
Hash Visualization: a New Technique

to improve Real-World Security

Adrian Perrig
Adrian Perrig@cs.cmu.edu

Dawn Song
Dawn Song@cs.cmu.edu

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Phone: (412) 268 3052
Fax: (412) 268 5576

Abstract

Current security systems su�er from the fact that they
fail to account for human factors. This paper consid-
ers two human limitations: First, people are slow and
unreliable when comparing meaningless strings; and sec-
ond, people have di�culties in remembering strong pass-
words or PINs. We identify two applications where these
human factors negatively a�ect security: Validation of
root keys in public-key infrastructures, and user authen-
tication. Our approach to improve the security of these
systems is to use hash visualization, a technique which
replaces meaningless strings with structured images. We
examine the requirements of such a system and propose
the prototypical solution Random Art . We also show how
to apply hash visualization to improve the real-world se-
curity of root key validation and user authentication.
Keywords: Human factors in security, hash visualiza-
tion, user authentication through image recognition, root

key validation.

1 Introduction

Although research in security has made tremendous
progress over the past years, most security systems still
su�er from the fact that they neglect human limitations
in the real world. In this paper, we analyze two hu-
man limitations: di�culties people have with remember-
ing strong passwords and personal identi�cation num-
bers (PIN)1, and second, with comparing meaningless
strings2. These human factors negatively a�ect many

1By strong passwords or strong PINs we mean strings which
have no immediatemeaning or relationshipwith the person. There-

fore an attacker will have di�culties in guessing it.
2We use meaningless from the point of view of the user. The

hash value, or �ngerprint of a public-key certi�cate has a purpose
for the program, but no understandable meaning for the user.

security systems, including the security of root key vali-
dation and user authentication. The problem in root key
validation is that people need to compare meaningless key
�ngerprints, which are strings of 32 hexadecimal digits. It
is a known fact in psychology that people are slow and un-
reliable at processing or memorizing meaningless strings
[11, 8]. Also, in [2] Anderson et al. show that strings
can be memorized better if people can associate meaning
with them, or if they look familiar. Similarly, the prob-
lem in user authentication is that people have di�culties
with choosing and memorizing strong passwords. If the
passwords are too simple and have meanings, they are
easy to remember but vulnerable to attacks which use
password cracker programs. If the passwords are more
complex and random, they are di�cult to remember and
hence users have to write them down. In either case, the
security of the systems is degraded.

These problems have long been considered as some of
the fundamental weaknesses of security systems in the
real world, we propose to use images to alleviate them. In
the case of root key validation we use hash visualization
to generate images from the strings, and the user can
simply compare the images instead of the strings. This
scheme is based on the fact that humans are very good
at identifying geometrical shapes, patterns, and colors,
and they can compare two images e�ciently, as shown in
[7, 15, 13]. In the case of user authentication, we replace
the precise recall of a password or PIN with a recognition
of a previously seen image. Again, it has been shown that
people are extremely e�cient at recognizing previously
seen images [1, 6].

Researchers have been trying to make cryptographic
primitives stronger against attacks. The central point of
this paper is to show that human factors have a large
impact on the security of a real-world system. Our con-
tribution is to propose the new security primitive hash

visualization, to establish the necessary requirements, to

1

propose Random Art as a prototypical solution, and �-
nally, to show how to apply hash visualization to improve
the security of root key validation and user authentica-
tion. Since Random Art is just a prototype of the �nal
solution, we hope with this paper to direct the interest
of researchers in image processing, security, and psychol-
ogy, and cooperation between them in order to �nd better
solutions.

The paper is organized as follows. First we examine
the requirements of the ideal hash visualization scheme
in section 2. In section 3 we propose a possible solution
to satisfy the requirements of the hash visualization. We
then give in section 4 two example applications about
how to apply the hash visualization scheme to improve
the security of systems. We discuss some problems and
limitations of this approach in section 5 and �nally con-
clude and list our future work in section 6.

