

Improvements on Conventional PKI Wisdom
Carl Ellison

carl.m.ellison@intel.com

Intel Labs

Abstract: This paper contrasts the use of an ID PKI
(Public Key Infrastructure) with the use of delegatable,
direct authorization. It first addresses some commonly
held beliefs about an ID PKI – that you need a good ID
certificate to use digital signatures, that the ID
certificate should come from a CA that has especially
good private key security, that use of the ID certificate
allows you to know with whom you’re transacting and
that the combination gives you non-repudiation. It then
identifies flaws in those assumptions and addresses,
instead, the process of achieving access control – either
through an ACL plus ID, or directly. It then applies
each method of achieving access control to two
examples – one within a large company and one
between companies.
[This paper is an expanded transcript of the invited talk
of the same title prepared for the Internet-2 1st Annual
PKI Workshop, which was held at NIST at the end of
April 2002.]

1 Introduction
The thesis of this paper is that the PKI community has
accepted a number of concepts, listed here as
“Conventional PKI Wisdom” that actually get in the
way of achieving security. Some of them are false
premises. Some of them are not achievable. None of
them is necessary to achieve actual security. Instead, it
advocates paying attention to the problem of access
control and especially the determination of
authorization. Authorization usually requires the same
level of effort as ID certification. It can be used
alongside ID certification, incurring extra load and
expense, or it can be used instead of ID certification.

2 History
The concepts at issue here date back to the introduction
of public key cryptography by Diffie and Hellman.

In their 1976 paper, “New Directions in Cryptography”
[2], Diffie and Hellman postulated that the key
management problem is solved, given public key
technology, by the publication of a modified telephone
directory, which they called the Public File. Instead of
a name, address and phone number, the Public File
would contain a name, address and public key. When
you want to send me a message for my eyes only, you
turn to the Public File, find my entry and use the public
key associated with that entry to encrypt a message for

me. Only I can decrypt that message, since presumably
only I have the associated private key. Because of the
nature of public key cryptography, there is no need to
keep the public key secret, although one must still
protect that Public File from tampering.

As a demonstration of the power of public key
cryptography, this was a brilliant example. The
problem is that there are people who took this example
literally and set about creating such a directory, when as
I point out here, there is an inherent flaw in this
construction. Namely, you cannot find me in that
directory. Diffie and Hellman solved the previously
difficult key management problem by use of names, but
did not offer any solution to the even more difficult
name management problem.
In his 1978 MIT Bachelor’s thesis [5], Loren
Kohnfelder addressed the Public File proposed by
Diffie and Hellman, noting that a networked version of
this directory would have a performance problem. He
proposed instead that each line item of that directory,
which he identified as name (presumably login name)
and public key, be digitally signed and distributed to
anyone who wanted a copy, for them to hold. He
coined the name certificate for this digitally signed
directory line item. This may have avoided the problem
of loss of access to the central Public File (e.g., because
of network partition), but in fact it made the name
management problem worse. On the other hand, no one
was especially aware of that problem, so solving it was
not part of Kohnfelder’s requirement set.
In the 1980’s, the X.500 effort set about building a
directory like that envisioned by Diffie and Hellman, as
a single directory to cover the world’s devices and
people. For authentication (e.g., to provide notation of
the permission to modify an entry in the directory), that
standards effort specified the X.509 certificate format,
binding a public key to a Distinguished Name (DN),
which can be thought of as a pathname into the X.500
directory. For our purposes, it is an identifier that is
intended to refer uniquely to the person who holds the
key to which the X.509 certificate binds it.

Around 1990, the Privacy Enhanced Mail (PEM) effort
in IETF chose to use X.509 certificates to identify mail
recipients. There was a fair amount of excitement at
the time over the potential of X.500 to make sense of
what was already a bewildering set of people connected
by the various networks (now just called “the Internet”,
but still quite small at that time, before AOL

1st Annual PKI Research Workshop---Proceedings

165

experienced its user explosion). However, PEM failed
because X.509 failed. Not only were there no
Certificate Authorities (CAs) in place to issue X.509
certificates, the very process of choosing a DN and
generating an X.509 certificate appeared to have legal
connotations that at least the company where I worked
at the time was not willing to accept.
To get around this failure of X.509, there was a version
of PEM produced, called RIPEM that did not use
X.509. It allowed the use of keys that were delivered
out of band and used without certification. To provide
for certification without CAs, in 1991, PGP allowed for
any keyholder to sign the key of any other keyholder,
under the Web Of Trust assumption: that multiple
independent signatures on a certificate would be as
trustworthy as one highly trusted signature on that same
certificate, when you had exceeded some number of
independent signatures, no matter how vulnerable each
of those signers might be.
PGP succeeded where PEM failed, but there was still
something wrong with the PKI model. In 1996, three
independent efforts (SDSI, SPKI and PolicyMaker)
departed from the PKI model in the same way: using a
public key itself as the identifier of the keyholder,
rather than some name. This has the advantage that
there is no ID certificate needed to bind that key to the
ID of the keyholder since the key is the ID.

