
Emacs and UNIX tricks

for programmers

Adrian Perrig

aperrig@di.ep
.ch

Student in CS at EPFL

Version 3.0

June 28, 1996

Abstract

I introduce basic tools and methods for programming in the UNIX environment. Knowing about the

various programs can increase the productivity substantially. We further introduce the idea of amortized

productivity. WARNING, this is a beta version of the �nal document. If you �nd errors, inconsistencies

or ways to improve this report, please write suggestions to aperrig@di.ep
.ch. Thanks. The latest version

is available from my homepage [Per96]

1 Introduction

Every user has a certain repertoire of commands he uses. Even with just a small set of commands, we

can accomplish a wide variety of tasks, but not really in an e�cient way. Having used emacs now for

several years, I noticed that I could gain orders of magnitude speedup by using the right command at the

right place. In the beginning, watching friends working, pointed me to some useful commands I did not

know. Later by looking at online documentation I discovered more and more jewels. This observation

lead me to form the expression Amortized Productivity, with the idea in mind that when you invest time

for improving a method, you can gain that time back later during the usage of the method. In some cases,

you can even get speedups of entire orders of magnitude.

Having identi�ed some of the most useful non-trivial commands in Emacs and Unix, I wrote this report

to give ideas to other people that work in that environment.

While writing this document, I made the following assumptions:

� Keyboard commands are faster than mouse commands. In the beginning, using the mouse during

editing under emacs seems natural and easy. There is just one problem with this - it is slower than

plain keyboard commands. That's where Amortized Productivity comes in - it takes longer to learn

the keyboard shortcuts, but later, you are always a little bit faster.

� If a functionality seems to be useful, it is very probable that somebody already implemented it.

Unix and Emacs both exist now for several years. Numerous creative programmers worked for years

to improve the interface and add new useful capabilities. So when you would like to have a certain

function in emacs, look for it and you will almost certainly �nd it.

2 2 Emacs

� We try to make the common case fast. The proposed methods are not always faster. For instance,

keyboard is not always faster than mouse commands. But if a method is faster on average, you will

win by using it.

Conventions

Mono-spaced font is used for commands and keys to type. A keystroke such as C-e means Control-e,

MC-e stands for Meta-Control-e. For emacs commands containing the Meta pre�x, you can either type

Escape before the next key, or hold the Alt key while typing the rest of the command (On some keyboards,

it may be another key for Meta).

2 Emacs

Emacs was written initially by Richard Stallman at MIT. One of the objectives was to provide a free,

expandable and powerful editor that would actively support the most common editing tasks. The result is

overwhelming. Emacs is the most useful tool for any programmer with the premise of doing high quality

work productively. In this section, we will only see a glimpse of the myriads of possibilities emacs provides.

But it will be enough to get you on the right track to learn more.

In this section, it is impossible to fully describe emacs. I tried to identify the tasks, where a rich

repertoire of commands can substantially improve productivity. Further, knowing how to �nd more

information is also important for �nding new useful commands. Identifying what would be useful and

then looking for the feature are the �rst steps of Amortized Productivity.

2.1 Moving around

There are many possibilities to move the cursor position around. During programming, we need to move

in a very special fashion and emacs provides support in many di�erent ways. Some of the commands are

also available through the cursor keys, such as up, left, page up, etc. Keeping in Mind that each time

the hand leaves its keyboard position to search the cursor keys, the hand also needs to come back to its

natural position, which is much slower than using the equivalent control sequences. It is also more natural

to work in a way that keeps the hands on the same place.

Table 1 summarizes the most basic movement commands. These commands are not only useful in

emacs, they are also valid in other programs such as the c-shell or in text entering dialogs in Netscape.

A very quick way to move to a di�erent position provide the search functions, especially the incremental

search functions. If you want to be more fancy and you know for example, that the line you would like

to jump to contains a printf statement and the variable Data p, you can try the incremental regular

expression searches, which are also explained in table 2. You can also set markers in your emacs bu�ers

and jump around with the corresponding commands which are described in table 3.

2.2 Entering frequent text

During programming, we usually need to enter often similar words. This can take a long time in the case

of long identi�ers. For example, who likes to type Ada.Strings.Unbounded.UnboundedStrings more

than once? Check out Table 4 if you like typing jumbo names just once.

