
An Interleaved Hop-by-Hop Authentication Scheme for Filtering of Injected
False Data in Sensor Networks

Sencun Zhu1 Sanjeev Setia1∗ Sushil Jajodia1,2

1Center for Secure Information Systems
George Mason University

Fairfax, VA 22030
2The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102

{szhu1,setia,jajodia}@gmu.edu

Peng Ning
Computer Science Department
North Carolina State University

Raleigh, NC 27695
pning@ncsu.edu

Abstract

Sensor networks are often deployed in unattended envi-
ronments, thus leaving these networks vulnerable to false
data injection attacks in which an adversary injects false
data into the network with the goal of deceiving the base
station or depleting the resources of the relaying nodes.
Standard authentication mechanisms cannot prevent this at-
tack if the adversary has compromised one or a small num-
ber of sensor nodes. In this paper, we present an interleaved
hop-by-hop authentication scheme that guarantees that the
base station will detect any injected false data packets when
no more than a certain number t nodes are compromised.
Further, our scheme provides an upper bound B for the
number of hops that a false data packet could be forwarded
before it is detected and dropped, given that there are up to
t colluding compromised nodes. We show that in the worst
case B is O(t2). We also propose a variant of this scheme
which guarantees B = 0 and works for a small t. Through
performance analysis, we show that our scheme is efficient
with respect to the security it provides, and it also allows a
tradeoff between security and performance.

1. Introduction

Consider a military application of sensor networks for
reconnaissance of the opposing forces, as shown in Fig. 1.
Suppose we want to monitor the activities of the oppos-
ing forces, e.g., tank movements, ship arrivals or departures,
and other relevant events. To achieve this goal, we can de-
ploy a cluster of sensor nodes around each area of inter-

∗ also with Computer Science Dept, George Mason University

est. We can then deploy a base station in a secure location
to control the sensors and collect data reported by the sen-
sors. To facilitate data collection in such a network, sensor
nodes on a path from an area of interest to the base station
can relay the data to the base station.

The unattended nature of the deployed sensor network
lends itself to several attacks by the adversary, including
physical destruction of sensor nodes, security attacks on the
routing and data link protocols, and resource consumption
attacks launched to deplete the limited energy resources of
the sensor nodes.

Unattended sensor node deployment also makes another
attack easier: an adversary may compromise several sensor
nodes, and then use the compromised nodes to inject false
data into the network. This attack falls in the category of in-
sider attacks. Standard authentication mechanisms are not
sufficient to prevent such insider attacks, since the adver-
sary knows all the keying material possessed by the com-
promised nodes. We note that this attack can be launched
against many sensor network applications, though we have
only given a military scenario.

In this paper, we present a scheme for addressing this
form of attack, which we call a false data injection attack.
Our scheme enables the base station to verify the authentic-
ity of a report that it has received as long as the number of
compromised sensor nodes does not exceed a certain thresh-
old. Further, our scheme attempts to filter out false data
packets injected into the network by compromised nodes
before they reach the base station, thus saving the energy
for relaying them.

In a recent work, Przydatek, Song, and Perrig proposed
SIA [15], a secure information aggregation scheme for sen-
sor networks that addresses a similar problem to ours. SIA
addresses the issue of false data injection using statistical

AUTO SEQUENTIAL SWITCHING UNIT

Base
Station

River

munition plant

Mission

Sensor Reading

cluster

Figure 1. An example sensor network. Suppose we want to monitor three areas of interest, the road,
the river, and the munition plant, by deploying a cluster of sensor nodes (filled circles) in each area.
The base station sends commands or queries to the sensor nodes, and receives reports from them.
All the communications are relayed by some forwarding nodes (blank circles).

techniques and interactive proofs, ensuring that the aggre-
gated result reported by the aggregation node (the base sta-
tion) is a good approximation to the true value, even if a
small number of sensor nodes and the aggregation node may
have been compromised. In contrast, the focus of our work
is on detecting and filtering out false data packets, either at
or en-route to the base station. Our scheme is particularly
useful for large-scale sensor networks where a sensor re-
port needs to be relayed over several hops before it reaches
the base station, and for applications where the information
contained in the sensor reports is not amenable to the statis-
tical techniques used by SIA (e.g., non-numeric data). We
note that our scheme and SIA address complementary prob-
lems, and the techniques of both schemes can be combined
to make the network more robust to false data injection at-
tacks.

To defend against false data injection attacks, we present
an authentication scheme in which at least t + 1 sensor
nodes have to agree upon a report before it is sent to the
base station. Further, all the nodes that are involved in re-
laying the report to the base station authenticate the report
in an interleaved, hop-by-hop fashion. Here t is a security
threshold based on the security requirements of the applica-
tion under consideration and the network node density. Our
scheme guarantees that if no more than t nodes are com-
promised, the base station will detect any false data pack-

ets injected by the compromised sensors. In addition, for
a given t, our scheme provides an upper bound B for the
number of hops that a false data packet can be forwarded
before it is detected and dropped. If every noncompromised
node on the path between a cluster head and the base sta-
tion knows the ids of the nodes that are t + 1 hops away
from it on the path, then B = t; otherwise, without this
knowledge, B = (t − 1)(t − 2). We also propose a vari-
ant of this scheme which guarantees B = 0 but works for
a small t. Through performance analysis, we show that our
scheme is efficient with respect to the security it provides.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our scheme in detail. In Section 3 and Sec-
tion 4 we study the security and the performance of our
scheme. Section 5 shows a variant of this scheme. We intro-
duce the related work in Section 6, and conclude our work
in Section 7.

2. An Interleaved Hop-by-hop Authentication
Scheme

2.1. Assumptions

We describe the assumptions regarding sensor networks
before we present our scheme in detail.

Network and Node Assumptions Sensor nodes can be de-
ployed via aerial scattering or by physical installation. We
assume that in an area of interest, sensor nodes are or-
ganized into clusters. Each cluster includes at least t + 1
nodes, where t is a design parameter. In a cluster, one node
is elected to be the cluster head, and each cluster has a
unique cluster id. The issues of electing a node as the clus-
ter head and how to generate a unique cluster id are out of
the scope of this paper. A cluster head collects sensor read-
ings or votes from t+1 cluster nodes (including itself), and
then reports the result to the base station. Note that the role
of cluster head may rotate among the cluster nodes, accord-
ing to an appropriate criteria such as remaining energy.

We assume network links are bidirectional; that is, if
node u can hear node v, node v can also hear node u. Sensor
nodes are similar to the current generation of sensor nodes
(e.g. the Berkeley MICA motes [9]) in their computational
and communication capabilities and power resources. We
assume that every node has space to store several hundred
bytes of keying materials.

Security Assumptions We assume that every node shares a
master secret key with the base station. We also assume that
each node knows (at least a subset of) its one-hop neigh-
bors, and has established a pairwise key with each of them.
We argue that this is a reasonable assumption. For exam-
ple, we can use the pairwise key establishment scheme in
LEAP [19] to achieve this goal. Under this assumption, the
impact of a node compromise is localized in the immediate
neighborhood of the compromised node. We further assume
that a node can establish a pairwise key with another node
that is multiple hops away, if needed. For example, if the
network size is small (for example, fewer than 200 nodes),
we can employ either the Blom scheme [2] or the Blundo
scheme [3] directly. For a larger network, we may use the
extensions [5, 14] to these schemes to tolerate a possibly
larger number of node compromises. In all these schemes,
two nodes only need to know each other’s id to establish a
pairwise key, and the computational overhead is shown to be
affordable for current generation sensor nodes [5, 14]. For
simplicity, we refer to these schemes as id-based schemes.
Since we mention the Blundo scheme frequently as an ex-
ample of an id-based scheme during the description of our
scheme, we provide a brief introduction to this scheme in
Appendix A.