2 Requirements for Hash Visual-

ization Algorithms

We �rst briey review the de�nition and desired proper-
ties of usual hash functions. We then discuss the proper-
ties that hash visualization algorithms should satisfy.

2.1 Review of the requirements for tra-

ditional hash functions

This review is based on the Handbook of Applied Cryp-
tography [10].

� A hash function is a function h which has, as a min-
imum, the following two properties:

1. Compression: h maps an input x of arbitrary �-
nite length, to an output h(x) of �xed bit length
n.

2. Ease of computation: given h and an input x,
h(x) is easy to compute.

� Three most desired properties:

1. Preimage resistance: for any pre-speci�ed out-
put y, it is computationally infeasible to �nd
the input x such that h(x) = y.

2. 2nd-preimage resistance: given any input x, it
is computationally infeasible to �nd an input x0

such that h(x0) = h(x).

3. Collision resistance: it is computationally in-
feasible to �nd any two distinct inputs x; x0

which hash to the same output, h(x) = h(x0).

� A one-way hash function is a hash function h with
two additional properties: pre-image resistance and
2nd-preimage resistance. A collision resistant hash

function is a hash function h with the additional

property of collision resistance.

2.2 Requirements for hash visualization

algorithms

De�nition 1 A hash visualization algorithm(HVA) is a

function hI which has, as a minimum, the following two

properties:

1. Image-generation: hI maps an input x of arbitrary

�nite length, to an output image hI(x) of �xed size.

2. Ease of computation: given h and an input x, hI(x)
is easy to compute.

In order for HVAs to be useful for secure applications,
we illustrate a variety of desired properties for HVAs. A
HVA that is used in a particular application will only
need to satisfy a subset of the properties. We will give
several examples of these applications and their usage of
the HVAs in the later section.
Near-one-way property

We de�ne two images I1 and I2 to be near, denoted as
I1 ' I2, if the two images are perceptually indistinguish-

able.

1. Near preimage resistance: for any pre-speci�ed out-
put image y, it is computationally infeasible to �nd
the input x such that hI(x) ' y.

2. Near 2nd-preimage resistance: given any input x,
it's computationally infeasible to �nd x0 such that
hI(x

0) ' hI(x).

3. Near collision resistance: it is computationally in-
feasible to �nd any two distinct inputs x; x0 which
hash to the same output, hI(x) ' hI(x

0).

It is di�cult to devise an algorithm which can judge
automatically whether two images are near since that
depends on the person comparing the images. But in

general, we can �nd some similarity-metric function � :
I � I ! R and a threshold � such that if �(I1; I2) � �,
then the two images I1 and I2 are not near. Finding a
good function for � is an active area of research in image
retrieval and is not in the scope of this paper.

Regularity property

Humans are good at identifying geometric objects
(such as circles, rectangles, triangles, and lines), and
shapes in general. We call images, which contain mostly
recognizable shapes, regular images. If an image is not
regular, i.e. does not contain identi�able objects or pat-
terns, or is too chaotic (such as white noise), it is di�cult
for humans to compare or recall it.
We suggest two ways for testing the regularity of an

image automatically.

1. We can use a compression algorithm to compress the
image. If the image is chaotic, such as white noise,
the compression factor will be very small since al-
most every pixel is random. Therefore we can show
that an image is regular if the compression factor is
above a certain threshold.

2

(a) White noise (b) Frequency Spectrum
of white noise

(c) Photograph (d) Frequency spectrum
of photo

Figure 1: White noise and photograph

2. Non-regular images tend to have wide frequency
spectra. Noisy images contain a high percentage of
the energy in high frequencies. Hence we can trans-
form an image to the Fourier domain and compute
the magnitude spectrum. If the magnitude spectrum
does not have too much energy in the high frequen-
cies,

P
f>fthresh

jF (f)j < const, then the image is
regular.

