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ABSTRACT
We introduce the BiBa signature scheme, a new signature
construction that uses one-way functions without trapdoors.
BiBa features a low veri�cation overhead and a relatively
small signature size. In comparison to other one-way func-

tion based signature schemes, BiBa has smaller signatures
and is at least twice as fast to verify (which probably makes
it one of the fastest signature scheme to date for veri�ca-
tion). On the downside, the BiBa public key is large, and
the signature generation overhead is higher than previous
schemes based on one-way functions without trapdoors (al-

though it can be trivially parallelized).
One of the main challenges of securing broadcast commu-

nication is source authentication, which allows all receivers
to verify the origin of the data. An ideal broadcast au-
thentication protocol should be eÆcient for the sender and
the receiver, have a small communication overhead, allow

the receiver to authenticate each individual packet, provide
perfect robustness to packet loss, scale to large numbers of
receivers, and provide instant authentication (no bu�ering
of data at the sender or receiver side). We are not aware of
any previous protocol that satis�es all these properties. We
present the BiBa broadcast authentication protocol, a new

construction based on the BiBa signature, that achieves all
our desired properties, with the tradeo� that it requires a
moderate computation overhead for the sender to generate
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the authentication information, and that it requires loose

time synchronization between the sender and receivers.
Keywords: Broadcast authentication, source authentica-
tion for multicast, one-time signature, signature based on a
one-way function without trapdoor.

1. INTRODUCTION
For the past 25 years researchers have created and re�ned

digital signature schemes using one-way functions without
trapdoors [2, 5, 9, 10, 13, 14, 18, 23]. These signature
schemes are eÆcient for signature generation and veri�ca-
tion, but the signatures are too large for many applications.
We propose the BiBa signature, a new approach for signa-
tures based on one-way functions without trapdoor. The

signature size of our scheme is much smaller than most pre-
vious signatures based on one-way functions; and the veri-
�cation is also more eÆcient. However, our public keys are
larger than most previous systems, and the time to generate
signatures is also higher.
Our new signature scheme immediately yields important

new applications. In particular, we extend the BiBa sig-
nature scheme to design a new protocol for authenticating
broadcasts, such as streaming information broadcast over
the Internet. Many applications need to authenticate broad-
cast data, i.e. verify the data origin. The main challenges

to design an eÆcient broadcast authentication protocol are:

� EÆcient generation and veri�cation. The generation
and veri�cation overhead for the authentication infor-
mation should be small. It is important that the veri-

�cation overhead is small, since a large number of re-
ceivers need to verify the authentication information,
and some receivers might have restricted computation
power.

� Real-time/instant authentication. Many applications
such as stock quote broadcasts require real-time data
authentication. Hence, neither the sender nor the re-

ceiver should bu�er data messages before sending or
veri�cation.

� Individual message authentication. The receiver can
authenticate each individual message it receives.

� Robustness to packet loss. Internet broadcasts can en-
counter high packet loss. In many broadcast applica-
tions, lost packets are not retransmitted. Hence the
authentication protocol should tolerate high levels of

packet loss.
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� Scalability. Broadcast applications have a potentially

large number of receivers. The authentication informa-
tion should be independent of the number of receivers.

� Small size of authentication information. Since the
receiver authenticates individual messages instantly,

each message carries authentication information, hence
a viable scheme should have a low communication over-
head.

Researchers proposed a number of schemes for broadcast
authentication [4, 6, 16, 17, 23, 25]. Unfortunately most
previously proposed systems [6, 16, 17, 23, 25] cannot simul-

taneously support both real-time authentication and perfect
robustness to packet loss. One approach that supports both
real-time authentication and robustness to packet loss [4]
does not scale well to large number of receivers, as the size
of authentication information increases as the number of re-
ceivers increases. Using a new construction, we design the

BiBa broadcast authentication protocol from the BiBa sig-
nature scheme, that satis�es all the above desired properties,
except that the sender overhead to generate the authentica-
tion information is in general higher than for previous ap-
proaches (although it can be parallelized). In addition, the
BiBa broadcast authentication protocol requires that the

sender and receiver are weakly time synchronized.1

Similar to the MicroMint payment scheme by Rivest and
Shamir [21], the security of the BiBa signature comes from
the diÆculty of �nding k-way collisions for a one-way func-
tion. The main di�erence, however, is the security assump-

tion: MicroMint assumes that the bank has more computa-
tional resources than an adversary, but BiBa enjoys expo-
nentially increasing security such that it is secure even if the
signer only has modest computation resources.2

Our Contributions
We propose the BiBa signature scheme, a new one-time sig-
nature scheme based on one-way functions without trap-

doors. The BiBa signature exploits the birthday paradox to
achieve eÆciency and security.
BiBa provides a more compact signature and is faster to

verify than previous schemes. The public veri�cation key
can be large, but if o�-line dissemination of the public key
is possible, the BiBa signature o�ers super-fast veri�cation.

We believe that it provides one of the fastest signature ver-
i�cations today.
We design a broadcast authentication protocol based on

the BiBa signature scheme. It was an open problem to de-
sign a broadcast authentication system that can simultane-

ously support eÆcient real-time transmission and eÆcient
authentication, o�er perfect robustness to packet loss, and
scale perfectly with respect to the number of receivers. Our
construction is general and also applies to other signature
schemes based on one-way functions without trapdoors, e.g.
the k-times signature [23].