We further assume that the base station has a mech-
anism to authenticate broadcast messages (e.g., based on
µTESLA [16]), and every node can verify the broadcast
messages. Because the role of cluster head may rotate
among cluster nodes, we assume that all nodes are equally
trusted. We assume that if a node is compromised, all the in-
formation it holds will also be compromised. However, we
assume that the base station will not be compromised.

2.2. Threat Model and Design Goal

Since wireless communication is broadcast-based, we
assume that an adversary can eavesdrop on all traffic, inject
packets, and replay older packets. We assume that an adver-
sary can take full control of compromised nodes. Thus, an
adversary may command compromised nodes to drop or al-
ter messages going through them, aiming at preventing the
base station from receiving authentic sensor readings.

In this paper, we focus on false data injection attacks,
in which an attacker’s goal is to cause false alarms or to de-
plete the already-constrained resources of forwarding nodes
by injecting false data. We assume that the compromised
nodes can collude in their attacks. Our goal is to design
an authentication scheme that can defend against false data
injection attacks launched by up to t compromised nodes,
where t is a system parameter. This scheme should have the
following properties when there are no more than t compro-
mised nodes. First, the base station should be able to detect
any false data packet injected by a compromised node. Sec-
ond, the number of hops before an injected data packet is de-
tected and discarded should be as small as possible. Third,
the scheme should be efficient in computation and commu-
nication with respect to the security it provides. Finally, the
scheme should be robust to node failures.

2.3. Notation and Definition

Notation The following notations appear in the rest of this
discussion.

• u, v (in lower case) are principals such as communi-
cating nodes.

• Ku is the key of node u shared with the base station.

• Kuv is the pairwise key shared between nodes u and
v.

• G is a family of pseudo-random functions [7].

• Ka
u is node u’s authentication key, derived as Ka

u =
GKu

(0).

• MAC(k, s) is the message authentication code
(MAC) of message s generated with a symmet-
ric key k.

We denote the base station as BS and the head of a clus-
ter of sensor nodes as CH . Let n be the number of hops
between BS and CH , and ui (1 ≤ i ≤ n) be an interme-
diate node on the path from CH to BS, where i increases
fromCH toBS. Let vi (1 ≤ i ≤ t) denote one of the t clus-
ter nodes other than CH in a cluster.

Definition 1 For two nodes ui and uj on the path from CH
to BS, if |i − j| = t + 1, we say ui and uj are associated,
and ui is an associated node of uj . More specifically, if i−

j = t + 1, ui is the upper associated node of node uj , and
uj is the lower associated node of node ui.

From this definition, we know that a node that is less than
t+1 hops away from BS does not have an upper associated
node. Also note that an intermediate node may have mul-
tiple lower associated nodes if it has multiple child nodes
leading to multiple clusters. We further extend this defini-
tion by including the following two special cases.

• A node ui (1 ≤ i ≤ t) that is less than t+1 hops away
from CH has one of the cluster nodes vi (1 ≤ i ≤ t)
as a lower associated node.

• The cluster head CH is associated with ut+1.

Fig. 2 shows a node cluster and a path from the cluster
head to the base station, where t = 3. Node u3 has an upper
associated node u7 and a lower association node v3. Node
u5 has a lower associated node u1 but no upper associated
node.

2.4. Scheme Overview

Our scheme involves the following five phases:

1. In the node initialization and deployment phase, the
key server loads every node with a unique id, as well
as necessary keying materials that allow the node to es-
tablish pairwise keys with other nodes. After deploy-
ment, a node first establishes a one-hop pairwise key
with each of its neighbors.

2. In the association discovery phase, a node discovers
the ids of its associated nodes. This process may be ini-
tiated by the base station periodically, or by a node that
detects the failure of a neighbor node.

3. In the report endorsement phase, t + 1 nodes gener-
ate a report collaboratively when they detect the oc-
currence of an event of interest. More specifically, ev-
ery participating node computes two MACs over the
event, one using its key shared with the BS, and the
other using its pairwise key shared with its upper asso-
ciated node. Then it sends the MACs to its cluster head.
The cluster head collects MACs from all the participat-
ing nodes, wraps them into a report, and then forwards
the report towards BS.

4. In the en-route filtering phase, every forwarding node
verifies the MAC computed by its lower association
node, and then removes that MAC from the received
report. If the verification succeeds, it then computes
and attaches a new MAC based on its pairwise key
shared with its upper associated node. Finally, it for-
wards the report to the next node towards the BS.

5. In the base station verification phase, the BS verifies
the report after receiving it. If the BS detects that t+ 1

nodes have endorsed the report correctly, it accepts the
report; otherwise, it simply discards the report.

2.5. The Basic Scheme

In this section, we illustrate the basic idea in our scheme.
We will discuss it in more detail in Sections 2.6 and 2.7.

2.5.1. Node Initialization and Deployment The key
server loads every node with a unique integer id, rang-
ing from 0 to the maximal number of nodes in the net-
work. Therefore, for example, a node id is of size two bytes
if the number of nodes in the network is between 256 and
65536. The key server also loads every node u with nec-
essary keying materials. Specifically, it pre-loads node
u with an individual key Ku shared with the base sta-
tion. From Ku, node u derives its authentication key
Ka

u . If the one-hop pairwise key establishment scheme
in LEAP [19] is employed, node u is loaded with an ini-
tial network key. If the Blundo scheme [3] is used for
establishing multi-hop pairwise keys, the key server ran-
domly generates a symmetric bivariate polynomial of de-
gree k, and loads node u with the k + 1 coefficients of
polynomial f(u, y). After node u is deployed, it discov-
ers all its one-hop neighbors and then establishes a pairwise
key with each of its neighbors.

2.5.2. Association Discovery The association discovery
phase is necessary for a node to discover the ids of its as-
sociation nodes. We first describe a two-way association
discovery scheme for the initial path setup, which consists
of two steps – base station hello and cluster acknowledg-
ment. We then describe an incremental association discov-
ery scheme in Section 2.6, which is executed if the upper
and/or lower associated nodes of a node change because of
changes in the path from a cluster to the base station. We
also discuss some variants of the scheme in Section 2.7.

Base Station Hello This step enables a node to discover its
upper association node. The base station initiates this pro-
cess by broadcasting a HELLO message, which is recur-
sively forwarded to all nodes so that every node discov-
ers the ids of the t + 1 closest nodes that are on its path
to the base station. On receiving a HELLO message from
the base station, a node attaches its own id to the HELLO
message before re-broadcasting it. Our scheme restricts the
maximum number of node ids that are included in a mes-
sage to t + 1. To achieve this, each node replaces the id of
the node that is t+ 1 hops closer to the base station with its
own id. Thus, the communication overhead introduced by a
HELLO message is bounded by t+ 1 ids, despite the num-
ber of hops the HELLO message travels. On receiving the
HELLO message, a cluster head assigns each of the t + 1
ids in the message to one of its cluster nodes (including it-

BS

v3

v1

CH
u1u2u3u4u5u6u7u8

v2

Figure 2. An example showing the definition of association where t = 3. BS is the base station and
CH is a cluster head. Two nodes connected with an arc are associated, the one closer to the base
station is the upper associated node and the other is the lower associated node.

self). In addition, if a cluster head is also an en-route node
for another cluster, it will rebroadcast the HELLO message.

Fig. 3 shows an example where t = 3. BS is the base
station and CH is the cluster head of a cluster Ci that con-
sists of nodes v1, v2, v3, and CH . BS broadcasts a HELLO
message M , which includes its id BS and a sequence num-
ber Sn. Here Sn is used to prevent replay attacks as well
as message loops. M is authenticated by an authentication
scheme such as µTELSA.