To illustrate how to use energy in the magnitude spec-
trum of the Fourier transform in order to decide regular-
ity, we show in �gure 1 white noise along with the Fourier
transform.

Minimum complexity property

Since the image might be presented in many di�erent
ways, i.e., printed in a newspaper, displayed on a color
LCD display, or on a TV screen, the result of comparing
two images needs to be robust with respect to resolution
and color changes: if two inputs x1 and x2 are di�er-
ent, then the two outputs hI(x1) and hI(x2) should not
be near with any resolution and color con�guration that
could occur in the secure system; similarly, if two inputs
x1 and x2 are equal, then the outputs hI(x1) and hI(x2)
should be near with any resolution and color con�gura-
tion that could occur in the secure system.
An immediate implication of this property is that an

image can not be too simplistic in shapes and patterns,
or rely on subtle color di�erences. Just like for to the

regularity property, we could use compression or the fre-
quency spectrum to detect images that are simplistic. For
example, compressing an image which has all pixels set
to a unique color, should result in a very short �le. Also,
the frequency spectrum of such a simplistic picture has
all the energy in the lowest frequency components.

3 Random Art : A Possible Solu-

tion

In this section, we propose Random Art as a possible
solution for the hash visualization algorithm. Random

Art was developed by Andrej Bauer, and is based on
an idea of genetic art by Michael Witbrock and John
Mount. Originally Random Art was conceived for auto-
matic generation of artistic images. A brief overview and
demonstration of Random Art can be found at [4].

The basic idea is to use a binary string s as a seed for
a random number generator. The randomness is used to
construct a random expression which describes a func-
tion generating the image|mapping each image pixel to
a color value. The pixel coordinates range continuously
from�1 to 1, in both x and y dimensions. The image res-
olution de�nes the sampling rate of the continuous image.
For example, to generate a 100 � 100 image, we sample
the function at 10000 locations.

Random Art is an algorithm such that given a bit-
string as input, it will generate a function F : [�1; 1]2!
[�1; 1]3, which de�nes an image. The bit-string input is
used as a seed for the pseudo-random number generator,
and the function is constructed by choosing rules from a
grammar depending on the value of the pseudo-random

number generator. The function F maps each pixel (x; y)
to a RGB value (r,g,b) which is a triple of intensities for
the red, green and blue values, respectively. For example,
the expression F(x; y) = (x; x; x) produces a horizontal
gray grade, as shown in �gure 2(a). A more complicated
example is the following expression, which is shown in

�gure 2(b).

if xy > 0 then (x; y; 1) else (fmod(x; y); fmod(x; y); fmod(x; y));
(3.1)

The function F can also be seen as an expression tree,
which is generated using a grammar G and a depth pa-

rameter d, which speci�es the minimum depth of the ex-
pression tree that is generated. The grammar G de�nes
the structure of the expression trees. It is a version of a
context-free grammar, in which alternatives are labeled
with probabilities. In addition, it is assumed that if the
�rst alternative in the rule is followed repeatedly, a termi-
nal clause is reached. This condition is needed when the
algorithm needs to terminate the generation of a branch.

3

(a) Image for expression

(x; x;x)

(b) Image for expression

(3.1) on page 3

Figure 2: Examples of images and corresponding expres-
sions.

For illustration, consider the following simple grammar:

E ::= (C;C;C)
(1)

A ::= hrandom number 2 [�1; 1]i(
1

3
)
�� x(13) �� y(13)

C ::= A(1
4
)
�� add(C;C)(38) �� mult(C;C)

(3
8
)

The numbers in supscripts are the probabilities with
which alternatives are chosen by the algorithm. There
are three rules in this simple grammar. The rule E spec-
i�es that an expression is a triple of compound expression
C. The rule C says that every compound expression C is
an atomic expression A with probability 1