The abbrev commands provide further support for frequently typed data. Please refer to the manual

for the details, or try M-x help a abbrev or M-x command-apropos abbrev, which lists all the possible

commands of the abbrev mode.

by Adrian Perrig Emacs and UNIX tricks

2.2 Entering frequent text 3

Table 1:

Basic Movements

Key Action

C-p Up, previous line

C-n Down, next line

C-b Left, backward char

C-f Right, forward char

M-b Backward word

M-f Forward word

C-a Beginning of the line

C-e End of line

C-v Page down

M-v Page up

Table 2:

Searches

Key Action Explanation

C-s or C-r Incremental search

forward or

backward

The direction of the search can be changed continuously

during the search by typing C-r or C-s. Further, if we want

to skip to the next occurrence of the match, we can type

C-s again (or C-r respectively). Typing C-s (or C-r) twice,

repeats the last search.

MC-s or

MC-r

Regular expression

incremental search

forward or

backward

The usage of these commands is similar to the normal search

commands. The di�erence is that the search arguments are

speci�ed by regular expressions.

Emacs and UNIX tricks by Adrian Perrig

4 2 Emacs

Table 3:

Jumps

Key Action Explanation

C-x / (key) Set mark (key) designates any key on the keyboard, including control

sequences. The mark will be saved in an emacs register

identi�ed by the key entered. Hint: The registers saving

text or points are the same. Any register can either hold

text or a position.

C-x j (key) Jump to mark This command jumps to the place pointed to by register

named (key). If the position is in a di�erent bu�er, the bu�er

is changed automatically. This function is very practical for

programming. For instance, the position in the code that

I currently work on is the c register, the position of the

local variables in the l register, the global variables in the g

register, etc. This allows very fast switching between points

in large �les.

M-. Jump to Tag See section 2.4 for more details on this and other etags

commands.

C-x o Jump to other

window

If the screen is split in multiple windows, we can switch

between the di�erent windows with C-x o

C-x b Switch to bu�er This exchanges the current bu�er with a di�erent loaded

bu�er

C-x C-x Exchange point

with mark

If we frequently move forth and back between two points in

the same bu�er, we can use this command to jump between

two locations. It is very useful if we just brie
y visit another

portion of the code and we want to return back. This is

accomplished by setting the mark at the current position

(C-Space), visit the other location and return with C-x C-x.

C-u C-Space Cycle mark ring All the marks are saved in a mark ring. Repetitively calling

this command lets you visit all the last positions you set a

mark.

MC-n

(MC-p)

Jump forward

(backward) to the

matching

parenthesis

This jumps forward or backward to the next or previous

matching parenthesis of the same level of indentation.

MC-u

(MC-d)

Move up (down) in

the current list

structure

Jumps up or down to the next higher or deeper level of

parenthesis. These list commands are extremely useful if

you have deep nested block levels in your source code.

by Adrian Perrig Emacs and UNIX tricks

2.3 Cutting and Pasting Text 5

Table 4:

Frequent text

Key Action Explanation

M-/ Find closest word,

dynamic

abbreviation

expand

This function is very useful if we have long variable names

in programs. It looks backwards and expands to the closest

word that starts with the same letters as we already typed.

If no word backward in the text was found, the text forward

of the point is searched.

C-x x (key) Save the region in

the register (key)

If we need to frequently insert the same pieces of text, we

can store the text in a register.

C-x g (key) Insert register into

bu�er

The text previously saved with the above command, is in-

serted in the text.

M-TAB Expand tag Tries to complete the word started to a function name or

constant name. Ambiguities are presented in a separate

bu�er.

2.3 Cutting and Pasting Text

Another task often used is to cut a part of your text and insert it in other places. Emacs has a kill ring,

where it inserts all the deleted text. Except the character deletion commands, namely C-d and backspace,

all kill commands insert the deleted text into the kill ring. Consecutive kills append the deleted text at

the same location of the kill ring. Pasting text back is made with C-y, the so-called yank commands. If

you would like to paste older killed text from the kill ring, you can repeatedly type M-y (after the initial

C-y). Table 5 summarizes the di�erent methods for marking, deleting and pasting.