After receiving M , node u6 records the id(s) in M , at-
taches its own id to M , and then rebroadcasts M . Nodes
u5 and u4 do the same. When M arrives at node u3, M al-
ready contains t+ 1 = 4 node ids. Node u3 records Sn and
the ids in M , removes the first id (here BS) in the id list,
adds its own id to the end of the id list, and then rebroadcasts
M . Nodes u2 and u1 also do the same. When node CH , the
cluster head, receives M , it assigns the ids of the preceding
nodes to its cluster nodes. For example, it assigns u3 to v3,
u2 to v2 and u1 to v1, respectively. Thus, u1, u2, and u3 are
associated with v1, v2, and v3, respectively, and CH is as-
sociated with u4. At the end of this step, every node that is
more than t + 1 hops away from BS has an upper associa-
tion node.

Cluster Acknowledgment After the base station hello step,
the cluster head sends back an acknowledgment ACK back
to the base station. The ACK includes the cluster id, and
the ids of the t + 1 lower association nodes. When a node
receives the ACK, it will check if all the node ids in the
ACK are distinct. If not, it will drop the ACK (we will
explain the reason in security analysis in Section 3). Dur-
ing the forwarding of the ACK, the node ids are replaced
in the opposite direction in the base station hello step (i.e.,
a node removes the last id in the id list and adds its own id
in the beginning), thus allowing a receiving node to learn
the id of its lower association node. In the case that a node
has multiple child nodes leading to multiple clusters, it has
multiple lower associations. Therefore, it maintains a table
that includes multiple path information, where each path is
uniquely identified by the corresponding cluster id. More-
over, because the cluster acknowledgment message is crit-

ical for a node to maintain correct association knowledge,
we can employ a hop-by-hop acknowledgment mechanism
to avoid packet losses due to unreliable link layer transmis-
sions.

Consider Fig. 3. The cluster header CH first computes
a MAC over Sn and the cluster id Ci, using its authenti-
cation key Ka

CH . CH then generates an acknowledgment,
which includes its id CH , the above MAC, and an ordered
list of ids of the t + 1 cluster nodes that have discovered
their upper associated nodes in the base station hello phase.
CH sends the acknowledgment to u1, the node that previ-
ously forwarded the HELLO message to CH . The id list in
the acknowledgment message is {CH, v3, v2, v1}. As a re-
sult, u1 discovers that its lower association is v1, the last one
in the list. Node u1 then removes v1 from the list and inserts
its own id at the beginning of the list. The id list it sends to
u2 is then {u1, CH, v3, v2}. In this way, every node on the
path discovers its lower association node, while the size of
the acknowledgment message remains bounded.

During this phase, every node stores the id list it re-
ceives. Moreover, the acknowledgment is authenticated in
a hop-by-hop fashion; that is, every node authenticates the
acknowledgment to its up-stream node using their pairwise
key as the MAC key. When the base station receives the ac-
knowledgment, it verifies the acknowledgment and records
the id of the cluster. We will discuss the security of this pro-
cedure in more detail in Section 3.

2.5.3. Report Endorsement Sensor nodes generate a re-
port when triggered by a special event, e.g., an increase in
the temperature being monitored by the nodes, or in re-
sponse to a query from the base station. Our scheme re-
quires that at least t + 1 nodes agree on the report for it
to be considered a valid report. For example, at least t + 1
neighboring nodes should agree that the local temperature is
higher than 150F for a valid report to be sent to the base sta-
tion. Thus, if t > 0, an adversary cannot cause a false fire
alarm by compromising just one sensor node.

When a node v agrees on an event E (E typically con-
tains an event type and a timestamp), it computes a MAC
for E, using its authentication key Ka

v as the MAC key. In

v3

v2(u3)

(u1)

v1

CHBS (u2)
u1u2u3u4u5u6

(BS,u6,u5)(BS,u6)(BS) (u4,u3,u2,u1)(u5,u4,u3,u2)(u6,u5,u4,u3)(BS,u6,u5,u4)

(CH,v3,v2,v1)(u1,CH,v3,v2)(u2,u1,CH,v3)(u3,u2,u1,CH)(u4,u3,u2,u1)(u6,u5,u4,u3) (u5,u4,u3,u2)

Figure 3. An example illustrating the base station hello step where t = 3. BS is the base station, ui

is an en-route node. CH is the cluster head and v1, v2, v3 are cluster nodes. (M) is the content of the
beaconing message. Note that ui may be an en-route node for multiple paths and CH may also be
an en-route node for another cluster, although we only show one path in this figure.

addition, node v computes another MAC for E, using the
pairwise key shared with its upper association node u as the
MAC key. Note that both u and v can compute their pair-
wise key Kuv based on an id-based pairwise key establish-
ment scheme. We refer to these two types of MACs as indi-
vidual MAC and pairwise MAC, respectively. Node v then
sends an endorsement message to the cluster head that in-
cludes these two MACs. The cluster head collects endorse-
ments from t + 1 cluster nodes (including itself). It then
compresses the t+ 1 individual MACs by XORing them to
reduce the size of a report. However, the pairwise MACs are
not compressed for transmission, because otherwise a node
relaying the message will not be able to extract the pair-
wise MAC of interest to it. The cluster head finally gener-
ates a report, which contains the event E, a list of ids of the
endorsing nodes, the compressed MAC and t + 1 pairwise
MACs. We will discuss the use of a short pairwise MAC to
reduce the message overhead in Section 4.

Consider the cluster node v1 in Fig. 4. v1 computes two
MACs over the event E; one MAC key is its authentica-
tion key Ka

v1
and the other is the pairwise key Kv1u1

shared
with its upper associated node u1. v1 sends its endorsement
that contains these two MACs to the current cluster head
CH . The endorsement is authenticated with the pairwise
key shared between v1 and CH .

CH collects endorsements from the other two nodes v2

and v3 as well. It then verifies the authenticity of each en-
dorsement based on its pairwise key shared with the corre-
sponding cluster node. If all the endorsements are authenti-
cated, CH computes a compressed MAC over E, denoted
as XMAC(E).

XMAC(E) = MAC(Ka
v1
, E)⊕MAC(Ka

v2
, E)⊕

MAC(Ka
v3
, E)⊕MAC(Ka

CH , E).

The report R that node CH finally generates and forwards

towards BS is as follows.

R : E,Ci, {v1, v2, v3, CH}, XMAC(E),

{MAC(KCHu4
, E),MAC(Kv3u3

, E),

MAC(Kv2u2
, E),MAC(Kv1u1

, E)}.

The report includes the ids of the endorsing nodes
v1, v2, v3, CH , which allows the base station to verify the
compressed MAC later. These ids may be removed in fu-
ture reports to save bandwidth overhead unless the nodes in
the endorsing set have changed, since the base station can
identify the endorsing nodes from the cluster id Ci. The or-
der of the pairwise MACs in R corresponds to that in the
cluster acknowledgment message so that a node receiv-
ing R knows which pairwise MAC is from its lower asso-
ciation node. Moreover, R is authenticated with the pair-
wise key shared between CH and the next node on the
path.

2.5.4. En-route Filtering When a node u receivesR from
its downstream node, it first verifies the authenticity of R
based on its pairwise key shared with that node. Then it
checks the number of different pairwise MACs inR. If node
u is s(s < t+ 1) hops away from BS, it should see s pair-
wise MACs; otherwise, it should see t+ 1 pairwise MACs.
It then verifies the last MAC in the pairwise MAC list, based
on the pairwise key shared with its lower association node.
In the case that it has not computed the pairwise key earlier,
it computes the pairwise key and then stores it. Note that
node u will drop the report if any of the above checks fails.
If node u is more than t + 1 hops away from BS, it pro-
ceeds to computes a new pairwise MAC over event E us-
ing the pairwise key shared with its own upper association
node. It then removes the last MAC from the MAC list and
inserts the new MAC into the beginning of the MAC list. Fi-
nally it forwards the report to its upstream node.

