methods to solve the PnP prob-
lem formulate a non-linear least-squares problem and then solve it
using iterative optimization [18]. Numerous solutions to the PnP
problem have been proposed in the last two decades, many with
specialized solutions to the problem for a particular number of
points, with few practical implementations [34]. One notable for-
mulation [17], adopted by the ORB-SLAM [20] solver, is based
on linearization and, while fast, may not be applicable to a small
number of points. In this paper, we leverage using the gravity vector
from the phone to help improve camera pose localization.

2.3 Specialized Solutions

Many commercial headsets employ beacons or trackers for localiza-
tion. For example, the HTC Vive [13] uses a sweeping IR laser to
detect horizontal and vertical angle and can be very accurate. These,
however, require powered beacons installed in the environment and
are not designed for long ranges. Interestingly, the Oculus Rift [21]
uses blinking IR LEDs on the headset, which are detected and de-
coded by a fixed IR camera. This system has some similarities to
active tags presented previously and to our approach. Still, it requires
very tight synchronization between the LEDs and the camera, not
achievable in mobile phones without adding specialized hardware.

UWB localization [8] has shown increasing potential in support-
ing AR applications, but also requires external hardware in mobile
phones” and are not robust in high multi-path environments or over
large distances.

2.4 Browser Support

Recent advances in Browser technology support the ease of the
Web to load AR content without installing an app, which we deem
important to facilitate the adoption of these technologies and is
an important enabler of this work. With the increasing adoption of
WebXR [37], we will have access to standard APIs that allow support
for very different display capabilities and experiences, and, while
current WebXR [37] support is still immature [27], it is possible to
experiment with it in a wide variety of platforms [29].

WebXR’s features for advanced computer pipelines is yet un-
der proposal [30]. For this work, we can use the existing Web
API’s MediaDevices.getUserMedia() to access camera frames,
which, as of May 2021, is supported in 95% of the browser user
base, including iOS which added support very recently (December
2020, with the release of i0S 14.3) [26]. Together with WebAssem-
bly [4,31], which efficiently runs codebases for computer vision
previously developed for native applications in C/C++ [5], we can
build very powerful computer vision pipelines that run on all major
browsers. This work leveraged previous implementations of the

2UWB hardware is available in the latest iPhone; however, it is not
accessible to third-parties, and its localization performance is still to be
determined.

AprilTag decoder [32] for our implementation and evaluation on the
Web.

3 SYSTEM DESIGN

In this section, we discuss the design decisions and operation of
FLASH tags along with its detector. Our goal was to create a robust
and computationally efficient active optical anchor decoder for cam-
era pose estimation that works with commodity video displays. We
targeted a decoder that would operate at reasonable AR framerates
even within a mobile Web browser to facilitate widespread adoption.
Unlike many traditional VLC-style systems, we assume that the cam-
era decoder knows the potential set of tag IDs in the scene, allowing
us to design a decoder that needs to perform detection instead of
data transfer.

3.1 Tag Design

FLASH tags are simply quads (squares) displayed on a screen with
three main components: (1) an illuminated outer white border, (2)
an inner black border for the quad, and (3) a central region that
can change from dark black to bright white depending on the state
of the tag. Figure 2 shows an example of a tag in the “on” state
displayed on an iPad. Note that the innermost blinking shape at the
center does not necessarily have to fill the entire quad, but should
fill up most of the inner part of the tag. The inner region of the tag
blinks a coded identification signal using an On-Off Keying (OOK)
scheme that repeats continuously over time. Since the tag ID will
be decoded using a camera, many constraints need to be considered
when designing the tag’s symbol rate and duty cycle, as we discuss
next.

3.1.1  Symbol Rate

While we could build a native application to decode tags at higher
frame rates by enabling mobile Web support, this limited us to 30
frames per second (FPS) for our decoder at reasonable resolutions.
This 30 FPS constraint requires that the blinking rate of our tag is
limited to (FPS/2) Hz. Since we know that the decoder will run at
twice the frequency of the tag, it will sample a single on/off state
twice.