3 Conventional PKI Wisdom
There has been a great deal written and discussed about
PKI, but there are some frequently encountered items of
conventional wisdom about PKI that this paper
addresses directly:

1. that you need an ID certificate;
2. that you should get that ID certificate from a

CA that protects its signing keys well (e.g.,
uses a vault with strong physical protection
against theft or misuse of keys);

3. that with such an ID certificate, you will know
with whom you are dealing when you process
a signed message or encrypt a message to
some key; and

4. that with all of this, you get non-repudiation,
which means that the signer cannot later deny
having sent a particular signed message when
you present that signed message to a judge and
ask for it to be considered binding against the
human you have cited as the signer.

As it turns out, all four of these items of wisdom are
seriously flawed, if not completely false.

3.1 ID Certificates
The original model of an ID certificate was one that
would bind me to my entry in the X.500 directory, by
way of the DN that both identified me and uniquely
specified my entry in the directory. The assumption
was that one needed only one such entry (or perhaps
two: one at work and one at home).
By contrast, each of us has multiple identities both at
home and at work. I, for example, have five different
but equally valid IDs at work. They are used for
different functions and their format and nature was
determined by the applications in which they are used.
At home, I have even more. There are 4 credit card
numbers, 1 ATM card number, 4 bank account numbers
(all from the same bank), ISP account names, etc.
There are two problems with getting one ID certificate:

1. we would have to change all legacy software
and business processes to use that one ID or
have that one ID certificate list all of my IDs;
and

2. we would have to find one CA with the
authority to establish all of those ID to key
bindings.

We take it as impossible to change all business
processes to use one common ID. It is also a potential
privacy violation either to use a single ID or to bind all
different IDs into one credential, so that some party can
know how to link all of my transactions to one another.
More serious is the problem of finding one certificate
issuer that has the authority to do all of these ID
bindings. My company will accept only itself to bind
my key to my employee ID number. My bank will
accept only itself to bind my key to my bank account
number. The key used could be the same in both
certificates, but the binding must be performed by an
entity with the authority to perform that binding. That
authority comes from business rules and security
policy, not from some CA characteristic like strength of
protection of the CA’s own private keys.
The conclusion is that we cannot have one ID
certificate that is used for everything. We will most
likely need as many certificates as we have
relationships.

3.2 CA Key Security
It is accepted wisdom that certificates should be issued
by a Certificate Authority that operates out of a vault –
that is, that protects its signing keys very strongly, with
military grade physical and personnel security, multi-
factor authentication of people, multi-person access
controls, etc. Such a facility is extremely expensive, so
there cannot be many of them. Let us consider the use

1st Annual PKI Research Workshop---Proceedings

166

of a CA in four different ways, discussed below, and
improve on this design.

3.2.1 Client goes to the Vault
Early theoretical papers on certification assumed that
the client would go to the vault, present credentials
proving identity along with a public key and receive an
ID certificate in return. This is presumably secure, but
has the problem that it is too expensive for the user.

Meanwhile, it actually has a security problem, in that
there will be very few such vaults, so the people
running the vault have no idea who the user is. They
will never have met the user and therefore will have to
rely on other credentials to establish the identity of the
user. This weakens the overall process to something
less than the security of the credentials used and opens
the process up to traditional identity theft techniques.
Since we see identity theft increasing in frequency, it is
doubtful that we could call this mechanism secure.

3.2.2 Client Opens a Channel to the Vault
One early attempt to overcome the expense of the
previous method was to permit a client to open a
communications channel to the vault. This could be by
telephone, but more likely it is by web form over an
encrypted channel.
Let us assume for the sake of argument that the
connection is established and there is no man in the
middle. We know that if you have a confidential
channel, you can mutually authenticate the parties on
the two ends by use of a shared secret. So, it is possible
to establish identity over this channel. Once that has
been done, the CA in the vault can issue a certificate for
the public key provided by the user, and from then on,
that key pair and certificate could be used for
authentication.
The problem comes with establishing that shared secret.

At least one company considered making a business
relationship with a credit bureau and then using the
credit bureau’s body of knowledge about the user to
quiz the user and establish identity. The problem with
this mechanism is that there are no secrets shared
between the user and the credit bureau. That is because
the credit bureau’s primary business is the selling of the
information it gathers about people. Making matters
worse, even if one were to find a repository of
information about people that is not in the business of
selling that information, if it uses the same information
that some other organization makes publicly available,
then that information can still not be used as a secret
shared with the user.
So, the problem of establishing a good, high entropy,
shared secret with the user boils down to something as
expensive as the first mechanism. That is, the user can

come to the vault, prove identity to trusted employees
of the vault, get that identity recorded along with a high
entropy secret generated and shared with the user
during that visit. That high entropy secret can then be
used later, over a web connection, to get a certificate.