Consider node u1 in Fig. 4. When node u1 receives the
report R from node CH , it checks if there are 4 pairwise
MACs. If true, it computes its pairwise key shared with

BS

v3

v1

CH
u1u2u3u4u5u6u7u8

v2

RRRRRRRR R

Figure 4. An example of report endorsement and en-route filtering where t = 3.

node v1, Ku1v1
, if it has not computed Ku1v1

before. Node
u1 then verifies the last MAC in R, MAC(Kv1u1

, E). If
the verification succeeds, node u1 computes a new MAC
over E, using the pairwise key it shares with node u5. The
output is MAC(Ku1u5

, E). Finally, node u1 inserts the
MAC(Ku1u5

, E) into the beginning of the MAC list, and
removes the last MAC on the list, MAC(Kv1u1

, E). The
report R that node u1 forwards to node u2 is as follows (R
is also authenticated with Ku1u2

).

R : E,Ci, {v1, v2, v3, CH}, XMAC(E),

{MAC(Ku1u5
, E),MAC(KCHu4

, E)},

MAC(Kv3u3
, E),MAC(Kv2u2

, E).

All the other forwarding nodes perform the same steps.
However, the nodes within t + 1 hops of BS do not insert
a new pairwise MAC. It is very easy to see that every node
on the path from the cluster head to the base station can ver-
ify one pairwise MAC in the report independently in addi-
tion to the MAC computed by its direct downstream node.
Thus the report is authenticated in an interleaved hop-by-
hop fashion.

2.5.5. Base Station Verification The base station BS
only needs to verify the compressed MAC. Basically,
it computes t + 1 MACs over E using the authentica-
tion keys of the nodes in the id list, then XORs the MACs
to see if it matches the one in the report. The BS can eas-
ily compute the authentication key of a node based on its
id. If the report is authenticated and BS knows the lo-
cation of every cluster node, it can locate these report-
ing nodes and then react to the event. On the other
hand, if the verification fails, BS will discard the re-
port.

2.6. Association Maintenance

The correctness of our scheme relies on correct associ-
ation knowledge. A node needs to know the id of its lower
association node; otherwise, it will not know which pair-
wise key to use to verify a pairwise MAC. In addition, it
needs to know the id of its upper association node so that it
can add a valid pairwise MAC into a report; otherwise, its

upper association node will drop the report. If the path be-
tween the base station and a cluster head is static, then only
an initial association discovery process is necessary. How-
ever, if the path between the base station and a cluster head
changes due to the failure of an intermediate node or other
reasons, our scheme has to adapt to the change accordingly
to maintain correct associations. We discuss below associa-
tion maintenance in two scenarios, namely base station ini-
tiated repair and local repair.

2.6.1. Base Station Initiated Repair In this sce-
nario, once a path is formed, the reports from a cluster
head to the base station always follow the same path, un-
less the path is changed due to the base station. For exam-
ple, in the TinyOS beaconing protocol [9], the base sta-
tion broadcasts a beaconing message periodically forming a
breadth-first tree rooted at the base station. Specifically, ev-
ery node records its parent node as the node from which
it first receives the beaconing message during the cur-
rent epoch, and then rebroadcasts the beaconing message.
Thus, the path between a cluster head and the base sta-
tion is changed when an intermediate node chooses differ-
ent parent nodes in two consecutive time epochs.

To adapt to path changes, our scheme can execute the
base station hello step for each epoch by piggybacking node
ids in every beaconing message. The cluster acknowledg-
ment process can also be omitted by letting a lower associ-
ation node enclose its id with its pairwise MAC when it for-
wards a report. This strategy works well for networks where
the topology changes frequently at the additional bandwidth
expense of t + 1 ids per beaconing message. For less dy-
namic networks, this overhead should be reduced. Espe-
cially, if a path does not change during different epochs,
it is not necessary for a node to attach its id to the beacon-
ing message.

We adopt a reactive approach for association mainte-
nance in relatively static networks. Recall that in the base
station hello step, every node records s ids that are the ids
of the nodes that are on its path to the base station. Here
s = t+ 1 if a node is more than t hops away from the base
station; otherwise s is the actual number of hops from the
base station. A node can infer that its own s upstream nodes
are unchanged if it receives a beaconing message from the

same parent node and the beaconing message is in its orig-
inal format (i.e., no node ids are added), and if a node for-
wards the original beaconing message only if its own s− 1
upstream nodes are unchanged. We can see that if a path
is unchanged during different epochs, our scheme will not
incur any additional bandwidth overhead. However, when
a node selects a parent node that is different from the one
in the previous epoch, it sends a request to the new parent
node to get the ids of s − 1 upstream nodes, and then at-
taches these s− 1 node ids and its own id to the beaconing
message it is forwarding.

2.6.2. Local Repair In the base station initiated repair
scheme, if the underlying routing protocol has a large bea-
coning period, the failure of an intermediate node on a path
may cause many reports to be dropped. Therefore, it is nec-
essary for the nodes detecting the failure of a neighbor to
locally repair a path that avoids the failed node. This will
result in inconsistent node association relationship in our
scheme. Thus, we need a scheme to locally repair the asso-
ciation relationship adaptively.

Our approach for local repair is based on the right-hand
rule in the greedy parameter stateless routing (GPSR) pro-
tocol [10]. Here we assume every node knows the locations
or relative locations of its neighbors (e.g., because of GPS).
Fig. 5 illustrates the approach. When node u4 detects its
parent node u5 has failed (the issue of node failure detec-
tion is out of our scope), it sends a REPAIR message to w1,
which is the first node counterclockwise about u4 from edge
(u4, u5). The REPAIR message includes the ids of t + 1
upstream nodes of u4 except u5; that is, it includes the id
list {u6, u7, u8}. w1 and w2 forward the REPAIR message
based on the same rule. When w3 receives the message, it
finds that its next node is u6 based on this rule and u6 is in
the list {u6, u7, u8}, which means that the failed node has
been bypassed. w3 then requests an id list from u6, which
includes the ids of t upstream nodes of node u6 and u6.
Node w3 then forwards the list to its downstream nodes in
the same way as in the base station hello step. Thus, every
node whose associations have been changed reestablishes
its association relationship proactively.

Note that although a local repair process is necessary
to maintain path connectivity, it is also very important to
limit the frequency with which the process is invoked. Oth-
erwise, a compromised node may invoke this process very
frequently to consume the energy of the involved nodes. To
thwart this attack, for instance, we can limit the number of
invocations to be at most one within one beaconing epoch.

2.7. Interaction with Routing Protocols

The advantage of the two-way association discovery pro-
tocol described above is its independence from the underly-
ing protocols, making it applicable for various sensor net-

work applications. On the other hand, we note that the as-
sociation discovery process usually overlaps with the route
discovery process in a routing protocol. Therefore, in prac-
tice we can combine the association discovery protocol with
the underlying routing protocol if it is beneficial. As de-
scribed earlier, we can integrate the base station hello pro-
cess with the TinyOS beaconing protocol [9] by piggyback-
ing the ids of the upper association nodes in a beacon-
ing message. As another example, if we want to adapt our
scheme to the GPSR [10] protocol, in addition to piggy-
backing node ids, the base station should unicast (instead of
broadcast) its HELLO messages to the next node towards
the cluster head, based on the location of the cluster head.

3. Security Analysis

We discuss the security of our scheme with respect to our
two design goals, i.e., the ability of the base station to de-
tect a false report and the ability of the en-route nodes to fil-
ter false reports.