2.4 Etags

Etags is a stand-alone Unix program which creates an index database of functions and other identi�ers

out of the speci�ed C/C++ source �les. Emacs reads this �le and uses the information for the etags

commands. These functions are very useful for programmers. One of the features they allow is to jump

to the beginning of the code of a speci�ed function.

To generate the etags database �le, you need to be in the directory containing your c-�les. For example,

typing etags *.[ch] in your shell will create the �le TAGS, containing the references to all C-functions

and de�nitions.

Table 6 describes the basic emacs commands.

2.5 Writing Keyboard Macros

Keyboard macros are really easy to write and they can save a great amount of time. Using the registers for

�le positions or text, the search and jump functions described above, you can write powerful macros that,

for example, collect information in di�erent �les and write them to another �le. Useful macros can be

saved in the .emacs �le and assigned to a key shortcut1. Table 7 summarizes the most useful commands.

1The C-c (+ key) combinations are good candidates for shortcuts, as they are not often used for other commands. If you

would like to check if a key combination is already used, type M-x describe-key-briefly followed by your key combination

Emacs and UNIX tricks by Adrian Perrig

6 2 Emacs

Table 5:

Cut Functions

Key Action Explanation

C-k Delete line Delete everything up to the end of the line. If you pass a nu-

merical argument (C-u (digits)), it deletes that many lines.

It deletes backwards by specifying a negative argument.

M-z (key) Zap to char Delete everything up to and including the character (key).

For example, when you type M-z . everything up to the

end of the phrase is deleted.

M-d

(M-backspace)

Kill word forward

(backward)

Deletes the entire word forward or backward and is inserted

in the kill ring.

C-w Kill region (Delete) Kill the entire region from the mark to the current position.

M-w Insert region into

kill ring (Copy)

The same as C-w, but leaves the text in the bu�er.

M-x mark-c-

function

Mark current c

function

If we want to kill or insert an entire function into the kill

ring, we can mark it �rst with this function and then delete

the entire funciton with C-w or insert it with M-w.

MC-Space mark

subexpression

Marks the entire subexpression following the point. (Note: a

subexpression is a logical entity in a program. For example

an identi�er, a block inside parenthesis, for examples are

subexpressions.) If you would like to mark a parenthesi-

zed expression, move the cursor to the opening parenthesis

(using for example MC-p described in section 2.1) and call

this command.

MC-k kill subexpression Deletes the subexpression following the cursor. The com-

mand behaves similar to the one just described before.

Table 6:

Etags

Key Action Explanation

M-. �nd tag Jumps to the location where the function or constant is de-

�ned. Emacs opens the �le containing the function automa-

tically, if it is not yet open.

M-TAB Expand tag Any function name that is indexed by a tag �le can be expan-

ded to its full name. If the expansion is ambiguous, the va-

riants are displayed in a separate bu�er. This feature can

also be very useful, if we are not sure about the function

name.

by Adrian Perrig Emacs and UNIX tricks

2.6 .emacs File 7

Table 7:

Macro

Key, Action Explanation

C-x (Start recording a keyboard macro

C-x) End the recording

C-x e Calls the last created macro

M-x name-last-kbd-macro Assigns a name to last created keyboard macro. This is

necessary, if you would like to insert the macro into a bu�er

(or into the .emacs �le).

M-x insert-kbd-macro Inserts the keyboard macro into the current bu�er. Usu-

ally, when a useful macro was created and inserted into the

.emacs, a keyboard rede�nition such as (global-set-key

"nC-cn" 'prototype to function) is very useful.

2.6 .emacs File

The .emacs �le is located in your home directory and it is loaded when emacs is started. It contains

initializations and user defaults. It is common to de�ne own key shortcuts, colors and fonts. A sample

.emacs �le can be loaded from [Per96].

At this place, I would like to give an example of how to use macros in conjunction with the .emacs �le.

A common task during programming is to write function headers. It is very practical to write only the

function de�nition in the .h �le, copy it to the .c �le and apply a pre-written macro with a key shortcut.