3.2.3 Registration Authorities
With the previous mechanism ruled out because it is
either grossly insecure or as expensive as the first
mechanism, the next step is to reduce the cost for the
user by enlisting registration authorities (RAs). For
each CA, there would be a large number of RAs, so that
any user could find an RA within easy travel distance.
The user could then prove identity to that RA. The RA
would then instruct the CA, over a mutually
authenticated, cryptographically secured channel, to
issue the desired certificate from the vault.
This allocates the cost of the first mechanism to the CA
infrastructure rather than the user. The CA has come to
the user rather than the other way around. This also
could have a security advantage. That is, if there are
enough RAs, it could be that the user would be known
personally by the RA and identity could be established
not by paper or plastic credentials but rather in person.
This would reduce the threat of standard identity theft.
Although this is far more secure than the previous
mechanism and mu ch cheaper for the user than the first
mechanism, its security can be better.

3.2.4 CA on the RA Desk
To improve the security of the previous mechanism, the
secured network connection between the RA and the
CA should be severed and the computer on the
Registration Agent’s desk should run a CA and directly
issue the user’s certificate.
This is categorically more secure than the previous
design, primarily because the network connection
between the RA and the CA has been eliminated,
depriving an attacker of one avenue for attack. There is
also a security advantage, since the CA in the vault
would now not sign individual certificates but rather
sign the certificates of the next layer of CAs – those
now on the RA desks. Because this is a much lower
volume operation, the CA could operate in a different
fashion. For example, it might use split-key
(distributed signing) technology rather than a single,
secured vault. With enough key shares, split-key
technology can be arbitrarily secure, far surpassing the
security of any vault, even with key shares held in only
moderately secure but tamper-evident storage.
Some may argue that this design exposes a valuable key
– the final CA private key – to possible theft because
the RA computer is not specially protected. However,
this could also be a security advantage. If an attacker

1st Annual PKI Research Workshop---Proceedings

167

can steal the CA key from the computer on the RA
desk, then that attacker could just as easily steal the key
by which the RA authenticates its connection to the CA,
under the previous design. Under that design, the
attacker could then get the CA to sign a false certificate
and that false certificate would have the imprimatur of
having come from the real CA in the real vault. If the
theft were discovered, then all signatures by that CA
key would be called into question and the CA key itself
might need to be revoked, along with all certificates it
had generated. Under this last design, if a leaf CA key
were stolen, then only that one key need be revoked
along with only those certificates it had generated.

3.3 Know the Other Person
The third element of conventional wisdom is that with a
proper ID certificate, you can know the person with
whom you are transacting. This idea traces back to the
1976 Diffie-Hellman paper [2], which made the
assumption that the first important job was to learn the
identity of the party on the other end of a
communications connection. The Public File and then
the ID Certificate were to achieve that by binding the
person’s name to the person’s public signature key.

This assumes that names work as identifiers.

3.3.1 The John Wilson Problem
The fact is that names do not work as identifiers. This
has come to be known as the John Wilson problem,
named after a co-worker.

3.3.1.1 E-mail
At Intel, there are (at the time of this writing) eight
employees with the name John Wilson, in some
spelling. The IT department is very careful to make
sure that each of these John Wilsons has a unique name.
That is because these names are used as e-mail
addresses and to index into the corporate employee
database.
In spite of the care with which each John Wilson has
been given a unique name (e.g., through the use of
middle initials), John keeps getting mail intended for
one of the other John Wilsons and they keep getting
mail intended for him.

3.3.1.2 Airport
This problem is n’t limited to e-mail misdirection.

In August of 2001, John was returning from a one-day
business trip to the Bay Area. He had an electronic
ticket and no luggage. It was a simple trip.

On the return leg, he went to the ticket counter, was
asked for an ID (his driver’s license) and was asked if
anyone unknown to him had given him anything to

carry, etc. The ticket agent printed out his boarding
pass and gave it to him. He was looking at it as he
started to walk away but turned back to the ticket agent
to say, “I’m not going on to Eugene. I’m just going to
Portland.”

The ticket agent took back his boarding pass, consulted
the computer, and said that he had the boarding pass for
the other John Wilson on that flight. That other John
Wilson had his boarding pass.
So, the solution was for John to go to the gate and have
them page John Wilson – and then, when the other John
Wilson appeared, trade boarding passes.
Especially in light of the post-9/11 requirement to have
luggage removed from a flight if the ticketed passenger
does not take the flight, this could have been a serious
security problem.

3.3.1.3 Ann Harrison
When I tell the John Wilson stories, instead of getting a
reaction of disbelief or scorn at my making too much of
a case out of an isolated incident, the reaction is almost
always “That’s nothing. Listen to this.”
A friend of a friend, Ann Harrison, reacted that way.
She told of sitting on the examining table in her
doctor’s office, waiting for the doctor, when the nurse
came in, carrying a syringe. The nurse said, “This will
only sting a little”. Ann asked, in shock, what the nurse
was trying to inject her with and the nurse replied that it
was Botox (botulism toxin). Ann said that she doesn’t
get Botox injections, to which the nurse replied, “but
you’re Ann Harrison, aren’t you?”