4
, or either the

function add or mult applied to two compound expres-
sions, with probabilities 3

8
for each function. An atomic

expression A is either a constant, which is generated as
a pseudorandom oating point number, or one of the co-
ordinates x or y. All functions appearing in the Random
Art algorithm are scaled so that they map the interval
[�1; 1] to the interval [�1; 1]. This condition ensures that
all randomly generated expression trees are valid. For
example, the scaling for the add function is achieved by
de�ning add(x; y) = (x + y)=2.
The grammar used in the Random Art implementation

is too large to be shown in this paper. Other functions

included are: sin, cos, exp, square root, division, mix.
The function mix(a; b; c; d) is a function which blends ex-
pressions c and d depending on the parameters a and b.
We show an example of an expression tree of depth 5 in
�gure 3, along with the corresponding image. For the
other images in this paper, we used a depth of 12.
Pseudo-code for the Random Art algorithm is shown

in Figure 4. The function rnd() used in the algorithm
returns a random number in the range [0; 1). The purpose
of the `while' statement in step 5 is to make sure that the
expressions do not grow too fast with respect to depth d.

4 Application

In this section, we show how to use hash visualization
to improve the real-world security of root key validation

sin

mod

mix y

mult div plus rgb

x sin

BW

0.590654

y BW

0.302982

x

x x

mult

BW y

-0.678638

mult exp

y x

div

RGB

0.0983035 0.269608 -0.495324

(a) Sample Random Art expression
tree

(b) Generated image

Figure 3: Random Art expression tree and the corre-
sponding image

algorithm RandomArt(G; i; d)
input: grammar G = [r1; : : : ; rn]

initial rule i
depth d

output: expression E

begin

(1) Suppose ri = [(a1; p1); : : : ; (ak; pk)].
(2) If d � 0 then let a = a1 and goto step (4).
(3) Let a be one of (a1; : : : ; ak), picking ai with probability pi.
(4) If a is a terminal rule let E = a and go to step (6).
(5) Suppose a = f(ri1 ; : : : ; rim) where m is the arity of f.

While d � 0 and rnd() � 0:5 do d : = d� 1.
For each j = 1; : : : ;m let Ej = RandomArt(G; ij; d� 1).
Let E = f(E1; : : : ; Em).

(6) Return E.
end

Figure 4: Algorithm Random Art

and user authentication.

4.1 Validation of root keys using images

In root key validation, a user veri�es that a certain lo-
cally stored root key really was issued by the correspond-

ing certi�cate authority (CA). Since the user does not
trust data downloaded from the network, the reference
�ngerprint needs to be passed over another channel, for
example printed in a newspaper like the New York Times.
Since the reference �ngerprint is not in a digital format,
the user needs to perform the comparison with the lo-
cal root key �ngerprint manually. This is where security
problems due to human factors appear.
We demonstrate our concerns with a brief scenario.

A user has just downloaded Netscape Navigator, which
comes with a series of top-level root keys. Unfortunately,
Netscape has a misleading \verify" button in the window
displaying the list of root keys, because \verify" only
checks the integrity of the certi�cate and the dates.
Netscape has no way of asserting that the shown key
really is the one corresponding to that particular CA.

4

(a) F1 (b) F2

Figure 5: F1 and F2 visualized

The only way to verify the key is to obtain the key
�ngerprint through another channel than the Internet,
for example from a newspaper. If we select the \edit"
button in the root key window, we can see the following
information for the \Verisign Class 1 Primary CA":
Serial Number: 32:50:33:CF:50:D1:56:F3:5C:81:AD:65:5C:4F:C8:25,