1In contrast to TESLA, the authentication in BiBa is in-
stant and does not depend on the time synchronization error.
However, a large synchronization error results in a higher
memory requirement of the receiver.
2MicroMint gains an additional computational advantage
because the bank can pre-compute coins, and an adversary
has a small, limited time to forge coins. Hence MicroMint
requires very loose time synchronization.

2. THE BIBA SIGNATURE SCHEME
In this section we �rst introduce the notion of SEALs,

then we give a simple example to motivate the key intuition

of BiBa, and �nally we present the full-edged scheme BiBa
signature scheme.
We use the following notation in the rest of the paper. F

and F 0 represent two pseudo-random functions (PRF)[7],
F : f0; 1gm2 � f0; 1gm1 ! f0; 1gm2

F 0 : f0; 1gm1 � f0; 1gm1 ! f0; 1gm1 .

H is a hash function in the random oracle model[1]. G
represents a hash function family in the random oracle model
and Gh : f0; 1gm2 ! [0; n � 1] is an instance in the hash
function family G selected with an indicator h.

2.1 The SEALs
The signer precomputes values that it subsequently uses

to generate BiBa signatures. These values are random num-
bers generated in a way that the receivers can instantly au-
thenticate them with the public key (which is sometimes
referred to as public validation information in this context).
We call these precomputed values SEALs, short for SElf-

Authenticating vaLues.3 The property that we need for
SEALs is that the veri�er can eÆciently authenticate the
SEAL based on the public key, and that it is computation-
ally infeasible for an adversary to �nd a valid SEAL given
a public key. The simplest approach is to use the PRF F
as a commitment scheme. Given a SEAL s, the public key
is fs = Fs(0). If the veri�er learns fs in an authentic fash-
ion, it can easily authenticate s by verifying Fs(0) = fs. In
BiBa the signer needs multiple SEALs, so a public key could
consist of multiple commitments.
Another alternative for SEAL authentication is a Merkle

hash tree (so the SEALs would be the leaf nodes of the tree

and the public key is the root node of the tree) [12]. We
discuss this approach in Appendix B.
In the case of broadcast authentication, we describe eÆ-

cient methods to generate and authenticate SEALs in Sec-
tion 3. For now we simply assume that the signer has t
precomputed SEALs s1; s2; : : : ; st, and receivers know the
authentic commitment Fsi(0) of each SEAL so they can ef-
�ciently authenticate each SEAL they receive.

2.2 The Key Intuition
BiBa stands for Bins and Balls signature | a collision

of balls under a hash function in bins forms the signature.

BiBa exploits the birthday paradox such that the signer has
many balls to throw into the bins which results in a high
probability to �nd a signature, but an adversary has few
balls so it has a low probability to forge a signature. We
illustrate the BiBa signature with a simpli�ed example.

Signature Generation
To sign a message m, the signer �rst computes the hash
h = H(m). The signer then computes the hash function Gh

(as we describe at the beginning of this section) to all the

SEALs s1; : : : ; st. The signer looks for a two-way collision
of two SEALs: Gh(si) = Gh(sj), with si 6= sj . The pair
hsi; sji forms the signature. Figure 1 shows an example.

3The name SEAL is already used for the stream cipher de-
veloped by Rogaway and Coppersmith. We overload the
term in this work because a seal nicely describes the prop-
erties that a signer can easily generate it, that it is hard to
forge, and that a veri�er can easily authenticate it.
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It is now clear why the BiBa acronym stands for Bins and

Balls signature: the bins correspond to the range of the hash
function Gh, and the balls correspond to the SEALs.

. . .

Gh

s1 s2 s3 s4 st

Signature

Figure 1: Basic BiBa scheme

We exploit the asymmetric property that the signer has
more SEALs than the adversary, and hence the signer can
easily generate the BiBa signature with high probability. On
the other hand, an adversary only knows the few disclosed

SEALs and hence has a low probability to �nd a valid BiBa
signature.

Signature Verification
The veri�er receives message M and the BiBa signature
hsi; sji. We assume for now that the veri�er has an eÆ-

cient method to authenticate the SEALs si; sj . To verify
the BiBa signature the veri�er computes h = H(m), checks
that si 6= sj , and Gh(si) = Gh(sj).
Note that the veri�cation is very light-weight: Without

considering the SEAL authentication, the veri�cation only
requires one hash function computation and two hash func-

tion computations.

Security of This Approach
Assume the signer has t SEALs and the range of the hash
function Gh is [0; n� 1]. Given a message m, the probabil-

ity of �nding a BiBa signature is equal to the probability of
�nding at least one two-way collision, i.e. at least two balls
end up in the same bin, when throwing t balls uniformly ran-
domly into n bins. The probability of at least one collision
PC is easy to compute:

PC = 1�
t�1Y
i=1

n� i

n
� 1� e

t(t+1)

2n

Figure 2 shows the probability of at least one collision when
throwing t balls into 762460 bins.
The security of the BiBa signature comes from the fact

that the adversary has few SEALs and hence has a small
probability to �nd a collision. For example, if the signer has
1200 SEALs, as marked with the letter A in Figure 2, it has a
61% probability of �nding a signature after one try (one two-
way collision after throwing 1200 balls into 762460 bins) for a
given a message. If we assume that an adversary only knows

10 SEALs (which it learned from 5 BiBa signatures), it has a
2�13:9 probability to �nd a collision (forge a signature) after
one try. Figure 2 shows the adversary's probability, marked
with the letter B.