We have the following function de�nition:

void

deb_printf(int level, const char *fmt, ...);

The de�nition for the prototype to function macro in the .emacs �le looks as follows:

(fset 'prototype_to_function

"^S(^B^@^A\367^P^P

/*^U77-^M * ^Y

*

* input:

*

* output: returns SUCCESS/FAILURE

*

* sideeffects:

*

*^U77-

*/^S;^H^N^A{

return SUCCESS;}^H /* ^Y *./^?^?/^M")

(global-set-key "\backslashC-cn" 'prototype_to_function)

This de�nition looks very cryptic, but we actually never really need to edit or write the macro, as

Emacs and UNIX tricks by Adrian Perrig

8 2 Emacs

emacs takes care of this, when you use the commands in section 2.5. Typing C-c n with the cursor on the

deb printf name gives us the desired transformation:

/*---

* deb_printf

*

* input:

*

* output: returns SUCCESS/FAILURE

*

* sideeffects:

*

*---

*/

void

deb_printf(int level, const char *fmt, ...)

{

return SUCCESS;

} /* deb_printf */

Such macros are very practical, they can save us a great deal of typing and speed up the work.

Setting colors for a given screen and taste can be di�cult. Emacs provides the commands M-x

list-faces-display to display the current font settings and M-x list-color-display to show the

available colors. Syntax highlighting can be turned on with the command M-x font-lock-mode or auto-

matically with a command such as (add-hook 'c-mode-hook '(lambda () (font-lock-mode t))) in

the .emacs �le.

If you use emacs for programming, line numbers are often used. I have the following lines in my .emacs

�le:

(line-number-mode t)

(global-set-key "\C-cg" 'goto-line)

The �rst line displays always the current line number in the mode line. If you need to jump to a speci�c

line, you can just use C-c g.

2.7 Getting more information

This brief chapter on emacs tricks is far from being complete. Emacs provides many more capabilities.

To inform and help the user, emacs provides two di�erent help systems, info and \normal" help. The

normal help system is called by typing C-h2 and the info system with M-x info or C-h i.

The help system provides powerful functions for quickly �nding the desired information. Table 8

explains some of the capabilities.

The info pages provide detailed help on a various UNIX programs or even on programming libraries.

Emacs is just one of the chapters of the info system, which is invoked by typing M-x info. Table 9 shows

some of the valid commands in info mode.

Especially for GNU programs, the provided information is excellent. It contains examples, background

information, cross references to follow, etc. Info is also a separate program, you can call it from the shell,

for example info gcc will open directly the gcc section.

2On some keyboards, C-h is identical with the backspace key. Usually it is practical to rede�ne the backspace (and also
C-h) to delete the previous character with the command (global-set-key "nC-h" 'backward-delete-char) . To start the

help system in this case, we need to type M-x help.

by Adrian Perrig Emacs and UNIX tricks

2.7 Getting more information 9

Table 8:

Help

Key Action Explanation

C-h a command apropos Shows all the commands that contain a string entered in

form of a regular expression. Typing just Return shows a

list of the ~1000 commands. If you would like to know about

the di�erent search functions, try C-h a search and you

will �nd out about interesting commands, such as M-x tags-

search.

C-h b describe bindings All active key bindings are shown within the corresponding

mode. This feature is invaluable for example in Bib TeX

mode, with its dozens of special bindings. Further, com-

mands you knew they existed but did not dare to ask for,

are listed.

C-h c describe key brie
y Describes the function that is bound to a certain key

shortcut.

C-h f describe function Gives a description of the function.

C-h C-f info about function Jumps to the info page describing the function speci�ed.

This facility also gives you background information about

the command. Further, similar functions are also described

on the same info page, which is also very useful.

C-h m describe mode Gives a thorough description about the current mode used.

C-h w Where is the

function

This help function shows you how a given function can be

called. It will display the shortcut key or where to �nd the

function in the menu.

Table 9: Info table

Info

Key Action Explanation

? help about info Displays the valid info commands brie
y.

d jump to root node Takes you back to the �rst info node.

m visit topic Pick menu item speci�ed by name or abbreviation.

u up one level Go back to next higher page (usually to the page where \m"

was typed the last time).

l last page Go back to the last page visited.

s search regexp Search the regexp on the current page.