3.3.1.4 Carl Carlson
In the early 1900’s, Carl Carlson was working in a
factory in Wisconsin, in a heavily Swedish community,
and was getting annoyed that he kept getting paychecks
for another Carl Carlson, one who earned less than he
did. So, sitting in the bar after work one payday, he
decided to change his name to something really unusual
and avoid this problem. He looked across the bar and
saw a sign with a really unusual name … and that’s
how my ex-in-laws ended up with the family name
Miller.

3.3.2 Names are not IDs
These anecdotes illustrate a point that should be of
concern to us as computer scientists and especially to
those of us involved in PKI.
Human beings do not use names the way we want
them to.

The actual process by which humans use names and the
psychology behind that process deserve a great deal of
study. It is clear, even prior to that study, that computer

1st Annual PKI Research Workshop---Proceedings

168

developers and computer users deal differently with
names.

I speculate that computer developers, and especially
PKI or large directory developers, think of names the
way we do variable names or file path names. That is, a
name is some string, unique within its block or
directory or context, that unambiguously identifies
some object (value, file, person, …) – and we further
assume that the mechanism that uses this name (a
compiler, an operating system, or a human user) will
follow that unique string to the same object any other
mechanism would follow the string to.
Compilers and operating systems may behave this way,
but human users do not.

Our PKIs assume they do. Our mail agents assume
they do. Much of what we design in computer science
makes this same, false assumption. For our immediate
concern, the main impact is that PKIs are based on a
false assumption and the security of systems using
those PKIs suffers as a consequence.

In a way, however, this is good news. This means that
there are a great many fresh new research opportunities.
For example, how would you build a mail agent that
does not use names or e-mail addresses for people?

3.3.3 ID as Dossier
It is doubtful that human beings could ever be trained to
read all information offered in a certificate and verify it
against their knowledge of a person, before jumping to
a conclusion about the identified person. Even if that
training could be achieved, however, an ID certificate
usable by everyone would become a dossier.
Consider an ID cert for John Smith. The name alone
doesn’t tell you which John Smith, so you need
additional information. Andy works with John, so he
needs John’s employer (and building and mail stop) in
the ID certificate. Betty knows John only at home, so
she needs his home address in the ID certificate.
Charles knew John at work 10 years ago, so he needs
John’s work address from 10 years ago. Dan shared a
hospital room with John back in 1994, so he needs a
record of John’s hospitalization from then in order to
identify John unambiguously. This process needs to be
iterated over all possible relying parties, to make sure
the ID certificate works for all of them.

The result would be a nearly complete dossier on the
keyholder, and that dossier would almost certainly
violate privacy laws, not to mention John’s desires. As
a result, the ID certificate could not be released to the
public. That, however, violates the basic purpose of the
ID certificate. A workable alternative would be to have
different ID certificates for use by different relying
parties [6], but that violates the design goal of one ID

certificate that lets an arbitrary relying party know with
whom she is transacting.

3.4 Non-repudiation
The fourth item of common wisdom has to do with non-
repudiation, which is usually defined as the inability of
a person later to deny having digitally signed a
document.
The central idea behind the concept of non-repudiation
is deferred enforcement of security. That is, one
receives a digitally signed document (often described as
a contract, when non-repudiation is discussed) and
verifies the signature on the document and the
certificate chain that identifies the key used, and then
acts on the document. In most cases there will be no
intention of fraud and the transaction proceeds
normally. However, in case there was fraud, the
document can be produced along with its certificate
chain to present to a judge. The judge can verify those
signatures and thus establish that this document was
signed by the defendant.

There are several problems with this understanding and
this process.

3.4.1 Expense
The process described above is expensive. The digital
signature and certificates that bind the signer to a
document do not bind that signer to a location. The
signer must be located and brought to trial. The process
of location and the process of trial are both expensive.
If the amount of the loss were small enough, taking the
case to trial would not pay.

3.4.2 Not Adequate
Assuming non-repudiation was achievable, technically,
and a judge found a defendant responsible, this process
works only if the victim can be made whole. In cases
of moderate financial loss, this might be adequate.
However, if the loss were of something more valuable
than the perpetrator’s total lifetime worth, then the
victim cannot be made whole. Worse, if the loss were
of a life or of secrets, then no amount of money could
compensate the victim.

3.4.3 Not Achievable
The main problem with the theory of non-repudiation is
that it is not technically achievable. That is, the
intention is to bind a human being to a digitally signed
document. With a holographic signature on a paper
document, the human’s hand came in contact with the
paper of the document. With a digital signature there is
machinery between the human and the signed
document: at least a keyboard, software (to display the

1st Annual PKI Research Workshop---Proceedings

169

document and to drive the signature process) and a key
storage and use facility (e.g., a smart-card).