2.3 BiBa Extensions
The �rst way to increase the security is to increase the

number of SEALs and bins, but that approach would in-

crease the size of the public key.
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Figure 2: Probability of �nding a signature for three

cases. The solid line shows the probability for �nd-
ing a two-way collision when throwing x balls into
762460 bins. The dashed line shows the probabil-
ity of �nding six two-way collisions when throwing x
balls into 236650 bins. The dot-dashed line shows the
probability of �nding a six-way collision when throw-

ing x balls into 222 bins. We selected the number of
bins such that the signer has a 50% probability of
�nding a signature with 1024 SEALs after one try.

A better approach to increase the security is to use multi-

ple two-way collisions to generate a signature. For example,
a signature on message m, with h = H(m), would consist of
z two-way collisions. The signature is composed of z pairs
of SEALs hSa1 ; Sb1i; : : : ; hSaz ; Sbzi, with all SEALs distinct
and Gh(Sai) = Gh(Sbi) (1 � i � z). Figure 2 shows the
probability of �nding six two-way collisions with n = 236650

bins, varying the number of SEALs.
The third way to increase security is to require multi-way

collisions, instead of two-way collisions. If the BiBa signa-
ture requires a k-way collision, the BiBa signature of mes-
sage m (with h = H(m)) is hSx1 ; : : : ; Sxki, where all SEALs
Sx1 ; : : : ; Sxk are distinct and collide under G: Gh(Sx1) =
: : : = Gh(Sxk ). Figure 2 shows the probability of �nding a
six-way collision with n = 222 bins, varying the number of
SEALs. The �gure shows clearly that this approach is bet-
ter than using six two-way collisions, because the probability
drops o� faster for an adversary that has fewer SEALS.
The fourth way we attempted to improve the security is

to use a multi-round scheme, where only the bins that have
a k1-way collision in the �rst round proceed as balls into the
next round. Intuitively, multi-round schemes may seem to
improve the security. However, we show in Appendix A that
one-round schemes are as secure as multi-round schemes.

2.4 The BiBa Signature Scheme
We now describe the BiBa signature scheme in more de-

tail. To sign message m the signer computes the m3 bit
long hash h = H(mjc), where c is a counter value that the
signer increments if it cannot �nd a signature. The signer
has t SEALs (each is m2 bits long), and maps them with the
hash function Gh into n bins. Any k-way collision of SEALs
forms the signature.

Veri�cation is straightforward. We assume that the veri-
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�er knows the BiBa parameters k and n, the hash function

H, and the hash function family G.
Assume the veri�er receives message m and BiBa signa-

ture hSx1 ; : : : ; Sxk ; ci. First, the veri�er veri�es that all k
SEALs are distinct and authentic. Next, the veri�er com-
putes h = H(mjc), and accepts the signature if all Gh(Sxi)
(for 1 � i � k) are equal.

2.5 Security Considerations
Given a number of disclosed SEALs, we can derive the

probability that an adversary can �nd a valid BiBa signature
using standard combinatorial techniques. In Appendix A we
derive that a tight upper bound of the probability Pf of the

adversary to forge a signature after a single trial is

Pf =

�
r

k

�
(n� 1)

r�k

nr�1

where r is the number of SEALs that the adversary knows.
Clearly the more SEALs the adversary has, the higher

the probability that it can forge a BiBa signature. The

security of the BiBa signature scheme relies on the fact
that the signer knows many more SEALs than an adversary.
We leverage the birthday paradox threshold, also known as
the birthday bound. Intuitively, when we throw t balls uni-
formly randomly into n bins, when the number t is below the
birthday bound (approximately

p
2n), two-way collisions are

rare. But as t grows larger than the birthday bound, the
number of collisions increases rapidly.

k n Pf k n Pf

2 762460 2�19:5403 13 192 2�91:0196

3 15616 2�27:8615 14 168 2�96:1001

4 3742 2�35:6088 15 151 2�101:3377

5 1690 2�42:8912 16 136 2�106:3119

6 994 2�49:7855 17 123 2�111:0802

7 672 2�56:3539 18 112 2�115:7250

8 494 2�62:6386 19 104 2�120:6079

9 384 2�68:6797 20 96 2�125:1143

10 310 2�74:4851 21 89 2�129:5147

11 260 2�80:2237 22 83 2�133:8758

12 222 2�85:7386 23 78 2�138:2788

Table 1: The security of some BiBa instances. The
signer knows t = 1024 SEALs and the adversary has
r = k SEALs.

We assume the signer has t = 1024 SEALs, and the at-
tacker has r = k SEALs which is the number of SEALs
disclosed after the signer signs one message. Let PS denote

the probability that the signer can �nd a signature after one
trial with t SEALs, and Pf denotes the probability that an
adversary can forge a signature after one trial knowing r
SEALs. A high value for PS means the signer is likely to
produce a signature on the message and hence signing is ef-
�cient. For the remainder of this paper we set PS = 0:5,
such that the signer can �nd a signature after 2 tries on
average. A low value for Pf means that it is unlikely for
an attacker to produce a valid signature, and indicates the
security of the scheme. Table 1 shows the Pf value for di�er-
ent instances with varying parameters n and k. In Section 5
we discuss methods on how to choose the BiBa parameters,

and we discuss the resulting communication and computa-

tion costs. We would like to point out the high level of

security BiBa achieves with only a few collisions. Based on
the requirements of the NESSIE project [15], a BiBa sig-
nature scheme that uses an 11-way collision would provide
suÆcient security.
An adversary has two main ways to collect SEALs to forge

signatures. First, the adversary simply collects SEALs dis-

closed in signatures generated by the signer. Second, the
adversary tries to �nd SEALs by brute-force computation
to invert the PRF F used to authenticate the SEALs. In
our analysis, however, we assume that the latter attack is
impractical, such that the adversary only knows the SEALs
that the signer discloses with a signature.