Figure 3 shows how a camera at a sampling rate of 30Hz could
potentially align with a screen flashing at 15Hz. Let n be the code
length in bits. After a full ID is transmitted, our decoder will have
captured 2n values for a single tag. However, we know that we may
need to sample the odd bits or the even bits to correctly decode the
tag ID due to sampling time skew. One of the codes will be in the
acceptable data set, while the other alternative will likely be random.
To avoid nearby conflicts in codes, we recommend putting codes
with relatively orthogonal IDs in areas where they might overlap
with other codes. Though the number of bits is variable, in practice,
we typically use 8-bit rolling codes. Using rolling codes reduces the
available number of codes since values like Ob001 are identical to



Tag ID: 10110101

<— even bits: 10110101,
odd bits: 10110101
Best Case:

t

<— even bits: 10110101,
odd bits: 22?12?22
Bad Case:

t

Figure 3: Timing diagram of a decoder searching for tag ID
®b10110101 in two possible cases. Dotted vertical lines are when
a camera samples a frame. A green box means a tag is in an “on”
state. The top is the best/typical case, where the camera is out of
phase with the tag. The bottom shows a bad case where the camera’s
frame capture is perfectly in sync with a tag’s blinking and some values
are unknown to the decoder. Since our system matches using even
or odd video frames, the unknown values do not affect the decoder’s
ability to find a tag ID.

Figure 4: FLASH tag with ID 170 being detected at 12.192m (40ft)
under medium (left) and dark (right) lighting conditions within an iPad
Web browser window.

®b010 and Ob100. For a bit sequence of length n = 2", the total
number of unique codes/tag IDs would be:
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Using Equation 1 for an 8-bit bit sequence (m = 3), we get 36 unique
codes. Given this symbol rate, the average latency for detecting an
8-bit tag is 1/(15Hz) x 8bits x 1000ms/s = 533ms.

3.2 Tag Detection

Our tag detection system includes four major steps: (1) blurring and
grayscale conversion, (2) quad detection, (3) quad tracking across
frames, and (4) an ID decoding scheme. As mentioned above, the
decoder is searching for a specific list of IDs that are expected to
be within the field of view, and it should be assumed that we are
trying to minimize detection latency given that the decoder can begin
capturing frames halfway through a rolling data sequence. We will

describe the four tag detection steps in the remainder of this section.

3.2.1 Blurring and Grayscale Conversion

Since active tags can encode their IDs across time, we are less reliant
on sharp details. High-resolution images can produce a substantial
amount of false-positive quads, leading to longer processing, more
tracking, and a slower detector. We applied a Gaussian blur to reduce
the false positive rate, similar to most optical tag systems, which
reduces overall computation time in later processing stages. We also
converted the image to grayscale for processing. We ruled out using
color information for increasing code density since color consistency
was wildly variable across different cameras, exposures, and white
balance settings. In many cases, bright objects saturate mobile
phone cameras making extraction of meaningful color information
extremely inconsistent. As camera image quality improves, this is
something that would be worth investigating in future work.

3.2.2 Quad Detection

Once the image has been pre-processed, we now identify all the
potential quad location candidates. We use AprilTag’s quad detection
algorithm [22] with adjusted parameters to bias the detector for
higher contrast edges. We also allow smaller quads to be detected,
since we no longer require a minimum pixel density within the quad
to hold spatially coded data. We achieve this by increasing the value
used for the minimum difference threshold between white and black
quad edges in the AprilTag quad detector. In addition to adding an
image blur before the frame processing, this dramatically reduces
computation time for quad detection as discussed in Section 4.2.