3.1. Base Station Detection

Our authentication scheme requires that each of t + 1
cluster nodes compute an individual MAC based on its au-
thentication key that is only shared with the base station.
Thus, it guarantees that an adversary has to compromise at
least t + 1 nodes to be able to forge a report to deceive the
base station. Note that our scheme compresses t + 1 indi-
vidual MACs into one MAC based on the bitwise XOR op-
eration (instead of attaching t + 1 individual MACs) to re-
duce message overhead. This compression scheme is secure
because it is a special case of the XOR-MAC scheme [1]
which is proven to be secure.

3.2. En-route Filtering

In this section, we discuss the en-route filtering capabil-
ity of our scheme for two attack models, namely, outsider
attacks launched by an adversary that has not compromised
any nodes, and insider attacks launched by an adversary that
has compromised up to t nodes.

3.2.1. Outsider Attacks In our scheme, every message is
authenticated in a hop-by-hop fashion during its transmis-
sion. Thus, an unauthorized node cannot inject false data
without it being detected. Moreover, because an event also
contains a timestamp, an attack in which an outsider replays
an old report will be detected.

3.2.2. Insider Attacks We consider several insider at-
tacks by up to t compromised nodes. We first discuss
the security of our scheme under the assumption that ev-
ery node knows the authentic ids of its upper association

1

2
w1w3 w2

u3u4u5u6u7u9 u8u10

3

BS
u2 u1 CH

v1

v2

v3

Figure 5. An example showing the local repair process when node u5 fails and node u4 establishes a
new path towards BS. The new path includes nodes w1, w2 and w3.

and its lower association. This corresponds to the situa-
tions in which every node is loaded with correct associa-
tion knowledge before it is deployed, or every node learns
the ids of its association nodes through the association dis-
covery process before any nodes are compromised. A com-
promised node can provide an authenticated pairwise MAC
over any data to deceive its upper association node. Thus,
if totally t nodes are compromised, they can provide t au-
thenticated pairwise MACs over a false report, which will
bypass the verifications of t noncompromised upper asso-
ciation nodes. However, in our scheme every report must
provide t + 1 pairwise MACs; therefore, one noncom-
promised node will filter out the false report because the
pairwise MAC from its lower association node will be in-
valid. Thus, our scheme guarantees that a false report will
be dropped after it is forwarded by at most t noncompro-
mised nodes.

The above analysis indicates that the security of our
scheme relies on the assumption of authenticated associa-
tion knowledge. Thus, we need to analyze the security of
the association discovery process that provides association
knowledge to nodes. More specifically, the security of the
cluster acknowledgment process is critical because it pro-
vides the lower association knowledge that is used as the ba-
sis for en-route filtering to the nodes. The cluster acknowl-
edgment process is subject to attack if it is executed at any
time after t nodes have been compromised.

Before we show two types of attacks on the cluster ac-
knowledgment process, we first clarify the attack model.
Recall that in the cluster acknowledgment phase, when a
node u receives an acknowledgment message ACK from
its downstream neighbor (authenticated with their pairwise
key), it verifies theACK and then checks if all the ids in the
id list in the ACK are distinct. If the check is successful, it
will set the id of its lower association node to the last id in
the list. Then it removes the last id and adds its own id to the
beginning of the list. The goal of an attack on this process is
to lower associate more than t noncompromised nodes to t
compromised nodes, under the constraint that t+ 1 distinct

ids must appear in the list when the ACK is forwarded.
This attack is possible mainly because in a multi-hop pair-
wise key establishment process, two nodes do not know the
actual number of hops between them. In other words, when
a node u establishes a pairwise key with another node v, it
trusts v only because v can compute the same secret key –
it does not know where v is.

Cluster Insider Attacks In this attack, all the t compromised
nodes are from the cluster (possibly including the cluster
head); that is, no nodes on the path to the base station are
compromised. Because the ACK from the cluster head to-
wards the base station must contain t+ 1 distinct node ids,
it must include the id of a noncompromised or nonexistant
node. Therefore, one of the t + 1 relaying nodes closest
to the cluster head (e.g., node u1, u2, u3 and u4 in Fig. 4)
will be lower associated to a noncompromised or nonexis-
tant node. This node will drop a false report. Thus, we reach
the same conclusion that a false report will be dropped af-
ter it is forwarded by at most t noncompromised nodes.

En-route Insider Attacks In this attack, t compromised
nodes that lie on the path to the base station collude to at-
tack the cluster acknowledgment process. The worst case
scenario occurs when the cluster head CH and t − 1 for-
warding nodes are compromised, and these t compro-
mised nodes are equally separated by t noncompromised
nodes. In other words, t compromised nodes isolate t2 non-
compromised nodes into t blocks of t nodes each. Let the
ids of the nodes from CH to BS be

CH, {u1,1, u1,2, ..., u1,t}, X1, {u2,1, u2,2, ..., u2,t},

X2, ..., Xt−1, {ut,1, ut,2, ..., ut,t}, ..., BS.

Here the ids of the compromised nodes are
CH,X1, X2, ..., Xt−1, and two consecutive compro-
mised nodes are segregated by t noncompromised nodes
ui,j(1 ≤ i, j ≤ t). The cluster head CH first forges
a list of t + 1 ids, among which the first one is a ran-
domly picked legitimate id y and the other t ids are
the ids of the t compromised nodes. For example, the

id list could be {y, CH,X1, X2, ..., Xt−1}. Accord-
ing to the cluster acknowledgment process, every noncom-
promised node between u1,1 and u1,t sets its lower as-
sociation node as the last id in the list, removes the last
id and then inserts its own id to the beginning of the list.
Thus, each of nodes u1,1, u1,2, ..., u1,t is lower associ-
ated to a compromised node. The id list node u1,t out-
puts is {u1,t, ..., u1,2, u1,1, y}; therefore, the next en-route
node will be lower associated to y. If the next node has
not been compromised yet, it will drop any false data im-
mediately because it will not see a valid pairwise MAC
provided by y. To resume the forwarding of the false re-
port, the adversary has to compromise the next node,
here X1. X1 does not forward this id list to its up-
stream neighbor u2,1; instead, it forges the same or a
similar id list as the one generated by CH . Thus, simi-
larly each of u2,1, u2,2, ..., u2,t is lower associated with one
compromised node. Repeatedly, we can easily see that to-
tally t2 nodes (t in each block) are associated with the same
set of t compromised nodes. Thus, in this case, a false re-
port will be dropped after it is forwarded by at most t2

noncompromised nodes. We note, however, that this up-
per bound corresponds to the worst case; an adversary
has to compromise t nodes selectively to achieve this up-
per bound.

Enhancements to the Basic Scheme The above conclusion
that in the worst case t compromised nodes can collude to
deceive t2 noncompromised nodes is drawn based on the as-
sumption that every node only checks if an id list includes
t+1 distinct ids. We can further reduce this upper bound by
adding more constraints that are easy to implement in prac-
tice.

First, we can exploit the fact that in our scheme each
node knows its authenticated neighbor set. When an en-
route node receives an id list in an acknowledgment mes-
sage from a downstream node, it additionally checks if the
downstream node is the first one in the list because in our
scheme a node adds its own id to the beginning of an id list.

Consider the first block in the above worst case. Under
this constraint the cluster head CH has to place CH at the
beginning of the list and y as the second id in the list when
it sends a false list to u1,1. As a result, the adversary has to
compromise the node that is t hops away from CH to re-
generate a false list because y becomes the last one in the
id list after the list is forwarded for t − 1 hops. In other
words, there are at most t − 1 noncompromised nodes be-
tween them (i.e., no u1,t). Thus, the upper bound t2 is re-
duced to t(t− 1).