3. BIBA BROADCAST AUTHENTICATION
PROTOCOL

In this section we describe how we use the BiBa signature
to design the BiBa broadcast authentication protocol.

A broadcast authentication protocol requires that each re-
ceiver can verify that the data originates from the sender.
An obvious approach is for the sender to compute a BiBa sig-
nature on each message it broadcasts. Since the sender can
only disclose a small number of SEALs, it could only sign a

small number of messages (given a public key which commits
to a �xed number of SEALs). For a viable broadcast authen-
tication protocol, however, the sender needs to authenticate
a potentially in�nite stream of messages. So we construct
a protocol that replenishes the SEALs disclosed with each
signature. In a straightforward approach, the sender adds

a new commitment (for each SEAL that it discloses) to the
packet, and includes all the new commitments in the signa-
ture. This approach doubles the size of the signature and is
not robust to packet loss. We now present a better approach
for constructing the SEALs. We will not review signature
generation and veri�cation in this section, since it is the

same as in the BiBa signature scheme that we describe in
Section 2.4.

One-way SEAL Chains
For our authentication protocol, we need a method such
that the receiver can instantly authenticate the SEALs when
it receives them, and that the SEALs are automatically
replenished. We use one-way chains to achieve the self-

authenticating property of SEALs and for replenishment.
One-way chains are used in many schemes, for example by
Lamport in a one-time password system [11], and the S/Key
one-time password system [8].
We use the the PRF F to generate the one-way SEAL

chains, and the PRF F 0 to generate a one-way salt chain.
The sender �rst generates the one-way salt chain of length
l, fKig1�i�l, using the PRF F 0 as follows: the sender ran-

domly selects Kl (of length m1 bits): Kl

R f0; 1gm1 , and
then recursively computes all other salts: Ki = F 0

Ki+1
(0)

(1 � i < l).
The sender then generates a set of one-way SEAL chains,
fShi;jig1�i�t;1�j�l, where Shi; i forms a one-way chain as
Figure 3 shows. The SEAL chains are constructed as fol-
lows. The sender �rst randomly selects all the seed SEAL

values Sh ;li of length m2 bits: Shi;li
R f0; 1gm2 (1 � i � t).

The sender then computes all other SEAL values recursively:
Shi;ji = FShi;j+1i

(Kj+1) (1 � j < l). Note the way we use

the salts of the one-way salt chain to derive the SEAL values,
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such that an attacker �rst would need to �nd a pre-image

of the salt of the one-way salt chain before it can try to �nd
pre-images for the SEAL chains. We chose this speci�c con-
struction to allow for relatively compact SEALs, while the
longer salts mitigate attacks to �nd other pre-images for the
SEALs by pre-computation. However, if the SEALs are long
enough to prevent such attacks, the one-way salt chain may

not be necessary.

time

time

period i: : :

: : :

: : :

...
...

...
...

...

F 0

F 0FFFF

F F F F

l

l� 1

Sh1;li Sh2;li Sht;li

Sh1;l�1i Sh2;l�1i Sht;l�1i

Sh1;ii Sh2;ii Sht;ii

Kl

Kl�1

Ki

Figure 3: Using one-way chains to construct SEAL

The sender divides the time up into time periods of equal
duration Td. In each time period i, the SEALs Sh ;ii and
the salt Ki are active. Figure 3 shows the time periods
and the corresponding active SEALs and active salt. As
time advances an entire row of SEALs expires and a new

row becomes active. The sender publishes each salt at the
beginning of the time period when it becomes active, but
the sender only discloses the active SEALs of a time period
that are part of a BiBa signature.
To bootstrap a new receiver we assume for now that the

sender sends it all the SEALs and the salt of a previous

time period over an authenticated channel. We present ex-
tensions that provide more eÆcient receiver bootstrapping
in Section 5. It is clear that a receiver who knows all the
authenticated SEALs and salt of a time period can authenti-
cate SEALs and salts of later time periods. For example, as-
sume the receiver knows the authentic salt Ki of time period

i. When the receiver receives Ki+1 of the following time pe-

riod the receiver authenticates it by verifying Ki

?
=F 0

Ki+1
(0).

The receiver authenticates SEALs by following the one-way
SEAL chain back to a SEAL that it knows is authentic.

Security Condition
To prevent an adversary from forging for a signature, we
need to ensure that an adversary knows few active SEALs.
Hence, when the receiver receives a packet, the receiver has
to be certain that an adversary could only know a small

number of SEALs. The receiver can verify such a condition
if it is time synchronized with the sender and knows the
sending schedule of packets. We refer to TESLA for more
details on time synchronization [16]. Assuming a maximum
time synchronization error of Æ between the sender and the
receivers, the sender is limited to sign br=kc messages within

time Æ, where r is the maximum number of active SEALs

that the adversary can know, and k is the number of SEALs

revealed in a signature. When the receiver gets a packet
it needs to verify that the sender did not yet disclose more
than r active SEALs. Because of the one-way SEAL chains,
SEALs of one time period also disclose SEALs from previous
time periods. Hence we require that the sender does not use
a BiBa instance for time Æ after it disclosed k SEALs of

that instance. To send continuously, the sender needs to
use multiple BiBa broadcast authentication instances in a
round-robin fashion.