3.2.3 Quad Tracking

Next, we need to track quad locations across frames to ensure correct
data bit matching with motion. Once a quad is detected in an image
I;, it is matched with its nearest neighboring quad with the closest
center found in the previous video /;_| frame. We enforce constraints
on quad displacement and quad shape difference between frames to
aid in selecting the most likely sequence of quads across frames. For
instance, a quad in /; is rejected if the distance of its center to the
center of its nearest neighbor in /,_| is above a given threshold, or if
the average distance of each corner of the quad from the center is
far greater than that of its nearest neighbor. This process is applied
to all quads found in /;.

The average intensity value of the region in the center of the quad
is saved across 2n frames that will later be used to match against the
current code book. The quad is rejected if the difference between the
highest and lowest intensity values of a quad across the 2n frames is
greater than a given threshold (similar to an RSSI value). These 2n
image intensity values are saved and form the ID of a possible tag
detection.

A valid tag may not be detected at a far enough distance for
2n consecutive frames and will constantly be rejected due to the
constraints listed above. In these cases, we interpolate intensity
values for n frames for tags/quads we have already validly decoded
to account for this noise. In other words, after determining that a
quad is a valid tag, it has some leeway before the decoder rejects
it, allowing for a few frames where the quad wasn’t fully decoded.
The quad associated with a tag can be missing at most ntries frames
before giving up on the tag, where ntries is configurable based on
the environment, and it is typically set to the bit length of the code
divided by 2 or 3.

3.2.4 Decoding

Once a quad has accumulated 2n center intensity values, the decoder
checks to see if the value occurs in our current codebook. The 2n
brightness values are normalized and thresholded to create a binary
code of size 2n bits. The threshold value is calculated as the average
of all 2n intensity values. As previously mentioned, we compare
the ID formed by the even n bits and the odd r bits to each ID in
our codebook. If a quad has a valid ID, it is returned as a detection.
See Figure 2 for an example of FLASH correctly detecting three
very small tags simultaneously. A detected tag returns a value and
coordinates the four corners of the quad within the camera image.
We also assume that the pose of the tag is known and can be passed
to our gravity-assisted decoder to determine the camera’s pose.

It is worth noting that the detection latency of FLASH is poten-
tially longer than the time it takes to find a passive tag in a single
frame. However, we do get a pose update for the tag on each quad
that is detected. We currently return the quad within the sequence
of frames with the lowest residual error as the selected pose, but
this could be improved by averaging the pose across all frames. It
would also be possible to return a pose update for each quad detected,
allowing a much higher frame rate stream of poses once the tag is
identified.
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Figure 5: Tag pose ambiguity illustration. Is the viewer seeing the tag
from above looking down at an angle, or from below looking up at an
angle? Perspective projection alleviates the issue, but only when the
tag is close or very large.

3.3 Gravity Assisted Localization

In this section, we describe how to determine the camera’s pose
from the detection of FLASH quad corners and how gravity sensing
with an accelerometer can significantly improve the robustness of
the pose estimation. Camera pose is necessary for displaying AR
content that is registered in the correct location relative to the real
world. For example, to display informative markers on a sporting
field, the system needs to know the 6DOF pose of the camera relative
to the field.

We start with the assumption that the pose of the FLASH tag in
world coordinates is known. This can be determined by measuring
the pose of the tag using surveying techniques. If only one tag is
used and no other venue infrastructure is in place, it is viable to
consider the location of the tag to be the origin of the coordinate
system, which forgoes the need for surveying.

The FLASH detection system outlined in prior sections returns
the locations of the quad corners on the camera screen in pixel
coordinates. From these pixel coordinates and with knowledge of
the geometry of the tag, many methods in the literature describe how
the pose of the tag relative to the camera can be determined. Several
of these works are described in Section 2.

Once the pose of the tag in camera coordinates has been de-
termined, it is easy to infer the location of the camera in world
coordinates. Given the pose of the tag in camera coordinates and the
pose of the tag in world coordinates, the pose of the camera in world
coordinates can be obtained by simply composing the inverse of the
former with the latter.