Certi�cate Fingerprint: 51:86:E8:4E:46:D7:B5:4E:29:D2:35:F4:41:89:5F:20.
We call this �ngerprint F1. In the New York Times, we
might �nd the following �ngerprint for the same key:
Fingerprint: 0x5186e81fbcb1c371b51810db5fdcf620.
We refer to this �ngerprint as F2. A security-conscious
user would go through the trouble of validating all
36 root keys that came with Netscape by comparing
all the reference �ngerprints to the local �ngerprints,
while many users will most likely not perform all the
necessary checks, or only compare the initial or �nal
digits. To compute a public key which will match the 8
initial hexadecimal digits of the �ngerprint, it only takes
231 = 2147483648 trials on average, which is feasible on
today's computers. Other users might not understand
the importance of verifying the authenticity of the
locally stored root key and avoid the validation. Hence,
these human limitations greatly degrade the security of
the systems. We propose to use Hash Visualization to
generate a visual �ngerprint from the binary �ngerprint.
When using Random Art to generate the visual �nger-
prints of the two �ngerprints F1 and F2 listed above, we
get the images shown in �gure 5.

The visual �ngerprints generated by Random Art are
clearly easier to compare than the hexadecimal represen-
tation. Another advantage of this system is that peo-
ple can remember structured images and recognize them
later. Therefore, the user can possibly remember the
image representing the �ngerprint and perform the val-
idation later. For example, Verisign could display their
reference visual �ngerprints in an advertisement on TV.
At a later point in time, users can display the visual �n-
gerprint on their trusted system and check whether they
can recognize the image. Another application of the same
idea is the validation of data or software downloaded from
the Internet. The scenario is that a business traveler uses
the computer that comes with his hotel room to read e-

mail. The e-mail program could be a Java applet, down-
loaded from the Internet, such as the Pachyderm mail
reader [14]. The user trusts the hotel computer, but how
can he or she know that the Pachyderm applet is correct
(i.e. does not contain a Trojan horse)? The obvious so-
lution would be to display a checksum of the Pachyderm
applet, which the user could compare with one written
down on paper. But again, generating a visual checksum
with Random Art would be more user-friendly, e�cient,
and the user would not need to keep a paper with the
checksum.

4.2 User Authentication via Image

Recognition

Even after years of research in security, authentication
schemes based on passwords still have numerous short-
comings [12, 9]. In general, neither simple nor very com-
plex passwords provide the desired security. Shorter, sim-
pler passwords, which are easy to remember, are too eas-
ily guessed with a password cracker program and user
speci�c vocabulary. On the other hand, if the password
is very complex the user cannot remember it and hence
needs to write it on a piece of paper. This again compro-
mises security, since the user might forget, loose, or leave
the paper in insecure places. Storing the password in a
�le might also present a security risk, depending on the
computing environment.

Similarly, there is a trade-o� related to the number
of distinct passwords used. On one hand having many
di�erent passwords for di�erent cases of authentication
improves the security of a system, but on the other hand
users tend to write down the infrequently used passwords,
which are usually used for higher security purposes.

Another problemwith passwords nowadays is that they
are ubiquitous. With the general increase of security
awareness, the number of occasions in which a password is
required has dramatically increased. Logging onto a com-
puter, accessing a protected spreadsheet �le, disabling

a secure screen saver, and opening a personalized web
site are just a few examples in which a password is re-
quired. Since a user can only remember a limited number
of passwords, he or she will either write them down, or
use similar or even equal passwords for di�erent purposes.
Both options have a negative impact on security: writ-
ing passwords down increases the chance of compromise,
and reusing the same password in di�erent places makes
it only as secure as the weakest link.

On the Internet there are sites which o�er personalized
settings, such as my.yahoo.com. These sites require au-
thentication with passwords but often do not use secure
communication links. In this way passwords can be eas-
ily sni�ed o� the network, not to mention that a security
breach of a site like \My Yahoo!" would compromise a
very large number of systems, simply because people use
the same passwords on many di�erent systems. Similar
considerations apply to PINs, which are frequently used
as a method of authentication at ATM's.