4. BIBA BROADCAST PROTOCOL EXTEN-
SIONS

We briey present two extensions to the BiBa broadcast
protocol. An optimal protocol would satisfy the following
three properties: low receiver computation overhead (as low

as the BiBa signature protocol), low communication over-
head (only the disclosed SEALs are in the packet), and per-
fect robustness to packet loss. Unfortunately, we could not
�nd such a protocol and we leave its quest to future research.
However, we can achieve two out of the three properties.
The standard BiBa broadcast authentication protocol we de-

scribe in the previous section has low communication over-
head, perfect robustness to packet loss, but requires more
receiver computation overhead than the standard BiBa sig-
nature protocol (to verify the authenticity of the SEALs).
In this section, we propose the extension A and B. Exten-
sion A does not tolerate packet loss, and extension B has a

higher communication overhead. Hybrid schemes exist, but
we do not describe them here. The di�erence among the
three protocols is how they manage the SEALs.

Extension A
Extension A provides low receiver computation overhead
and low communication overhead, but it does not tolerate
packet loss. The basic BiBa broadcast authentication pro-
tocol has a high receiver computation overhead because the
majority of the SEALs are never used in a signature, so to

authenticate a SEAL the receiver needs to recompute many
SEALs in a one-way SEAL chain until it reaches a previ-
ously stored SEAL. We solve this problem in extensions A
and B by using every SEAL of each one-way SEAL chain in
a BiBa signature.
In this scheme we use the concept of SEAL boundary,

which Figure 4 depicts. The SEALs above the boundary
are disclosed, and they serve as commitment to the SEALs
on the other side of the boundary. The sender and receiver
always know the current SEAL boundary. The sender only
uses SEALs that are directly adjacent to (below) the bound-

ary. After each BiBa signature the sender and receiver ex-
tend the SEAL boundary past the newly disclosed SEALs.
This scheme would not be secure if an adversary could

slow down the data traÆc to the receiver, and collect enough
packets such that it knows a large number of SEALs on the
lower side of the perceived SEAL boundary of the receiver.

This large number of SEALs would enable the adversary to
spoof subsequent data traÆc, because the adversary contin-
uously receives fresh SEALs that the sender discloses. This
illustrates that the sender and receiver need to be time syn-
chronized, such that the receiver knows the sending schedule
of the packets.

As an additional security measure, the sender can also sign
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Sh0;0i Sh1;0i Sh2;0i Sh3;0i Sh4;0i Sh5;0i

Sh0;1i Sh1;1i Sh2;1i Sh3;1i Sh4;1i Sh5;1i

Sh0;2i Sh1;2i Sh2;2i Sh3;2i Sh4;2i Sh5;2i

Sh0;3i Sh1;3i Sh2;3i Sh3;3i Sh4;3i Sh5;3i

Sh0;4i Sh1;4i Sh2;4i Sh3;4i Sh4;4i Sh5;4i

SEAL

boundary

Figure 4: Using one-way chains to construct SEAL

all the SEALs directly above the current SEAL boundary

with the message signature. This mechanism would ensure
the receiver that it knows the correct SEAL boundary.

Extension B
Extension B is similar to extension A, but it tolerates packet
loss. Extension A does not tolerate packet loss because the
receiver needs to know which SEALs the sender discloses so
it can update the SEAL boundary. To improve the toler-
ance to packet loss, we add SEAL boundary information to

packets, which increases the communication overhead. This
approach allows us to trade o� robustness to packet loss
with communication overhead.
Two main methods exist to encode the SEAL boundary

in packets: absolute encoding or relative encoding. The ab-
solute encoding sends the index of each SEAL of the SEAL

boundary in the packet. For instance the SEAL boundary
in Figure 4 is h0; 2; 3; 0; 1; 2i. A relative encoding only com-
municates the change of the SEAL boundary with respect
to a previous boundary.
As in extension A, the receiver needs to know the exact

sending rate of messages, to verify that the SEAL bound-

ary always grows by the number of SEALs that the sender
discloses. To prevent that an attacker collects more than
r SEALs, the receiver needs to receive at least one packet
every � packets (where � = br=kc). Hence this scheme does
not tolerate more than ��1 consecutively lost packets. Oth-
erwise, an attacker could collect SEALs during a long period

of packet loss, and forge subsequent packets by claiming a
bogus SEAL boundary.

5. PRACTICAL CONSIDERATIONS
In this section we �rst discuss how to derive the BiBa

parameters from a given set of system requirements, and
we analyze the impact of BiBa parameters on the overhead
and security. Next, we look at the overhead of signature

generation and veri�cation. We will then discuss a concrete
example on how to construct a viable broadcast authentica-
tion scheme and discuss the performance.