No one has demonstrated, in the normal computer for
home or office use, the prevention of introduction of
hostile software. To the contrary, we have seen a
steady increase in such incursions over the years.
There are secure facilities for key storage and use, but
no mechanism that an average home or small business
user would choose to buy has been proved secure.
Meanwhile, computers are not restricted to isolated
rooms with card access entry, raised floors, guards
outside the glass walls, etc., that they might have been
in the 1970’s when much of this thinking about public
key cryptography had its nascence. Computers are not
only everywhere; they are unprotected to a continually
increasing degree. Therefore, even if the computer has
no hostile software and its private key is kept in a truly
secure facility, access to the keyboard of that computer
is not limited to the person certified to be associated
with that private key.

What might make this process of non-repudiation work
would be hardware that would serve as a witness to a
signature, providing tamper-proof evidence of the
actions of a human being (e.g., through videotape), of
what that human was reading and of the human’s
positive action to assent to the displayed document.
Such a log of human behavior could then be presented
in court to prove the claim of non-repudiation.
Of course, if such hardware were available, then we
would not need digital signatures, much less the
assumption of non-repudiation on digital signatures.

3.4.4 Contractual Commitment
For lack of technical achievability, some people try to
legislate non-repudiation. If laws are written to
presume that the certified keyholder is responsible for
anything done by that key, then the rational thing for a
computer owner to do is to refuse to accept ownership
and use of that private key. That could bring not just
PKI but use of public keys to a screeching halt.
The good news in this is that we do not need non-
repudiation in order to do business with digital
signatures. If two parties want to do electronic business
with each other, they can sign a paper contract with one
another in which party A might declare that it would
honor any document digitally signed and verified with a
public key that is given in the contract (or whose
cryptographic hash is printed in the contract). The
party accepting that responsibility for that key could
then protect that key with mechanisms appropriate to
the way that key was empowered. If one is ordering
office supplies with that key, then maybe it is kept
encrypted by password on the hard drive of a PC on a
secretary’s desk. If one is ordering millions of dollars

worth of industrial supplies, then the key might be kept
in a locked room, under 24x7 guard, with multi-factor
authentication for people entering the room, special
computers with strong key storage facilities that erase
their keys if the mechanism is physically moved, no
network connections for the computers and strict
control over the software that is allowed to be loaded
onto the computers.

4 New PKI Wisdom
The reasoning above gives us a new list of PKI
Wisdom:

1. There is and will be no single ID, so a single
ID certificate makes no sense.

2. Discard RAs and put CAs on the RA desks.

3. Knowing a keyholder’s certified name does
not tell you who that keyholder is.

4. Non-repudiation is neither adequate for serious
problems nor achievable.

So, instead, we need to do strong access control and
that requires more than ID certification. There are
several ways to achieve access control, as outlined
below.

5 Certificate :: DB Trade-off
As we consider the various ways to do access control,
we must address the religious battle between those who
advocate certificates and those who advocate servers.
Each technology can achieve the same results, under
certain assumptions. The main difference is in their
behavior under network load or partition, but there are
security differences, discussed later in this paper,
having to do with database administration.
For example, Kohnfelder created certificates by
digitally signing a line item from a protected database:
the Public File. This has the advantage of making
verifiable data available even when the database is not,
whether by network partition or by mere performance
problem.
This process can be applied with any kind of database.
In particular, it applies to all three edges of the
credential triangle shown in Figure 1.

5.1 CAP Principle
Fox and Brewer of UC Berkeley have put forth the
CAP Principle [4], stating that it is possible to design a
distributed system that achieves any two of:

1. Consistency
2. Availability
3. tolerance of network Partitions

but it is not possible to achieve all three.

1st Annual PKI Research Workshop---Proceedings

170

The invention of certificates as signed line items from
the Public File was a choice to achieve A&P while the
Public File achieves C&A.
There are frequent attempts to criticize one or the other
of these mechanisms for not achieving the third
desirable attribute and to come up with some new
design that tries to achieve all three, but by the CAP
Principle such attempts are doomed.

One must look at the specific security requirements of a
particular application and decide which of the three
desirable attributes can be sacrificed. This choice will
be different for different applications.

6 Credential Classes

Identifier

Public KeyAuthorization

ACL (name)
Attribute

Certificate

Public File
ID

Certificate

ACL (key)
Authorization

Certificate

Figure 1: Credential Classes

Diffie and Hellman bound Identifiers to Public Keys
through the Public File. Kohnfelder took line items of
that public file and made ID certificates.
Those of us who wanted to use ID certificates as part of
implementing access control, needed to get from
Authorization to Public Key. That is, a transaction
would come over the net with a digital signature
verifiable by a public key and it would require
authorization before it could be honored.
The knee-jerk reaction, relying on time-sharing system
practice from the 1960’s, was to use an Access Control
List (ACL) binding authorization to login name. [By
the way, Kohnfelder described the names in his thesis
as login names, so this use of an ACL is not mixing
metaphors.]
By the arguments of section 5, you can also convert line
items of the ACL into certificates, and in this case, they
become what we know as attribute certificates .
In 1996, however, a number of us started developing
the third side of the triangle: authorization
certificates . That is, something directly binding an
authorization to a public key, rather than going through
an identifier.
Also, by the logic of section 5, one can have protected
database versions of the authorization certificate as we

find with X9.59 and with the SSH access control file
(.ssh/authorized_keys).