5

The problems presented in this section are common. In
the �rst place, our motive is to draw attention to them,
and to stress that even theoretically secure schemes might
be insecure in practice because they ignore human fac-
tors. Since people cannot remember strong passwords in
general, we propose to replace the precise memorization
and recall of the password or PIN with a recognition of
a previously seen image, with the potential of alleviating
some of the problems mentioned above.

Instead of having a user memorize a password, he or
she is presented with a small number of images, the image

portfolio, which he or she must memorize for recognition.
The portfolio is shown to the user in a safe environment
where it can be ensured that no other person can see the
images.

When the user wants to authenticate, he or she is pre-
sented with a set of images. Some of the images are cho-
sen from the user's image portfolio and others are gener-
ated randomly. The user must correctly identify all the
images from the portfolio.

Suppose the portfolio contains n images and that for
authentication the system shows m � n images. This
gives

�
m

n

�
= n!

(n�m)!m!
combinations. A credit card PIN

code is usually four digits long, which gives 10,000 pos-
sible combinations. To match this, we would have to use
n = 5 and m = 20 which gives

�
20
5

�
= 15504 combina-

tions.

A disadvantage of current ATM authentication
schemes is that PIN codes can be observed from a dis-
tance [3] by various ways of acquiring the typing sequence
of the key pad. Since the images in our scheme are pre-
sented in random order, an observer would gain no knowl-
edge knowing which keys are typed, assuming that the
images can only be seen by the person right in front of
the ATM. A problem of displaying random images along
with the ones in the portfolio is that a criminal could
try to log in once for another person, remembering all
the presented images. Later, the criminal would make a
second attempt, picking the intersection of the presented
images, which would correspond to the portfolio. Such
attacks need to be taken into consideration during system
design.

A combination of a traditional password scheme and
image authentication system might give another oppor-
tunity to improve the current problems. The key observa-
tion for this approach is that people remember the pass-
word approximately, but not exactly. The system could
generate an image for the password which is typed in so
far, and the user would then recognize the image corre-
sponding to the correct password and pass that string to
the password checking function. Another idea is to use
a �xed database of real photographs, instead of Random
Art , and letting users choose the pictures in their portfo-
lio. This approach can take the advantage that people are
extremely good at pointing out which images (or faces)
they have seen [1, 6] previously.

5 Analysis and Discussion

In this section we evaluate Random Art using the require-
ments listed in section 2. We �rst evaluate the geometry
and regularity properties, followed by a discussion of how
to assess its quality as a hash visualization algorithm.

Geometry and regularity requirements

Similar to the di�culty of formally proving the hash vi-
sualization properties, proving that all the images gener-
ated by Random Art are regular, is hard. However, in
practice we can limit the depth of the expression tree,
which also limits the complexity of the image. Another
factor limiting high complexity is that every function has
the same domain and range, which is the interval [�1; 1].
Hence, there are no problems with functions approach-
ing in�nity, with a subsequent sin function, resulting in a
very high frequency signal. In practice, we use 12 for the
depth of the expression tree, which has so far resulted in
regular images.
As we have shown earlier, we can use the Fourier spec-

trum to detect irregular (or noisy) images. In �gure 6

we show two Random Art images with their correspond-
ing Fourier spectrum. Our �rst observation is that the
resulting Fourier spectra are favorable. They resemble
the spectrum of a real image (as shown in �gure 1(d)),
as the energy is concentrated in the low-frequency com-
ponents. However, image 6(a) is much noisier than im-
age 6(c), as the energy spectrum has more energy in the
high frequency components, which can be observed from
the corresponding Fourier transforms.
Another issue is to ensure that the resulting images

are not too simplistic. We have discussed two ways how
to detect simplistic images. One method is compression,
where we reject images which compress too well, and the
other method is again the Fourier transform, where we
can infer simplistic images if all the energy is in the lowest
frequency components only.
To get an estimate of how many images in practice

are regular or simplistic, we generated 100 images and
inspected them manually. It turned out that all images
were regular and only 2 were simplistic. This shows that

we can generate regular and minimally complex images
by detecting and rejecting infrequent outliers.