Selection of BiBa Parameters
We assume that the sender has t = 1024 SEALs. Let Pf
denote the probability that an attacker can �nd a signature
with one trial of one message knowing at most r SEALs. The
security parameter is generally expressed as the expected

number of hash function operations that an adversary has
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Figure 5: Probability of �nding a twelve-way colli-
sion when throwing 1024 balls into x bins.

to perform to forge a signature [15]. For BiBa, the minimum
number of hash function operations to forge a signature is
2=Pf , for simplicity we use 1=Pf .
Let PS denote the probability that the sender can �nd a

signature in one trial. The expected number of tries that
the sender performs to �nd a signature is 1=PS . Without
loss of generality we set PS = 0:5.
To achieve good security, the sender can disclose approxi-

mately up to  = 10% of the SEALs. Each signature reveals

k SEALs. The sender knows t SEALs, so it can produce
� = b � t=kc signatures in a time period. As we discuss in
Section 3, the sender needs to wait for time Æ until it can
disclose the SEALs of the next time period. Hence it needs
multiple BiBa instances, if it wants to send more than �
messages per time period Æ. Given the packet sending rate

�, the number of BiBa instances needed is dÆ�=�e.
We now discuss how we choose n and k. The choice of

k directly determines the signature size. We can derive the
number of bins n from k and the probability PS that the
sender �nds a signature after one trial. Figure 5 shows how
PS decreases as we increase n.
Once we �x n and k we can derive the number of SEALs

that the sender can disclose such that the adversary has
at most a probability of Pf to forge a signature. Figure 6
depicts the probability distribution to �nd a signature given
a certain number of SEALs. As we can see in Figure 6(a),

Pf quickly decreases as the sender decreases the number of
SEALs it discloses. If Pf is too high (insuÆcient security)
for a k-way collision, we need to increase k.

BiBa Overhead
Table 2 lists the computation, memory, and communication
overhead of the sender and the veri�er during the precom-
putation, signature generation, and signature veri�cation

phases, where TF , TG, and TH denote the time to compute
the functions F;G;H, respectively.

Example: Real-time stock quotes
Consider a real-time stock quote broadcasting system. The
main requirement is a low authentication delay for the real-
time data, hence bu�ering on either the sender or receiver

side is not an option. Another requirement is the robustness
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Figure 6: Probability of �nding a signature given x SEALs. These probabilities are for the scheme k = 12; n =
222.

Computation Memory

Precomputation l(t+ 1)TF l(m1 + t � m2)
Signature Generation (t � TG + TH)=PS l(m1 + t � m2)
Signature Veri�cation 2 � k � TG + TH m1 + (k + n) � m2

Table 2: BiBa Overhead. The salts are m1 bits long,
and the SEALs arem2 bits long. The communication
overhead (signature size) is k�m2 (+m1 if we also send
the salt).

to packet loss, so receivers can instantly and eÆciently au-
thenticate each message they receive, despite previously lost
packets. To the best of our knowledge, no previous protocol

satisfactorily addresses these requirements.
We assume the following system requirements. Receivers

are time synchronized with the sender, with a maximum
time synchronization error of ten seconds (Æ = 10s). The
sending rate is approximately 10 packets per second (� =
10 p/s). The sender has t = 1024 SEAL chains. We set

the security parameter 1=Pf = 258 (the attacker needs to
perform 258 hash function computations within time Æ to
forge a signature). We set  = 1=16, so the adversary can
know up to r = t = 64 active SEALs.
For this example, we set m1 = 128; m2 = 64; k = 16.

We then compute n to get PS close to 50% and compute
the corresponding Pf assuming that the adversary knows
64 SEALs. From Table 1 we pick n = 168, and the resulting
forging probability is Pf = 2�58:03. The signature size is
about 128 bytes.
Each signature discloses 16 SEALs, hence after 4 pack-

ets an attacker knows at most 64 SEALs. Each row of the
SEAL chains is active for 400ms (10 packets/s and 4 pack-
ets sent per row). Because Æ = 10s is the maximum time
synchronization error, we cannot disclose any SEALs of the
next row for 10 seconds. Otherwise we would disclose more
SEALs of the previous rows which the adversary could use

to forge a signature. This requires that we use 25 instances

of the BiBa scheme in parallel in a round-robin fashion.
The sender overhead to generate a signature is approxi-

mately (1024 �TG+TH)=PS . On a 800 MHz Pentium III the
sender can compute � 106 MD5 hash function evaluations

per second [19] (uniprocessor, software-based implementa-
tion of MD5). On this architecture, generating one BiBa sig-
nature takes approximately 2 ms, about 5 times faster than
to generate a 1024-bit RSA signature using the OpenSSL li-
brary. BiBa enjoys a linear speedup for multiple processors,
which a hardware implementation can easily exploit. With

maximum parallelization, generating a BiBa signature only
requires two sequential hash function computations.
Signature veri�cation (excluding the veri�cation of the au-

thenticity of the SEALs) only requires 17 hash function eval-
uations. However, the SEAL veri�cation is about 256 PRF

evaluations on average. This is because the 1024 active
SEALs of one time period are amortized only by 4 pack-
ets. On a 800 MHz Pentium III the sender can compute
� 5 � 106 RC5 function evaluations per second [20] (unipro-
cessor, software-based implementation of RC5). On this ar-
chitecture, veri�cation takes on the order of 50�s, which is

about 20 times faster than verifying a 1024-bit RSA signa-
ture.
Decreasing the security requirement and increasing the

number of disclosed SEALs would greatly diminish this num-
ber (e.g. If we allow the adversary to know 128 SEALs which
would result in Pf = 2�41:2, then the veri�er only needs to

perform 128 PRF evaluations on average to authenticate
the SEALs). Using either extension A or B would reduce
the veri�cation overhead to 17 hash function and 16 PRF
computations, however with the tradeo�s we describe in Sec-
tion 4.