Furthermore, instead of simply adding its own id to the
list, a node can add an id pair that includes its id and the
id of its lower association. Consider the first block again. If
the list which CH sends to u1,1 includes X1, then one of
u1,1, u1,2, ..., u1,t−1, say u1,i(1 ≤ i ≤ t− 1), will have X1

as its lower association node. Since a node also adds the id
of its lower association node to the list, node u1,t−1 will see
the pair {u1,i, X1} in the list. Because X1 is its neighbor,
u1,t−1 knows that X1 cannot be a lower association node
of one of its downstream nodes. Therefore, to avoid being
detected by u1,t−1, the adversary will not include X1 in the
list in this block. Similarly, the adversary will not include
the id of one of the compromised nodes in the list in other
blocks. Thus, we achieve the upper bound t(t− 2).

Second, our scheme can add a node feedback mecha-
nism to facilitate compromise detection. For example, after
a node receives a certain number of false data packets, it will
send an ALERT report to the base station. An ALERT report
contains information such as the id of the node from which
a node received false data. The base station can then take
necessary actions such as traceback to identify the compro-
mised node. Traceback is possible in our scheme because
every packet is authenticated during its transmission and a
compromised node is localized (see Section 3.3 for details).
A compromised node may drop any ALERT report going
through it, but it cannot force the nodes between itself and
the base station to do the same. Thus, to avoid being de-
tected for false data injection, the compromised node that is
closest to the base station will need to drop the false data in-
jected by a colluding compromised node.

Consider the above worst case scenario again. Node
Xt−1 will need to drop any false data injected by its coali-
tion. Thus, the adversary can mount false data injection at-
tacks to consume the energy of the relaying nodes between
CH and Xt−1 without being known by the base station. To
this end, if the adversary wants to achieve this goal, it can at
most deceive (t − 1)(t − 2) noncompromised nodes to re-
lay false data. For example, if t = 4, we have the upper
bound 6; if t = 5, the upper bound is 12.

Third, if all sensor nodes possess GPS devices, our
scheme can further reduce the upper bound greatly, at the
expense of larger performance overhead. The idea is to em-
bed the location of a node into its id such that a compro-
mised node cannot lie about its location. The scheme makes
the security assumption that a sensor node will not be com-
promised before it obtains its coordinate through GPS after
its deployment. Given this assumption, we can adapt, for in-
stance, the Blundo scheme [3] in the following way. First,
the key server pre-loads every node u with a bivariate poly-
nomial f(x, y) of degree-k for both x and y (not f(u, y), as
in the original scheme). After its deployment, node u gener-
ates a new id u′, which combines its id u and its coordinate
(e.g., by simply concatenating them or hashing the concate-
nation into a shorter id). Then node u evaluates f(u′, y) it-
self, and then erases f(x, y). Thus, when it is compromised
later, it will not reveal any information about the polynomi-
als which other nodes possess. When two nodes want to es-
tablish a pairwise key, they have to provide to each other the

authentic information of their locations. Based on the coor-
dinates and as well as the default transmission range, they
will know the minimum number of hops between them. Fur-
thermore, if the base station broadcasts its own coordinate,
every node will know roughly the direction of the path it is
located on. As a result, the adversary cannot use the a com-
promised node that is located between a node u and the base
station or is more than t hops away from node u as a lower
association of node u. To this end, a compromised node nor-
mally can only deceive one noncompromised node; there-
fore, the upper bound is t or slightly larger than t.

Note that although this variation is very effective at pre-
venting false data injection attacks, we do not consider t as
the upper bound for our scheme mainly due to performance
considerations. First, a node u needs to store k2 + 1 coeffi-
cients for f(x, y). Second, it needs to compute k2+k modu-
lar multiplications. Third, the exchange of coordinates may
consume a nontrivial portion of the bandwidth. Therefore,
to trade off security for performance, we only consider this
in the least resource constrained case.

3.3. Other Security Issues

A compromised yet undetected node can always drop or
alter every packet going through it. There is no way to pre-
vent it from doing so. The only solution is to detect the
compromised node and then bypass it. Compromise detec-
tion in a sensor network is a very difficult issue, because a
sensor network is usually deployed in an unattended envi-
ronment. Due to the difficulty of compromise detection, the
security bottom line of a security protocol for sensor net-
works is that the impact of a node compromise must be lo-
calized so as to provide the basis for later compromise de-
tection. If a compromised node can only mount such attacks
on its own behalf and the attacks can only occur around its
initial deployment location, the node will take a great risk
of being detected. Our scheme does meet the above secu-
rity bottom line. Recall that our scheme starts with a node
initialization and deployment process. After this phase, ev-
ery node knows the authentic set of its direct neighbors and
establishes a pairwise key with each of them, and it will
only accept packets authenticated by one of the nodes from
its neighbor set. This implies that a compromised node can
only mount an attack locally and on its own behalf. Note
that, on the other hand, since the primary design goal of our
scheme is to prevent false data injection attacks, the above
attacks actually do not conflict with our design goal because
these attacks also lead to early packet dropping.

4. Performance Evaluation

In this section, we analyze the computational and com-
munication overheads of our basic scheme.

4.1. Computational Cost

The computational overhead of our scheme arises mostly
due to two operations – establishing pairwise keys and re-
port authentication.

Establishing Pairwise Keys In our scheme, two association
nodes need to establish a multi-hop pairwise key on the fly,
based on one of the id-based schemes [2, 3, 5, 13, 14]. All
these schemes have similar computational overhead. For ex-
ample, in the Blundo scheme, a node needs to compute k
modular multiplications and k modular additions for a poly-
nomial of degree k. Let k = 100, and the size of a secret
key be 64 bits and the size of a node id be 16-bits (assum-
ing there are no more than 64K sensor nodes in a network).
The cost of computing a pairwise key is about 1/10000 of
that of creating a RSA signature, which is of the same or-
der as that of an AES encryption. Moreover, in our scheme
normally a cluster node computes one pairwise key and an
en-route node computes two. In the case of node failure or
a path change, a node has to compute a pairwise key shared
with a new node; however, this situation does not happen
very frequently.

Report Authentication In our scheme, a cluster node com-
putes three MACs for one report. One uses its individual key
as the MAC key, the second uses a pairwise key shared with
its association node as the MAC key, and the third uses the
pairwise key shared with its cluster head as the MAC key.
An en-route node normally computes four MACs — it ver-
ifies one pairwise MAC (over E) from its lower association
and generates one pairwise MAC (over E) for its upper as-
sociation if it is more than t hops away from BS; it verifies
one MAC (over R) from its downstream neighbor and gen-
erates one MAC (over R) for its upstream neighbor. Note
that although in our scheme a forwarding node computes
two more MACs (over E) than that in a hop-by-hop au-
thentication scheme [19], the security it achieves is much
stronger. Since the energy for computing a MAC is about
the same as that for transmitting one byte [18], by filtering
false data as early as possible, our scheme reduces the over-
all energy expenditure of a node even though it entails ad-
ditional computational costs. Also note that the energy for
computing two MACs using the same key is usually smaller
than twice of that for computing one MAC. For example,
when computing a MAC based on RC5, the most expensive
operation is the initial key setup that outputs a cipher con-
text, which only has to be performed once for a specific key.
After this operation, the future computation for generating
MACs consumes much smaller energy by reusing the same
cipher context. Therefore, as long as a node keeps the ci-
pher context in its memory (80 bytes), the computation of
MACs will be very efficient.