Hash visualization requirements

For the security of the hash visualization, Random Art

needs to satisfy the near-one-way requirements listed in
section 2.2. We can achieve the hash function one-way
properties by hashing the input string with a crypto-
graphically secure hash function, such as SHA-1 [10], to
seed a cryptographically secure random number genera-
tor, such as Blum-Blum-Shub [5].3 Hence, we can achieve
the pre-image-resistance property. But the di�culty is to
achieve collision-free, due to the properties of the image

3The original Random Art version used in this paper does not
use this scheme, but it would be a simple addition.

6

(a) Random Art image 1 (b) Frequency spectrum
1

(c) Random Art image 2 (d) Frequency spectrum
2

Figure 6: Random Art images with frequency spectrum

generation. First, it is easy to see that many di�erent
trees generate identical images. As an example we men-
tion the commutative property of addition or multiplica-
tion, where the image remains invariant when swapping
sub-trees of those operators. In addition, certain con-
structs can \destroy" randomness: As an example we
consider a construct such as If x < 0.999 then A else B.
Since x 2 [0; 1], the condition is always true if the im-
age is smaller than 1000x1000 pixels, hence the subtree
in the else case is never evaluated. In addition, the hash
visualization properties take the human factor into ac-
count and therefore two images I1 and I2 collide if they
are near (I1 ' I2). Due to these issues, we could not for-
mally prove that the images generated by Random Art

satisfy the hash visualization requirements.

Instead, we propose to perform experiments to empir-
ically estimate the di�culty to generate an image col-
lision. With the assumption that all images produced
by Random Art are equally likely4, our approach is to
pick random seeds and count how many perceptually dif-
ferent images can be generated. To perform the actual
counting, we make use of a statistical estimation method,
based on the birthday paradox. The birthday paradox
basically expresses that if we draw random samples out
of a uniform distribution with N distinct values, we start

4This does not really hold for Random Art, but it gives an esti-
mation of the lower bound.

seeing duplicates after approximately
p
N drawings. The

name birthday paradox comes from the fact that we ex-
pect with a 50% probability, to have two people with the
same birthday as soon as we have more than 24 people.

We can apply this technique to estimate the total num-
ber of images in the following way. First, we assume
that every image is equally likely. We can then com-
pute the probability that a certain number of collisions
were encountered, given the total number of di�erent im-
ages N , the number of images generated n, and the num-
ber of collisions m. An upper bound for the probabil-
ity is: P (N;n;m) �

�
n�1
m

�
N !

Nn�m�1 (N�n+m+1)!
(n�m

N
)m.

But since the user study will reveal for each sample si
(1 � i � n) whether it is new or a collision, we can
compute the precise probability:

Initially, r = n

P (N;n;m) =
Y

1�i�n

(
r
N

if si new; r := r � 1
N�r
N

else si is a collision

Since only n and m are known from the user study, we

can compute N through a maximum-likelihood estima-
tion: which value of N maximizes the probability? It is
generally known as a good rule of thumb that squaring
the number of samples after the �rst collision, is a good
estimate for N .

Notice that Random Art is only a prototypical solu-
tion, and hence, might not be the �nal answer for hash
visualization.

6 Conclusion and Future Work

Current security schemes fail to be secure in the real
world, because they do not account for human factors.
We show how human limitations degrade the security:
the di�culty of people to compare or memorize mean-
ingless strings or numbers.
By analyzing two real-world security problems, we

show that we could improve their security by taking hu-
man factors into account in the system design. We pro-
pose to overcome human limitations by replacing strings
by structured images.
The two security schemes we analyze are the validation

of root keys, and user authentication. The current system
to verify the validity of a root key is that users compare
the �ngerprint of the root key on their computer, with
a reference �ngerprint distributed over another channel,
for example printed in the New York Times. Since this
comparison bears many problems, we propose to trans-
form the root key into an image. In this setting, a user
needs to compare two images to verify the validity; one in
the newspaper and the other on the computer monitor.