Efficient Public-Key Distribution
Sending the public key to all receivers is a potential bottle-
neck. In the schemes we discuss in this paper, the public
key size is on the order of 10 Kbyte for each BiBa instance.

We now present a trick that makes public key distribution
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eÆcient for the sender, but requires a longer time to boot-

strap receivers. The intuition is that receivers can collect
SEALs while they receive signed messages, and reconstruct
the one-way SEAL chains and the one-way salt chain. Pe-
riodically, the sender broadcasts a message containing the
hash of all SEALs and the salt of one time period, signed
with a traditional digital signature scheme, for example RSA

[22]. Once the receiver collects all SEAL chains, it can au-
thenticate them with the digital signature and authenticate
subsequent traÆc. This assumes that the receiver is already
time synchronized with a maximum time synchronization
error Æ. The well-known coupon collector problem predicts
how long the receiver needs to wait: After collecting t � log(t)
random SEALs, it has one SEAL of each one-way chain with
high probability, where t is the number of SEAL chains. In
the schemes we consider in this paper t = 1024, hence the
receiver needs to collect about 7098 SEALs. In our �rst ex-
ample, the sender discloses 64 SEALs in each time period, so
the receiver needs to collect SEALs during 110 time periods.

6. CONCLUSION
The BiBa signature uses the birthday paradox to con-

struct a digital signature scheme from a one-way function

without a trapdoor. A BiBa signature is a k-way collision
of input values under a hash function in the random ora-
cle model. In comparison to previous approaches the BiBa
signature o�ers smaller signature size, and a smaller veri�-
cation overhead. On the downside, the public key is larger

and the signature generation overhead is higher than for
previous approaches.
The BiBa one-time signature is particularly useful in set-

tings where the signer can send the public key to the veri�er
eÆciently, or where the veri�er is constrained on compu-
tation power. Furthermore, the BiBa signature generation

enjoys a linear speedup on multiprocessor systems until sig-
nature generation and veri�cation only require two sequen-
tial hash function evaluations.
Broadcast authentication remains an important problem.

As far as we know, no previous protocol could provide per-
fect robustness to packet loss, instant authentication (with-

out sender- or receiver-side bu�ering), eÆcient veri�cation,
and scalability to a large number of receivers. We propose a
new construction to achieve perfect loss robustness for signa-
ture schemes based on one-way functions without trapdoors.
By combining our new construction with the BiBa signature
scheme, we obtain the BiBa broadcast authentication pro-

tocol.
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APPENDIX

A. ONE-ROUND BIBA IS AS SECURE AS
MULTI-ROUND BIBA

We illustrate a multi-round scheme with a concrete exam-
ple. Figure 7 illustrates this approach for two rounds. In
the �rst round, we look for two-way collisions under a hash
function Gh. The indices of the bins that have at least a
two-way collision in the �rst round are used as balls in the
second round, and a three-way collision is required under

Ĝh. The indices that participate in the three-way collision
in the second round and the SEALs necessary to verify that
each index corresponds to a bin with the two-way collision
in the �rst round, form the BiBa signature: hSx1 ; : : : ; Sx6i.
To verify the BiBa signature hSx1 ; Sx2 ; Sx3 ; Sx4 ; Sx5 ; Sx6i

of message m (with h = H(m)), the veri�er veri�es the
following conditions:

1. All six SEALS Si are distinct and authentic

2. Throwing all 6 SEALs into n1 bins results in 3 two-way
collisions in bins with indices b1; b2; b3. These indices
form a three-way collision under Ĝ: Ĝh(b1) = Ĝh(b2) =

Ĝh(b3).

We now sketch a proof that a one-round BiBa signa-

. . .

Gh

Ĝh

n1 bins

n2 bins

Signature

s1 s2 s3 s4 st

Figure 7: Signature scheme with two rounds

ture scheme are as good as a multi-round signature scheme.

Please consult the full version of this paper for an extended
proof.

Lemma 1. A one-round BiBa signature is asymptotically
as secure as a two-round BiBa signature.

Proof sketch. We start out by showing that a one-
round scheme o�ers the same security as the corresponding
two-round scheme with the same signature size. We then use
an inductive argument to show that an n+ 1-round scheme
is no more secure than an n-round scheme.

Some of the following formulas are due to von Mises' sem-
inal article on the occupancy probabilities in bins and balls
models [24]. The expected number of bins that contain ex-
actly k balls (k-way collisions) after throwing t balls into n
bins is:

E[k] =

�
t

k

�
(n� 1)t�k

nt�1
(1)

We use the following inequalities:

E[k] =

�
t

k

�
(n� 1)

t�k

nt�1
<

�
t

k

�
(n)

t�k

nt�1
=

�
t

k

�
nk�1

(2)�
t

k

�
nk�1

=
t!