7 Authorization via ACL and ID
Figure 2 shows the use of an ACL and ID certificate to
determine authorization. The ACL could be held
locally in the machine that acts as gatekeeper for the
protected resource, or it could live in some central
authorization database that the gatekeeper queries over
the network to approve any access request.
The security perimeter shown in Figure 2 indicates that
both elements of the process – the ACL (or attribute
certificate) and the ID must be protected equally. If the
attacker can control either, then he or she can get
improper access. However, there is a third vulnerability
not immediately visible in the triangle diagram: the
name. That is, the diagram shows one “Identifier” node
at the top of the triangle, but in fact there are two
identifiers involved: one on the ACL edge and one on
the ID edge. The identifiers need to be the same, to link
these two sides together, and some mechanism has to
do the comparison to establish that.

Security PerimeterSecurity Perimeter

NN

KKAA

ACLACL IDID

Figure 2: Authorization via ACL and ID

If that mechanism is executed by a computer and the
names used are unique, then the comparison can be
done with security. If the mechanism is executed by a
human, then even if all names are unique, the John
Wilson problem shows us that there will be mistakes
made, and a clever attacker can exploit those mistakes
to gain improper access. A human might make that
comparison with each access, as we see with S/MIME
or SSL, since in those cases the ACL is kept in the
human user’s own head. Or the human might make a
name comparison when some database is administered
by a human or a certificate is issued. In general, it is
safe to assume a human will be involved at some point
in the process because it is for human use that names
are used in the first place.

1st Annual PKI Research Workshop---Proceedings

171

When the method of Figure 2 is used, there is also the
problem of administering the ACL side of the triangle.
We consider two possibilities for that, below.

7.1 Authorize Everybody
The job of building an ID PKI is difficult enough that
some people rebel against building an ACL as well.
Instead, they use a one-line ACL: (*). That is, grant
access to anyone who has an ID certificate. This isn’t
exactly the non-repudiation case, since it’s not a
question of having a signed contract. Rather, this is a
situation like that employed by browsers when they
decide whether to show the padlock icon as locked or
unlocked. The icon is shown locked if the ID
certificate is valid (and refers to the domain name from
which the web page (or part of it) came).
The problem there is that users rely on that closed
padlock rather than on a personal inspection of the ID
certificate to decide whether to trust the web page and
its server. This leads to a wonderful quote, from Matt
Blaze, in the hallways of the RSA 2000 Convention: “A
commercial PKI protects you from anyone whose
money it refuses to take.”

7.2 Authorization DB
You can, instead, build a real authorization database.
Consider the database for something the size of a large
PKI, with 6 million users.

If each user changes his or her entry in the database
every two years, then there is one change to the
database every 2.5 seconds of each normal workday.

Since this database is being kept in a central, secured
location, it is being maintained by a staff of people
cleared to enter that facility. Those people do not know
all 6 million users. So, when a request comes in to
change the authorization of some user, it must be
investigated. If that investigation were to take a man-
week, then the office would need more than 50,000
investigators, making this a very large operation.
No matter how large it is, the process begs the question
of what makes these people administering the central
database authorities on the data they are entering.

8 Direct Authorization
Another option is to go the other direction around the
credential triangle, as shown in Figure 3.
In this process, there is only one point of attack, rather
than the three of Figure 2. One would have to attack
the authorization certificate issuer (or the maintainer of
the authorization-to-key ACL).

One might ask why Figure 3 shows an ID when that ID
is not used as part of the authorization process. The
reason it is there is for forensics.

One can easily gather an audit log with entries
identified by keys used (or their hashes, as more
compact identifiers that are still globally unique). From
processing those audit logs (or other tests) one might
determine that a given keyholder (a given key) has
misbehaved and needs to be punished. As Steve Kent
quipped, during a DIMACS talk on this topic, ‘You
can’t punish a key. What would you propose doing?
Lop a bit off?’
You need to punish the keyholder. The simplest
punishment is to put that key on a local black list. That
keeps the keyholder from gaining access at the machine
where you discovered the misbehavior. However, you
might want to actually punish the keyholder, legally.
For that, you need to locate the keyholder. So, you
need a link from the key to the keyholder. This is
indicated as an ID or name, but more likely it would be
a whole file of information that would allow a security
officer, lawyer or policeman to find the keyholder.
This information could include the keyholder’s name,
address, phone numbers, bank accounts, friends, family,
employer, etc.

Security PerimeterSecurity Perimeter

N

KA
AuthorizationAuthorization

IDID

Figure 3: Direct Authorization

More interesting for those interested in PKI is the fact
that this information binding a key to ID does not need
to be either online or in certificate form. It is not used
in the authorization process. It is used only during the
manual process of punishing the errant keyholder.
Therefore, the information could be kept in a non-
networked PC in the security office. It could even be
kept in manila folders. This affords the user with a
certain amount of privacy. The user’s identifying
information need not be released to a resource guard
whenever an access is made.