In user authentication, people have problems memoriz-
ing numbers or passwords. Therefore we propose to re-
place authentication through string memorization by au-
thentication through image recognition, with the assump-
tion that image recognition is easier than exact string

7

recall. Our authentication procedure works in the fol-
lowing way. Every user knows a small number of images,
the image portfolio. In the authentication process, the
user is presented with a number of images, and he or
she marks the ones that are from the portfolio. This
scheme has additional advantages over other authentica-
tion schemes: due to the structure of the images, they
can hardly be written down or \explained" to another
person.

Since the results presented in this paper are our early
�ndings, there is a lot of work to be done to deploy these
methods in reality. First, we need to strengthen the Ran-
dom Art algorithm for this application, in the directions
we have pointed out. We then need to evaluate in a user
study, how many perceptually di�erent images can be
generated. We also need to analyze how people react to
the images, and to verify how easy they are to remem-
ber for di�erent people. Other directions we are thinking
about is to generate a recognizable image, such as a land-
scape or a city view. The rationale is to bring meaning to
the image, which might help with long-term recognition.

7 Acknowledgments

We thank Andrej Bauer for developing the Random Art

system, and Michael Witbrock and John Mount for the
original idea of computer generated art. We are espe-
cially grateful to Andrej Bauer for helping us to write
section 3. Further we would like to thank everybody
who has encouraged us to publish this work, in particu-
lar Doug Tygar.

References

[1] Private discussion with Stuart Card, March 1999.

[2] John R. Anderson and Christian Lebiere. The

Atomic Components of Thought. Lawrence Erlbaum
Associates, Inc., 1998.

[3] Ross J. Anderson. Why Cryptosystems Fail. Com-

munications of the ACM, 37(11):32{40, November
1994.

[4] Andrej Bauer. Gallery of random art. WWW at
http://www.cs.cmu.edu/~andrej/art/, 1998.

[5] L. Blum, M. Blum, and M. Shub. A Simple Unpre-
dictable Pseudo-Random Number Generator. SIAM
Journal on Computing, 15(2):364{383, 1986.

[6] Kenneth R. Bo�, Lloyd Kaufman, and James P.
Thomas. Handbook of Perception and Human Per-

formance. John Wiley and Sons, 1986.

[7] R. M. Boynton and D. E. Boss. The e�ect of back-
ground luminance and contrast upon visual search
performance. Illuminating Engineering, 66:173{186,
1971.

[8] Stuart K. Card, Thomas P. Moran, and Allen
Newell. The model human processor. In Kenneth R.
Bo�, Lloyd Kaufman, and James P. Thomas, ed-
itors, Handbook of Perception and Human Perfor-

mance, chapter 45. John Wiley and Sons, 1986.

[9] Simson Gar�nkel and Gene Spa�ord. Practical Unix
and Internet Security. O'Reilly and Associates,
1996.

[10] Alfred J. Menezes, Paul van Oorschot, and Scott
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997.

[11] G. A. Miller. The magical number seven, plus or mi-
nus two: Some limits on our capacity for processing
information. Psychological Review, 63:81{97, 1956.

[12] Peter G. Neumann. Computer Related Risks. The
ACM press, Addison Wesley, 1995.

[13] R. E. Reynolds, R. M. White Jr., and R. L. Hilgen-

dorf. Detection and recognition of colored signal
lights. Human Factors, 14:227{236, 1972.

[14] Compaq SRC. Pachyderm. WWW at
http://www.research.digital.com/SRC/pachyderm,
1998.

[15] L. G. Williams. The e�ect of target speci�cation on
objects �xated during visual search. Perception and

Psychophysics, 1:315{318, 1966.

8