(t� k)!k!nk�1
<

tk

k!nk�1
(3)

We write Pk(x) for the probability that exactly x k-way
collisions occur. In the settings that we study, we have

Pk(1) > Pk(2), and in particular for the adversary who
tries to forge a signature we have Pk(1) � Pk(2) � Pk(3).
Similarly, we have Pk(1) � Pk+1(1) since the signer can
barely �nd a k-way collision, and for the adversary we have
Pk+1(1) = 0 because it only knows k SEALs that were dis-
closed in a signature. From the �rst equality of equation 1

we approximate the probability to �nd a valid signature

Pf � Pk(1) + Pk(2) + � � �
= E[k] � Pk(2)� 2Pk(3)� � � �
� E[k] (4)

Pf �
�
t

k

�
(n� 1)

t�k

nt�1
(5)

We use equations 2 and 4 to derive the number of bins
such that the signer has the probability of PS � 50% to

�nd a signature, given that the signer has t balls and the
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signature is composed of a k-way collision:

PS �
tk

k!nk�1
=

1

2
(6)

n
k�1

=
2tk

k!
(7)

We can now compute the probability that the adversary
can forge a signature, given that it has seen a single signature
(hence it has k balls), and we use equation 7

Pf =

�
1

n

�
k�1

=
k!

2tk
(8)

For the two-round scheme, we assume that the signer has
t balls, and that it looks for a k1-way collision in the �rst
round, and a k2-way collision in the second round. It is clear
that the signature comprises k1 �k2 balls, so since we require
that the signature size is the same for the one-round and
two-round schemes we have k = k1 �k2. We assume that the

number n1 of bins in the �rst round is �xed, and we com-
pute the number of bins in the second round such that the
probability of the signer PS to �nd a signature is approxi-
mately 50%. The expected number of k1-way collisions e1
in the �rst round is

e1 =
tk1

k1!n
k1�1
1

(9)

We can now compute the number of bins n2 of the second
round

PS �
e
k2
1

k2!n
k2�1
2

=
1

2
(10)

n
k2�1
2 =

2ek21
k2!

=
2tk1k2

k2!(k1!n
k1�1
1 )

k2
(11)

The probability that the attacker can �nd another signa-
ture with k1 � k2 balls is

Pf = Pc �
�

1

n2

�
k2�1

(12)

where Pc is the probability to �nd k2 k1-way collisions after
throwing k1 � k2 balls into n1 bins:

Pc =

�
n1

k2

�
(k1 � k2)!

(k1!)
k2n

k1k2
1

(13)

Combining equations 11, 12, and 13 we get

Pf =

�
n1

k2

�
(k1 � k2)!

(k1!)k2n
k1k2
1

k2!(k1!)
k2n

(k1�1)k2
1

2tk1k2

=

�
n1

k2

�
(k1 � k2)!k2!

(n1)k22tk1k2

� (k1 � k2)!
2tk1k2

(14)

When we set k1 � k2 = k in Equation 14 we can see that
the probability to forge a signature Pf is the same as in
Equation 4, which shows that the two-round scheme o�ers
no better security than a one-round scheme.

Theorem 1. A one-round Biba signature is asymptoti-
cally as secure as a n-round Biba signature.

The proof is in the full version of this paper.

B. MERKLE HASH TREES FOR SEAL AU-
THENTICATION

We can use a Merkle hash tree for the SEAL authentica-
tion [12]. The signer chooses the SEALs randomly, places
them at the leaves of a binary tree and computes each inter-
nal node as the hash of the concatenation of the two child
values.4 The root node of the hash tree becomes the public
key, hence the public key is small.

The signer computes the signature as before, but it needs
to add additional veri�cation nodes of the hash tree to the
signature, such that the veri�er can reconstruct all the paths
from all SEALs to the root of the hash tree. Unfortunately,
the overhead of these additional veri�cation nodes can be
high, as we now compute.

We assume that the disclosed SEALs are distributed ran-
domly in the hash tree. To compute the overhead, we need
to compute the probability that all the leaves below a given
tree node are all empty. We set function �(a; r; n) as the
probability that a leaves are empty after randomly choosing
r leaves among n leaves (note that �(a; r; n) = 0 if n�r < a):

�(a; r; n) =

r�1Y
i=0

n� a� i

n� i

The expected number of nodes of the Merkle hash tree
that need to be sent to authenticate b leaf nodes depends on
the depth d of the hash tree. The number of expected nodes
is:

dX
i=1

2
i
�(2

d�i
; b; 2

d
)(1� �(2

d�i
; r; 2

d � 2
d�i

))

The intuition behind this formula is that we need to send a
node of the tree if exactly one child has all empty leaf nodes,
and the other child node has at least one chosen leaf node.
When we evaluate this probability for the schemes we list

as examples 1 and 2, we would need to add 83:3 hash tree
nodes on average to authenticate the 16 SEAL values for the
scheme in the �rst example, and 67:5 nodes to authenticate
the 12 SEALs in the second example. Clearly, this would
increase the signature size by a factor of 6, and increase the

veri�cation overhead.
To generalize this idea, we can construct many small hash

trees of height d that contain 2d SEALs. The public key
would then contain all the root nodes of all small hash trees,
and hence we reduce the size by a factor of 2d. To authen-
ticate each SEAL, the signer adds the d veri�cation nodes

to each SEAL. Hence, the public key size is reduced by a
factor of 2d and the signature size is expanded by a factor
of d.

4A minor point is that the signer needs to compute a one-
way function on the SEAL before placing the SEAL at the
leaf node. Otherwise the signer would disclose neighboring
SEALs when it discloses additional nodes for veri�cation.
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