1, 2, . . . visit nth entry Opens the nth menu entry of the current page.

Emacs and UNIX tricks by Adrian Perrig

10 3 Finding Information

2.8 Code writing support

Emacs provides special modes for many di�erent programming languages, such as perl-mode, c-mode,

c++-mode, ada-mode, makefile-mode, lisp-mode, etc. Each mode has speci�c knowledge on how to

structure your code, about the keywords for syntax highlighting, about subexpressions and list structures

for the MC-p family commands, and others. Everybody has his own style for structuring the code, so

you can de�ne your preferences in the .emacs �le. Please check the info system for more information on

this topic, or load my .emacs �le from my homepage. The variables that a�ect the code indentation, are

described in the mode help, try C-h m when you are in your favorite programming mode.

See table 10 for special programming commands.

Table 10:

Programming

Key, Action Explanation

MC-n, M-x indent-region Restructures the marked region. This command only restru-

ctures the spacing before the beginning of the line, the rest

of the line is unchanged. It is not as powerful as the indent

command, which is described in section 4.2.

M-x compile Executes the command speci�ed in the variable

compile-command, which can be set in .emacs with

(setq compile-command "make -k").

C-x ` Parses the *make* bu�er for errors and jumps to the point

in the �le where the error occurred. To use this feature, it

is necessary to compile with M-x compile.

3 Finding Information

As usual in UNIX, there are many di�erent ways and methods to �nd the desired information. Useful

commands are man, apropos, whatis, and info. Info was treated in the emacs section 3.

A great new source of information is the WWW. Using the search-engines such as AltaVista, HotBot,

Lycos or Infoseek, it is surprising how much material can be found on a topic in very little time, provided

that you know the syntax of the search-engine and that you enter precise criteria.

3.1 man, apropos, whatis

The information provided by man is divided into di�erent sections. Table 11 shows the di�erent sections.

Usually, section 3 is subdivided into di�erent subsections, such as 3c for c libraries, 3x for x libraries,

3tk or 3tcl for tcl/tk, etc.

Sometimes, there is a program and a library function with the same name. To specify, which section

to read, you can try one of the following commands (examples for the time c-function which is in section

3):

� man -S 3 time

� man 3 time

by Adrian Perrig Emacs and UNIX tricks

11

Table 11: Man Sections

1 Programs

2 System Calls

3 Library functions

4 Special Files

5 File Formats

6 Games

7 Miscellany section

8 Administration and privileged commands

9 Kernel reference

� man -S 3:2:1 time

The information about a certain man section, for example the library section, can be obtained with

man -3 intro.

If you would like to know in which sections a word appears, try either of the two equivalent commands:

� man -f time

� whatis time

Apropos is another command which searches for keywords in a short descriptions of commands. It is

equivalent to man -k and can be useful in case you do not exactly know what you are looking for.

4 Various UNIX tools

In this section, we will look at various tools which may help during program development.

4.1 strace

System calls can be traced with strace. If you always wanted to know what your program 'buggy' does

\behind your back", try strace buggy | more and you will be surprised (if you started it for the �rst

time).

4.2 indent

It takes hours to restructure big �les of unreadable c-code. Much faster and less of a pain is to read the

man pages about the indent program, write a .indent.pro �le and run indent to do the task.

4.3 limit

Unix can impose restrictions on a process, such as the memory size, the CPU time used, the maximum

size of a core dump �le, etc. You can view the preset limits with limit. If the maximum allowable core

dump �le size is 0, and you would like to have the core �le, try limit coredumpsize 10000 to set it to

10 MBytes. You can also create core �les, which are analyzable by gdb, by typing C-n.

Emacs and UNIX tricks by Adrian Perrig

12 REFERENCES

5 Acknowledgments

Most of the knowledge was assembled from group projects at Carnegie Mellon University. Mainly John

Drum in
uenced me and showed me most of the tricks and hacks. I would also like to thank Daniel

Schneider very much for the numerous discussions and his corrections to the report.

References

[Per96] Adrian Perrig. WWW Homepage. http://diwww.ep
.ch/~aperrig, 1996.

by Adrian Perrig Emacs and UNIX tricks