4.2. Communication Cost

The communication overhead of our scheme arises from
two sources. First, every authentic report contains one com-
pressed MAC and t+1 pairwise MACs. In practice, we can
choose a larger size for an individual MAC, while select-
ing a smaller size for a pairwise MAC. The size of the com-
pressed MAC must be large enough because the authentic-
ity of an reported event is security critical. Since the size of
a pairwise MAC only impacts the capability of en-route fil-
tering, we can make it smaller as a tradeoff between perfor-
mance and security. For example, if we use 4 bytes for pair-
wise MACs, and t = 3, the size of a pairwise MAC will
be 1 byte. Compared to a standard hop-by-hop authentica-
tion scheme [19], our scheme introduces the additional mes-
sage overhead of 4 bytes in this example, but it also provides
much stronger security. Second, during association discov-
ery and maintenance, a node adds its own id to a beacon-
ing message when its path changes. Thus, this component
of the communication overhead depends on path dynamics.

Finally, we mention that the choice of t should be based
on both security and node density. A large t makes it more
difficult for the adversary to launch a false data injection at-
tack, but it also requires more nodes to form a cluster. More-
over, we can separate the base station verification capabil-
ity from the en-route filtering capability by using different
t’s for them. For example, we can use a larger t for provid-
ing stronger source authentication. Finally, in practice, the
en-route filtering functionality can be turned on/off as de-
sired. For example, when no false data injection attack is
detected, the base station can broadcast a command to turn
off the en-route filtering phase, which saves both the com-
putational and communication costs. When the base station
receives false data reports, it broadcasts a command to all
the nodes to turn on the en-route filtering process.

5. A Variant of The Interleaved Hop-by-hop
Authentication Scheme

The basic idea underlying this variant scheme is that ev-
ery node en-route to the base station accepts a report re-
ceived from a downstream node only if it has been verifi-
ably endorsed by at least t+1 nodes, just as the base station
does. Note however that we cannot assume that each node
en-route to the base station will share an exclusive key with
the t + 1 nodes in the cluster that originated the report. In-
stead, this scheme requires every node on the path from the
cluster generating the report to the base station to have es-
tablished pairwise shared keys with t+1 nodes that are im-
mediately downstream from it. A report is accepted by the
node if it has been endorsed by these associated nodes. We
refer to the t+ 1 downstream nodes associated with a node
as its lower association set. A node in turn is also in the

lower association set of t + 1 upstream nodes on the path
to the sink. We refer to this set of nodes as the node’s up-
per association set. For nodes that are less than t hops away
from the clusterhead, the nodes in its lower association set
are designated by the clusterhead from among the nodes in
the cluster that reported the event E. A node can discover
its upper and lower association sets through the association
discovery phase introduced in Section 2.5

In Figure 6, the lower association set L(u4) for node u4

is {u3, u2, u1, CH} and its upper association set U(u4) is
{u5, u6, u7, BS}. For u4 to accept a message it receives
from u3, it should be endorsed by all the nodes in L(u4).
If u4 can verify the message, it in turn endorses the report
in such a way that each node in its upper association set
U(u4) will be able to verify that u4 has endorsed the re-
port.

To understand how this scheme works, let us con-
sider a message received by u4 from u3 containing a
report of an event E. Let XMACu4

(u3, u2, u1, CH) re-
fer to the compressed MAC created by XORing together
the four MACs computed over E using the pairwise keys
shared by u4 with u3, u2, u1 and CH respectively. In our
scheme, the message received by u4 should have the fol-
lowing t + 1 = 4 compressed MACs attached to it
– XMACu4

(u3, u2, u1, CH), XMACu5
(u3, u2, u1),

XMACu6
(u3, u2), and XMACu7

(u3). Note that
XMACu7

(u3) is simply the MAC computed over E us-
ing the pairwise key shared between u7 and u3, and
that XMACu4

(u3, u2, u1, CH) can be verified by u4

whereas the remaining three XMACs are destined for
nodes u5, u6, and u7 respectively. On receiving a mes-
sage, if u4 is able to verify the XMAC destined to
it, it computes four MACs over E using the pairwise
keys it shares with nodes u5, u6, u7, and BS respec-
tively, i.e., the nodes in its upper association set U(u4).
It then XORs these MACs with the XMACs destined
for the nodes in its upper associaton set, i.e., it com-
putes XMACu5

(u4, u3, u2, u1), XMACu6
(u4, u3, u2),

XMACu7
(u4, u3), and XMACBS(u4). It then at-

taches these XMACs to the event report E and forwards the
message to the node u5, which will authenticate the mes-
sage in the same way as u4 before forwarding it to
u6.

In this manner, at each hop the relaying node can verify
if a report is endorsed by t + 1 other nodes. As long as the
number of compromised nodes does not exceed t, we can
detect and filter out false data packets injected into the net-
work immediately. The size of a message depends upon the
number of XMACs attached to a message which is equal to
t + 2, where one of the XMACs is the compressed MAC
used by the sink to verify the authenticity of a report and
the remaining t+1 XMACs correspond to the XMACs cre-
ated by the nodes in the receiving node’s lower association

BS

v3

v1

CH
u1u2u3u4u5u6u7

v2

L(u1) = {v1, v2, v3, CH} U(u1) = {u2, u3, u4, u5}
L(u2) = {u1, v1, v2, CH} U(u2) = {u3, u4, u5, u6}

L(u4) = {u3, u2, u1, CH} U(u4) = {u5, u6, u7, BS}

L(u3) = {u2, u1, v1, CH} U(u3) = {u4, u5, u6, u7}

(t=3)

Figure 6. A logical view of a sensor network in which nodes v1, v2, v3 and CH have been deployed in
a cluster to monitor an area of interest. The upper and lower association sets of nodes u1, u2, u3, and
u4 are shown for t = 3, where t is the number of compromised nodes that can be tolerated.

set as discussed above. Each node has to compute 2(t + 1)
MACs to verify and authenticate a message. Given that the
energy consumed in computing a MAC is roughly equiva-
lent to that used in transmitting one byte, this is a beneficial
trade when t is small.

Compared to the original scheme introduced in Sec-
tion 2.5, this variant has two advantages. First, it allows
the en-route nodes to filter out false data packets immedi-
ately. Second, it does not require the authenticated neighbor
knowledge; a node accepts a data packet only if it can verify
t+ 1 XMACs, whichever node sends the packet to it. Note
that this scheme has the same communication overhead as
the original scheme. However, this scheme has two disad-
vantages. First, a node needs to establish 2(t + 1) pairwise
keys. Second, for every data packet received, a node needs
to compute up to 2(t + 1) MACs. In the original scheme,
both the number of pairwise key establishment and MACs
are bound by 4. Therefore, this variant scheme is preferred
when t is small (e.g., t ≤ 3).

The original scheme and the variant scheme can be
thought of as two extremes in a family of protocols based on
interleaved hop-by-hop authentication. We can explore the
design of schemes whose performance and security proper-
ties lie in between those of the two extremes.

6. Related Work

Perrig et al [16] presented µTESLA for base station
broadcast authentication, based on one-way key chains [12]
and delayed key disclosure. Zhu et al [19] presented a
scheme that is also based on one-way key chains for lo-
cal (one-hop) broadcast authentication with the goal of
enabling authenticated passive participation in sensor net-
works. Although this scheme is robust against outsider at-
tacks, it is vulnerable to insider attacks in which an adver-
sary only needs to compromise a single node to inject false
data. In contrast, our interleaved hop-by-hop authentication

scheme is robust to insider attacks involving a certain num-
ber of compromised nodes.

Hu and Evans [8] propose a secure hop-by-hop data ag-
gregation scheme that works if one node is compromised
(i.e., t = 1). Independent of our work, Vogt [17] has re-
cently presented a data integrity protection scheme for se-
cure node-to-node communication. The scheme also uses
the technique of interleaved authentication. Ye et al [18]
propose a statistical en-route detection scheme called SEF,
which allows both the base station and en-route nodes to de-
tect false data with a certain probability. With an overhead
of 14 bytes per report, SEF is able to drop 80− 90% of the
injected false reports by a compromised node (i.e., t = 1)
within 10 forwarding hops. In our scheme, when t = 1, a
false data packet will be dropped immediately. Moreover,
the packet overhead of our scheme is also smaller.