However, due to an ambiguity issue described in the following
subsections, it is common for localization methods in the literature
to return multiple solutions for the pose of the tag relative to the
camera. FLASH incorporates accelerometer measurements to dis-
ambiguate the solutions and choose the correct one. Accelerometer
measurements are common on mobile devices designed with AR
in mind and are even easily obtainable from within a Web browser
environment. Thus, it is natural to use these sensor measurements to
aid in the camera localization.

3.3.1 Planar Ambiguity

Planar fiducial markers have a fundamental ambiguity issue, illus-
trated in Figure 5. In short, when viewing a planar tag from an
oblique angle, there are two solutions for the pose of the tag relative
to the camera that result in very similar projections onto the camera
screen. The two possible poses amount to a reflection about a plane
normal to the line between the camera center and the tag center.

Typically, one of the two solutions will have lower reprojection error
than the other, which is a consequence of perspective foreshortening
as shown in the right side of Figure 5. This is utilized by most
modern PnP algorithms, such as [7], which distinguishes the two
solutions by choosing the one with lowest reprojection error.

A downside to this approach is that the global minimum reprojec-
tion error does not always correspond to the correct pose solution;
noise in the corner detection can cause a situation where the incor-
rect solution actually has a lower reprojection error than the correct
one. This is especially common when the tag is far from the cam-
era, in which case the foreshortening effect is diminished and the
reprojections of the two candidate poses are almost identical. In-
stead, FLASH uses accelerometer measurements to distinguish the
solutions.

3.3.2 Evaluation of Ambiguity Occurrence

‘We demonstrate the prevalence of this ambiguity issue empirically
through numerical simulation. We consider the case where a quad
is placed at the origin, with its four corners lying on the x — z plane.
We then simulate camera poses in a surrounding region (always
facing the quad) and determine where the projected corners fall
on the simulated camera screen, assuming perfect corner detection
with sub-pixel precision. We then compute the two candidate pose
estimations using the IPPE algorithm [7], which also returns the
associated reprojection error for each of the candidate solutions,
which we convert to pixels. For these experiments, we used a 15cm
quad, a 720p camera with focal length 1000 pixels, and a camera
distance ranging from 0.5m to 6m. In Figure 6, we show a log plot
of the average reprojection error of the two solutions for a variety
of horizontal camera positions at three different vertical viewing
angles.

Typically, the two solutions are disambiguated by choosing the
one with the smallest reprojection error. However, we see from
the simulations that as the camera moves more than a meter or
two away from the tag, the average reprojection error becomes
very small, even for the incorrect solution. Consequently, only
a small amount of corner detection error is required to cause the
algorithm to return the incorrect solution. In practice, this means
that at longer viewing distances the two solutions quickly become
indistinguishable. Furthermore, in Figure 7, we show the severity of
the error between the two solution poses by showing the difference in
the inferred camera location, which can be several meters at modest
distance from the tag.

3.3.3 Resolving the Ambiguity Using Gravity

By using gravity as a reference, it is possible to disambiguate the
two solutions. Since the camera device is assumed to have an ac-
celerometer that is accessible from within the Web browser, we can
determine the direction of the gravity vector with respect to the
camera. Similarly, since we know the pose of the tag with respect to
the world (one of our baseline assumptions), we can also determine
the direction of the gravity vector with respect to the camera.
Given the two candidate solutions for the pose of the tag with
respect to the camera, we resolve the ambiguity issue as follows.
First, we transform the gravity vector from the tag frame to the
camera frame using each of the two candidate solutions. Then, we
compare the two results (gravity vector in camera frame) to the
measured result from the accelerometer. We can then select the
solution that best aligns with the measured gravity vector using a
dot product. We use the same approach to resolve the ambiguity that
forms due to the four rotational symmetries of the FLASH tag.
One limitation of this approach occurs when the camera is per-
fectly level with the ground, with the camera’s focal axis parallel to
the gravity vector. In this case, both of the tag-to-camera solutions
will have the same gravity vector in the camera frame. A similar
problem occurs if the tag is placed parallel to the ground, in which
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Figure 7: Severity of the ambiguity error at each position when it occurs.

case the four rotational symmetries of the quad produce an ambigu-
ity that cannot be resolved using gravity. However, these limitations
are not significant in practice, since video displays are not usually
mounted on perfectly horizontal surfaces.