9 Delegation of Authorization
SPKI [7] permits delegation of authorization. SDSI [6]
permits delegation of group membership. For some
cases, the two mechanisms can be shown to be
equivalent. The examples below can be achieved either
way, but they will be described as authorization

1st Annual PKI Research Workshop---Proceedings

172

certificate delegation – and contrasted with the use of a
corporate authorization DB together with PKI for ID,
according to the model of Figure 2.

10 Large Company VPN Example
In this example, we deal with a large company that
permits VPN access only to authorized employees. We
consider it two different ways, first via a central
authorization database and then by distributed,
delegated authorization.

10.1 VPN Access via Central DB
Figure 4 shows part of an organization chart for a large
company that has decided to give VPN access only to
approved employees. We assume that employees are
identified by some ID PKI, but authorization is
maintained by a corporate authorization database. That
database is maintained by some person or group,
labeled A in the figure. A user, U, requests access by
web page, since A and U are probably in different states
if not countries and have never met one another and are
not likely ever to meet one another.

A

U
web form

web form

ee--mail
mail

Figure 4: Central Authorization DB for VPN Access

If A were simply to enter U in the database in response
to the web form, then there is no security to speak of in
the system. So, A looks in the corporate central
employee database to find U’s manager and sends an
e-mail, asking if U should be allowed VPN access.
When the answer comes back in the affirmative, A
enters U in the authorization database and U has VPN
access.
There are at least two problems with this mechanism:

1. A sends an e-mail to someone whose name is
very much like the name listed in the
employee database as being U’s manager.
Thanks to the John Wilson problem, that does
not mean that A sends an e-mail to U’s
manager.

2. The mechanism as described above implicitly
grants every manager in the company the
power to grant VPN access. Correction of that

limitation would greatly complicate the
database administration process.

In the next section, we address these problems.

10.2 VPN Access via Delegated Direct
Authorization

In Figure 5, we accomplish the same function, but by
authorization certificate and delegation of authorization.
The organization or person, A, responsible for the ACL
of the machine(s) that enforce VPN access, enters a
public key into that ACL, as the head of a tree of
certificates to be empowered to have VPN access.
Person A then uses the matching private key to grant
authorization certificates to his or her manager. That
authorization flows, by authorization certificate, up the
organization chart to the CEO and from there down the
entire organization, but only into those groups where
VPN access makes sense. In particular, as shown by
the heavy lines, it flows from A to U and therefore has
the same effect as the process shown in Figure 4.

U

A

Figure 5: VPN Access by Direct Authorization

The process of Figure 5 has some distinct advantages
over that of Figure 4:

1. Each grant of authorization is between two
people who work together and therefore can
authenticate one another biometrically, in
person. Names are not used in the process, so
there is no security flaw from the John Wilson
problem.

2. Each grantor of authorization is in a position to
know better than anyone else whether the
grantee should receive that grant of
authorization.

3. These decisions – of authentication and
authorization – are made with almost no effort.
No investigation is required.

4. The work that used to be done by A is now
distributed around the company, although it is
miniscule at each place a decision is made.
This frees A to do other, more interesting

1st Annual PKI Research Workshop---Proceedings

173

work. That, in turn, saves mo ney for the
corporation.

So, this process both saves money and increases
security of the administration of the authorization
process.

11 Cross-company B2B P.O. Example
The example of the previous section dealt with
operations within a single company that had a single
PKI. We now address a pair of companies that want to
do electronic purchase orders, with orders automatically
processed by computers in company A when they are
signed by authorized keys (keyholders) within company
B. Each company has its own, independent PKI.

11.1 B2B via Central DB
In Figure 6, we build a structure analogous to Figure 4.
The employees of Company B that should be
authorized to sign electronic purchase orders are shown
in gray, while there is one person (or group) in
Company A that maintains the ACL on the machines
Company A uses to process purchase orders
automatically.
The purchasing agents must request, somehow, to be
added to the ACL, and the maintainer of the ACL needs
to verify the propriety of each such request. This
request goes from company B to company A. The
verification of that request is a dialog initiated by the
responsible parties in company A.

Company ACompany A Company BCompany B

request
request

approval?
approval?

Figure 6: B2B via PKI and Authorization DB

11.1.1 Bridging of PKIs
The first thing we observe is that for ID’s issued by
Company B’s PKI to be usable within Company A, we
need to bridge the two PKIs, either with a bridge CA or
by adding each PKI root to ACLs in the applications on
both sides. However, when we bridge the two PKIs, we
make the John Wilson problem worse for both.

1. It is made worse just by having more people
under the same namespace. This leads to more
name collisions and more mistakes.

2. It is possible that name uniqueness is violated.
Company A could have been very careful to
have only one “John Q. Wilson” and Company
B could have been very careful to have only
one “John Q. Wilson”, but after the bridge,
there are two. What is missing is some entity
that would control the issuing of names within
companies A and B, before they decide to
bridge their PKIs. There is no such entity
today, and the experience of ICANN (The
Internet Corporation for Assigned Names and
Numbers and other Top Level Domain efforts)
suggests that no such entity will ever exist.