Przydatek et al [15] present SIA, a secure information
aggregation scheme for sensor networks. As discussed in
the introduction, both SIA and our work aim to defend
against false data injection. The main difference between
these two schemes is in the focus. SIA focuses on the accu-
racy of query results reported from the base station, whereas
our scheme focuses on the authenticity of the reports from
sensor nodes and provides a means to filter out any injected
false data as early as possible. We believe the combination
of our scheme with SIA would make a sensor network more
robust to false data injection attacks.

Other work on sensor network security include studies
on key management [4, 5, 6, 14, 19, 20]. The polynomial-
based pairwise key establishment scheme [3] has been re-
cently extended [14] to enable a sensor network to sus-
tain more node compromises under the same memory con-
straints. The idea is to use probabilistic polynomial pre-
deployment (in a manner similar to probabilistic key pre-
deployment [6]) so that every node is loaded with a random
subset of polynomials from a large pool of polynomials.

7. Conclusion and Future Work

In this paper, we presented a simple but effective authen-
tication scheme to prevent false data injection attacks in sen-
sor networks. The scheme guarantees that the base station
can detect a false report when no more than t nodes are
compromised, where t is a security threshold. In addition,
our scheme guarantees that t colluding compromised sen-
sors can deceive at most B noncompromised nodes to for-
ward false data they inject, where B is O(t2) in the worst
case. We also propose a variant of this scheme which guar-
antees B = 0 and works for a small t. Our performance
analysis shows this scheme is efficient with respect to the
security it provides and allows a tradeoff between security
and performance.

As future work, several directions are worth investigat-
ing. In particular, we plan to study the use of interleaved
hop-by-hop authentication for preventing or mitigating at-
tacks against sensor network routing and data collection
protocols, such as those pointed out in [11]. Another topic
that we plan to address is how our scheme can be adapted
for sensor networks with mobile data sinks.

Acknowledgements

We thank Fan Ye for valuable discussions during the
early stages of this work, and thank Jing Deng, Lingyu
Wang, Leijun Huang, and Sankardas Roy for their helpful
comments. We also thank the anonymous reviewers for their
valuable comments and suggestions.

References

[1] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New
Methods for Message Authentication Using Finite Pseudo-
random Functions. in Proc. of Crypto’95.

[2] R. Blom. An Optimal Class of Symmetric Key Generation
Systems. Advances in Cryptology, EUROCRYPT’84, LNCS
209, 335338, 1984.

[3] C. Blundo, A. Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung. Perfectly-secure key distribution for dynamic
conferences. In Advances in Cryptology CRYPTO 92,
LNCS 740, pages 471486, 1993.

[4] H. Chan, A. Perrig, and D. Song. Random Key Predistribu-
tion Schemes for Sensor Networks. In Proc. of the IEEE Se-
curity and Privacy Symposim 2003, May 2003.

[5] W. Du, J. Deng, Y. Han, and P. Varshney. A Pairwise Key
Pre-distribution Scheme for Wireless Sensor Networks. In
Proc. of 10th ACM Conference on Computer and Commu-
nications Security (CCS), Washington DC, October 27-31,
2003.

[6] L. Eschenauer and V. Gligor. A Key-Management Scheme
for Distributed Sensor Networks. In Proc. of 9th ACM Con-
ference on Computer and Communications Security (CCS),
Washington DC, 2002.

[7] O. Goldreich, S. Goldwasser, and S. Micali. How to Con-
struct Random Functions. Journal of the ACM, Vol. 33, No.
4, 1986, pp 210-217.

[8] L. Hu and D. Evans. Secure aggregation for wireless net-
works. In Workshop on Security and Assurance in Ad hoc
Networks. Jan. 2003.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister. System architecture directions for networked sensors.
In Proc. of ASPLOS IX, 2000.

[10] B. Karp and H. Kung. GPSR: A Geographic Hash Table for
Data-Centric Storage. In Proc. of ACM International Work-
shop on Wireless Sensor Networks and Applications, Sept.
2000.

[11] C. Karlof and D. Wagner. Secure Routing in Sensor Net-
works: Attacks and Countermeasures. In Proc. of First IEEE
Workshop on Sensor Network Protocols and Applications,
May 2003.

[12] L. Lamport. Password authentication with insecure com-
munication communication. Communications of the ACM,
24(11):770-772, Nov., 1981.

[13] D. Liu and P. Ning. Location-Based Pairwise Key Establish-
ments for Static Sensor Networks. In 2003 ACM Workshop
on Security in Ad Hoc and Sensor Networks (SASN ’03),
October 2003.

[14] D. Liu and P. Ning. Establishing Pairwise Keys in Dis-
tributed Sensor Networks. In Proc. of the 10th ACM Confer-
ence on Computer and Communications Security (CCS ’03),
Washington D.C., October, 2003.

[15] B. Przydatek, D. Song, and A. Perrig. SIA: Secure Informa-
tion Aggregation in Sensor Networks. In Proc. of ACM Sen-
Sys 2003.

[16] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
SPINS: Security Protocols for Sensor Networks. In Proc.
of Seventh Annual ACM International Conference on Mo-
bile Computing and Networks(Mobicom 2001), Rome Italy,
July 2001.

[17] H. Vogt. Integrity Preservation for Communication in Sen-
sor Networks. Technical Report No. 434, ETH Zrich, Insti-
tute for Pervasive Computing, February 2004

[18] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical En-route De-
tection and Filtering of Injected False Data in Sensor Net-
works. To appear in Proc. of IEEE INFOCOM 2004.

[19] S. Zhu, S. Setia and S. Jajodia. LEAP: Efficient Security
Mechanisms for Large-Scale Distributed Sensor Networks.
In Proc. of the 10th ACM Conference on Computer and
Communications Security (CCS ’03), Washington D.C., Oc-
tober, 2003.

[20] S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing Pair-
wise Keys For Secure Communication in Ad Hoc Networks:
A Probabilistic Approach. In Proc. of the 11th IEEE Interna-
tional Conference on Network Protocols (ICNP’03), Atlanta,
Georgia, November 4-7, 2003.

Appendix A: The Blundo Scheme

The Blundo scheme was originally proposed by Blundo
et al. [3] to allow any group of m parties to compute a com-
mon key while being secure against collusion between some
of them. Here we use a special case of this scheme for es-
tablishing pairwise keys between two sensor nodes in the
context of sensor networks.

The scheme works as follows. The key server first ran-
domly generates a symmetric bivariate k-degree polynomial
f(x, y) =

∑k

i,j=0
aijx

iyj over a finite field Fq , where q is a
prime number that is large enough to accommodate a cryp-
tographic key. A polynomial f(x, y) is said to be symmet-
ric if f(x, y) = f(y, x). The key server computes f(i, y) for
node i, and then loads node i with all the k + 1 coefficients
(as a function of y). When two nodes i and j want to estab-
lish a pairwise key, they compute f(i, j) (or f(j, i), which
is the same) by evaluating f(i, y) at point j and f(j, y) at
point i, respectively. f(i, j) serves as their pairwise key.

The above scheme has been proved to be uncondition-
ally secure and k-collusion resistant [3]; that is, an adver-
sary knows nothing about the pairwise key between any two
non-compromised nodes if the number of sensor nodes it
has compromised is no more than k. However, if the adver-
sary compromises more than k nodes, it will know all the
pairwise keys in the network. Therefore, it is important to
choose a large enough degree k for the polynomial for the
application under consideration. For the current generation
sensor nodes, k can be around 200.