3.4 Implementation

FLASH’s implementation has two parts: the active tag implementa-
tion and our Web-based decoder framework, which we describe in
the following subsections.

3.4.1 Active Tag

For simplicity, we designed Web applications for both the tags and
the decoder. Tags could also be generated and stored in video, but
we found it useful to be able to quickly and synthetically generate
arbitrary shapes and codes that can be viewed within a browser.
Figure 2 shows examples of what these tags look like when displayed
in an animated Web page. Again, the tag can be implemented in any
manner, as long as it adheres to the rules detailed in Section 3.1.

3.4.2 Web Framework

The speed of FLASH and advancements in Web technologies
such as WebAssembly (WASM) [4,31] allow FLASH to be fast
enough to be run in a mobile browser on a modern smartphone
or tablet. We capture images using live video from the Web API
MediaDevices.getUserMedia() and leverage WebGL for real-
time blurring effects and grayscale conversion. These video frames
are buffered and queued up for processing to ensure we sample an
image at nearly 30 FPS.

FLASH’s quad detector is built off of AprilTag’s quad detector
with an adjusted contrast threshold for quad edges, detailed in Sec-
tion 3.2.2. This quad detector, along with our quad tracking and tag
decoding code, was compiled to WASM for faster performance over
JavaScript on the Web. Quad detection, tracking, and decoding are

done in a Web worker in parallel with live video frame capture and
pre-processing to make sure the detector runs at a smooth 30 FPS. In
Section 4.2, we will evaluate the performance of our pipeline with a
breakdown of each step.

4 [EVALUATION

In this section, we evaluate the performance and robustness of
FLASH in comparison to AprilTag 3 [22], a popular passive tag-
based system widely used in the robotics community for tracking
applications. We evaluate the tags in terms of range, viewing angle,
and robustness to parameters like hand shake and lighting. We chose
AprilTag as a point of comparison because it is widely used and
representative of passive tags as a whole. We have not found a com-
peting active tag implementation that is computationally efficient
enough to be detected in a Web application, so we compare only to
passive tags in this evaluation.

4.1 Experimental Setup

Unless otherwise specified, for all of our comparisons, we evaluated
FLASH using a 0.15m by 0.15m tag using an 8-bit rolling code
displayed on an iPad. For our passive tag comparisons, we used
the same size 0.15m by 0.15m 36h11 AprilTag of ID 0O printed on
a piece of paper. All data was collected using a FLASH and an
AprilTag web framework running on an iPad Pro with a resolution
of 720p mounted on a tripod or held by hand.

We also performed a test in a large stadium using a 0.70m by
0.70m FLASH tag running in a web page on an LCD monitor. This
experimental setup is summarized in Figure 10. Even in bright
daylight, the tag was able to be detected from across the stadium at
a distance of over 100m.
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4.2 Processing Pipeline Benchmark

Figure 8 shows the performance of a web port of the AprilTag pro-
cessing pipeline and FLASH at four different resolutions using a
2020 iPad Pro. FLASH is around 10 times faster than AprilTag. Ow-
ing to the fact that our active tags provide better contrast, our quad
detector outputs significantly fewer false positives, which allows for
faster tracking. Decoding in FLASH is simply thresholding a list
of intensity values, converting those values into a series of bits, and
comparing those bits with a number. To achieve a 30 FPS camera
capture rate, the total time taken per frame of FLASH needs to have
at most 33.333ms latency, which can be achieved at 480p and 720p.
The right side of Figure 8 shows a zoom-in on the performance of
FLASH alone, where we see a relatively even distribution of the
computation time between the several processing steps.