11.1.2 Employee Data
In the process of Figure 4, the maintainer of the ACL
consulted the central employee database to find the
party to contact to get approval of the request for
authorization. Company A does not need the entire
employee database of Company B, but it does need
enough of that database (or remote access to a view of
that subset) to permit it to make the proper
authorization decisions.
This kind of data, especially linked to names, is
traditionally considered confidential by companies. A
special exemption would have to be made in this case.
Meanwhile, the data that company A needs would have
to be made available under strict access controls, and
the authorization database for those access controls
becomes an additional problem to address. This way
leads to uncontrolled recursion.

11.2 B2B via Delegated Authorization

Company ACompany A Company BCompany B

Figure 7: B2B by Delegated Authorization

In Figure 7, we show the same B2B process, but by
delegated authorization rather than authorization
database and ID PKI.

1st Annual PKI Research Workshop---Proceedings

174

In this figure, we introduce a new node color (darker
gray) to stand for the executives of the two companies
who meet to decide to form the business relationship.
These executives exist already and perform this
function. Two companies do not spontaneously decide
to do business with each other. There is a period of
investigation and decision-making before that decision
is made. The decision is usually sealed with a contract
and the contract is signed by individuals of the two
companies. These meetings might be electronically
intermediated, but they are meetings of people rather
than of computers.
In Figure 7, the permission to delegate the authorization
to have purchase orders accepted and processed
automatically is granted from the person or group that
maintains the gate keeping machines in Company A to
the executive in Company A who is going to sign that
B2B contract. After the signing of that contract, the
executive from A grants the executive from B the
power to authorize such purchase orders. The
executive from B takes that authorization back to
Company B and delegates it to the purchasing group
manager who certifies the individual purchasing agents
within her group.
Note that this process:

1. does not use a bridge CA, so it saves that
expense,

2. does not use names, so there is no John Wilson
problem,

3. does not require either company to access the
other company’s confidential employee data,

4. does offer improved security, just as we saw in
Figure 5.

12 The AND Effect of ID PKI
There are those who claim that doing authorization
computation via the combination of ACL and ID cert is
important because it gives you a logical AND of two
conditions: the authorization and key validity. The
assumption there is that a valid ID cert does more than
name the keyholder. It also represents certain security
conditions. It attests to the key itself not having been
revoked and might also attest to the keyholder’s
continued employment.
This is valuable functionality. However, the use of an
ID instrument for these other characteristics is not the
best system design. What if some application cares
about key compromise but not about continued
employment? This mechanism does not allow the
application designer to separate those three attributes of
a key: ID, non-revoked status and continued
employment. It also does not allow the application
designer to specify the AND of other functions, without
loading those onto the ID instrument as well.

A cleaner design is to use an explicit logical-AND and
specify the conditions individually, each with its own
certificate (chain). Each of these attributes can be
bound to a key by an authorization certificate, with the
certificate issued by the proper authority. That is, a
24x7 key loss reporting service might be in charge of
providing online validity information of the non-
revoked status of a key while a corporate HR office
might provide information about continued
employment. These attributes do not require any ID.
They can be bound directly to a key. By contrast,
loading all of these attributes into an ID certificate by
side effect requires the ID certificate issuer to be the
authority on all of those attributes – something that may
be difficult to achieve, organizationally.
[Note that SPKI/SDSI [7] includes a construct called
the “threshold subject” that permits expression of such
“AND” conditions in ACL entries or certificates. The
code that implements threshold subjects is available in
[1].]

13 Conclusions
This paper makes the case that there are fundamental
problems with the original ID-based notion of a PKI, in
that it fails to take account of certain realities (such as
human limitations). Instead, we can use delegated,
distributed authorization, which does not suffer from
those fundamental problems. Two examples of the use
of distributed authorization were given, in brief, but
there are a great many other examples. The reader is
encouraged to try applying these techniques to other
problems, as was done in [3].

14 References
[1] CDSA: http://developer.intel.com/ial/security -
source code and documentation, including a full
implementation of SPKI and SDSI certificate reduction.
This link leads to the open source repository for that
code.
[2] Whitfield Diffie and Martin E. Hellman, “New
Directions in Cryptography”, IEEE Transactions on
Information Theory, Vol. IT-22, No. 6, November
1976.

[3] Steve Dohrmann and Carl Ellison, “Public Key
Support for Collaborative Groups”, Internet2 PKI
Workshop, April 2002.

[4] Armando Fox and Eric A. Brewer, “Harvest, Yield,
and Scalable Tolerant Systems”, Proceedings HotOS-
VII, 1999

[5] Kohnfelder, Loren M., "Towards a Practical Public -
key Cryptosystem", MIT S.B. Thesis, May 1978.
[6] SDSI: http://theory.lcs.mit.edu/~cis/sdsi.html

[7] SPKI: http://TheWorld.com/~cme/html/spki.html

1st Annual PKI Research Workshop---Proceedings

175