4.3 Detection Probability Over Distance

To estimate the expected range of our tags, we collected data in
the form of five-second video clips at varying distances. We then
compute detection probability as the percentage of video frames in
which the system being tested detected the tag with the proper ID.
Figure 9 shows the detection probability at various distances of three
different systems: FLASH, AprilTag, and the quad detector used by
FLASH. We included the quad detector because we wanted to see if
FLASH was reaching the limits of its own quad detector. The figure
shows that AprilTag’s detection probability falls down from 100% at
around 15m, while FLASH and its quad detector fall at around 20m.
AprilTag can no longer detect tags at 20m, whereas FLASH and its
quad detector can no longer detect at around 27m. This gives an
approximately 25-35% increase in detection range of FLASH over
AprilTag. Note that since FLASH does not need a correctly decoded
quad in every frame, it is often possible to resolve tags correctly
even if the detection probability is dropping off.

4.4 Tag Angle

Similar to how FLASH tags are better in terms of distance, they
also allow detection at more acute angles where the spatial content
within a passive tag is lost due to perspective and resolution. To
test the detection rate of FLASH when encountering an off-axis tag,
we measured the detection probability of both systems with tags at
various angles at a fixed distance of 12.192m (40ft). We chose this
distance since both FLASH tags and AprilTags have 100% detection
accuracy at this distance (see figure 8). We found that AprilTag’s
detection rate falls to 0% when attempting to detect an off-axis tag
with an angle of around 35°, while FLASH’s rate falls to 0% with
an off-axis tag angle of around 60°. Since AprilTag IDs are encoded
spatially, if a tag has a high enough off-axis angle, important details
of the tag ID will be hidden from the camera at a distance, making
the tag impossible to decode. On the other hand, FLASH does not
have this problem, as there are no details on the FLASH tag itself
that are related to the tag ID. All FLASH needs to decode a FLASH
tag is the tag’s location across multiple frames. Figure 8 shows

the estimated difference in coverage when viewing FLASH tags
compared to AprilTags for 0.15m tag sizes.

4.5 Lighting

To test the robustness of FLASH to various lighting conditions, we
collected detection probabilities in three different types of light-
ing environments at a distance of 12.192m. These environments
had different ambient lighting conditions: a “bright” environment
corresponds to an average image intensity of 121, a “medium” en-
vironment corresponds to an average image intensity of 43, and a
“dark” environment corresponds to an average image intensity of 1.
See Figure 9 for an example of some of the lighting conditions we
tested in. Figure 9 shows that the detection probability of FLASH
remains relatively the same regardless of lighting, whereas that of
AprilTag dramatically decreases as the environment darkens. Not
surprisingly, due to the illumination of an active tag on a display,
FLASH tags are more resilient to darker lighting conditions than
AprilTags, which are printed on paper. One alternative would be to
backlight an AprilTag (which is often done in robotics) making the
AprilTag performance under different lighting behave similarly to
FLASH. However, the range and hand shake issues would still apply,
limiting AprilTag’s range.

4.6 Camera Shake

To test the effects of real-life hand shake when holding a device,
we collected IMU data from the phone while it was collecting data
when being held by hand. Like the previous experiments, we ran
these tests at a distance of 12.192m. A shake intensity categorized
as “low” is done by holding the device in the hand as still as possible.
A “medium” shake intensity would encompass trace shaking up
to a maximum absolute acceleration of 0.28ms ™2 according to the
phone’s accelerometer. Lastly, a shake intensity categorized as
“high” corresponds to a maximum absolute acceleration of 0.54ms 2.
Again, due to the fact that FLASH does not need to decode intricate
spatial details embedded in the tag itself, it is more invariant to
motion blur than a system like AprilTag, as shown in Figure 9.
Observe that FLASH has a higher detection accuracy than AprilTag
under medium and large motion blur.

4.7 Quad Size

Finally, we wanted to provide a tag size guideline based on the
required range for an application. We displayed several quads of
sizes ranging from 0.05m by 0.05m to 0.70m by 0.70m to determine
the relationship between quad size and detection distance. Figure 9
shows that there is an expected mostly linear relationship between
the two. Figure 10 shows an experimental validation using a 0.70m
by 0.70m tag that we were able to detect at slightly over 100m in a
stadium on campus.
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5 LIMITATIONS

While extremely promising for entertainment applications, this ap-
proach does have several limitations and drawbacks. First, the tags
flash at a visibly perceivable rate. Having collaborated closely with
drama production experts during this project, they assure us that
consistently flashing targets tend to fade into the background in com-
plex productions. In fact, they had initially used a large, illuminated
image target for crowd AR effects, but found it to be extremely dis-
tracting and hard to integrate into the storyline. Minimizing flashing
was part of our motivation to make sure that our codes were rolling
instead of using a more traditional pause followed by a preamble
and then data design. The tags need to have more contrast than
the background to be reliably detected, but they do not need to be
visually bright. One practical solution for stage environments (often
used in commercial displays already) is to adjust the brightness of
the tag so that when the lights are dimmed down the screen responds
accordingly. As phone cameras operate at faster rates and/or if they
have the option to remove infrared filters, one could imagine the tags
becoming flicker-free and nearly invisible.

Second, our tags need enough resolution on large displays to
create a reasonably well-defined quad shape for tracking. In general,
we find that the quad is extremely forgiving in terms of detection
(often, high contrast round objects are initially detected as candidate
tags), but that if the corners are rounded, the system will suffer
dramatically in terms of pose estimation performance. For scenarios
where there is no video display available, we have used LED lighting
panels like the FLOALT series from IKEA [28] to create a standalone
light. The 24 in (0.6m) square FLOALT light costs $129USD and
with a quad constructed from black electrical tape is detectable from
about 100m away. The light has a simple control interface with an
external Zigbee board that can be removed to expose a header with
3.3v, ground, PWM1, and PWM2 headers. One can trivially connect
an MCU to this header to generate a simple, dimmable, and low-cost
standalone active optical anchor that can adapt to ambient lighting
conditions (with PWM control).

Third, our Web implementation is still relatively limited in terms
of frame rate. With a native application, we could likely create a

decoder that was able to operate on blinking rates that were not
humanly visible. This would require both a native application and
a custom display, since most large monitors do not provide high
enough refresh rates to avoid flicker (or at least stroboscopic flicker-
ing with head motion). Even if a native app could process current
passive markers faster and at a higher resolution, it would then also
be able to detect FLASH tags from comparatively farther. Finally,
unfortunately, most release versions of Web browsers do not yet
support computer vision processing in a WebXR session, so tracking
is limited to just IMU-based rotation instead of full 6DOF tracking.
We expect this to change over the coming years.

Finally, FLASH’s gravity-assisted solver requires that tags are
mounted on vertical surfaces. If a tag is placed on the floor or
ceiling, it will suffer from multiple ambiguous solutions. It would
be possible to add a corner marker or other such feature to explicitly
define rotation (like other passive tags), but this would reduce range
since any small features get lost at lower pixel densities.

6 CONCLUSIONS

We present FLASH, an active light anchor specifically designed
to be embedded in video displays to provide mobile AR anchor-
ing in entertainment environments. Using active blinking codes
combined with static image structure framing offers a practical and
straightforward solution to camera pose estimation that outperforms
static tags in range and viewing angles. The addition of structured
visual features (a quad) allows the system to be computationally
lightweight enough to execute at 30 FPS on 720p images within a
browser on a modern mobile phone. While not specific to just our
tag, we also provide an analysis and reference implementation of a
gravity assisted camera pose estimation solver that avoids common
ambiguity problems that plague current open-source systems.

We believe we can further optimize the coding scheme using
something similar to Knuth codes to enable lower-latency detection
as future work. We also think there could be alternative static marker
geometries (other than quads) that might increase range or pose
estimation accuracy.
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