
Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0

Alma Whitten
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
alma@cs.cmu.edu

J. D. Tygar1

EECS and SIMS
University of California

Berkeley, CA 94720
tygar@cs.berkeley.edu

1 Also at Computer Science Department, Carnegie Mellon University (on leave).

Abstract

User errors cause or contribute to most computer
security failures, yet user interfaces for security still
tend to be clumsy, confusing, or near-nonexistent. Is
this simply due to a failure to apply standard user
interface design techniques to security? We argue that,
on the contrary, effective security requires a different
usability standard, and that it will not be achieved
through the user interface design techniques appropriate
to other types of consumer software.

To test this hypothesis, we performed a case study
of a security program which does have a good user
interface by general standards: PGP 5.0. Our case
study used a cognitive walkthrough analysis together
with a laboratory user test to evaluate whether PGP 5.0
can be successfully used by cryptography novices to
achieve effective electronic mail security. The analysis
found a number of user interface design flaws that may
contribute to security failures, and the user test
demonstrated that when our test participants were given
90 minutes in which to sign and encrypt a message
using PGP 5.0, the majority of them were unable to do
so successfully.

We conclude that PGP 5.0 is not usable enough to
provide effective security for most computer users,
despite its attractive graphical user interface, supporting
our hypothesis that user interface design for effective
security remains an open problem. We close with a
brief description of our continuing work on the
development and application of user interface design
principles and techniques for security.

1 Introduction

Security mechanisms are only effective when used
correctly. Strong cryptography, provably correct
protocols, and bug-free code will not provide security if
the people who use the software forget to click on the
encrypt button when they need privacy, give up on a
communication protocol because they are too confused
about which cryptographic keys they need to use, or
accidentally configure their access control mechanisms
to make their private data world-readable. Problems
such as these are already quite serious: at least one
researcher [2] has claimed that configuration errors are
the probable cause of more than 90% of all computer
security failures. Since average citizens are now
increasingly encouraged to make use of networked
computers for private transactions, the need to make
security manageable for even untrained users has
become critical [4, 9].

This is inescapably a user interface design
problem. Legal remedies, increased automation, and
user training provide only limited solutions. Individual
users may not have the resources to pursue an attacker
legally, and may not even realize that an attack took
place. Automation may work for securing a
communications channel, but not for setting access
control policy when a user wants to share some files
and not others. Employees can be required to attend
training sessions, but home computer users cannot.

Why, then, is there such a lack of good user
interface design for security? Are existing general user
interface design principles adequate for security? To
answer these questions, we must first understand what
kind of usability security requires in order to be

effective. In this paper, we offer a specific definition of
usability for security, and identify several significant
properties of security as a problem domain for user
interface design. The design priorities required to
achieve usable security, and the challenges posed by the
properties we discuss, are significantly different from
those of general consumer software. We therefore
suspect that making security usable will require the
development of domain-specific user interface design
principles and techniques.

To investigate further, we looked to existing
software to find a program that was representative of
the best current user interface design for security, an
exemplar of general user interface design as applied to
security software. By performing a detailed case study
of the usability of such a program, focusing on the
impact of usability issues on the effectiveness of the
security the program provides, we were able to get
valuable results on several fronts. First, our case study
serves as a test of our hypothesis that user interface
design standards appropriate for general consumer
software are not sufficient for security. Second, good
usability evaluation for security is itself something of
an open problem, and our case study discusses and
demonstrates the evaluation techniques that we found to
be most appropriate. Third, our case study provides
real data on which to base our priorities and insights for
research into better user interface design solutions, both
for the specific program in question and for the domain
of security in general.

We chose PGP 5.02 [5, 14] as the best candidate
subject for our case study. Its user interface appears to
be reasonably well designed by general consumer
software standards, and its marketing literature [13]
indicates that effort was put into the design, stating that
the “significantly improved graphical user interface
makes complex mathematical cryptography accessible
for novice computer users.” Furthermore, since public
key management is an important component of many
security systems being proposed and developed today,
the problem of how to make the functionality in PGP
usable enough to be effective is widely relevant.

We began by deriving a specific usability standard
for PGP from our general usability standard for
security. In evaluating PGP 5.0’s usability against that
standard, we chose to employ two separate evaluation
methods: a direct analysis technique called cognitive
walkthrough [17], and a laboratory user test [15]. The

2 At the time of this writing, PGP 6.0 has recently been
released. Some points raised in our case study may not apply
to this newer version; however, this does not significantly
diminish the value of PGP 5.0 as a subject for usability
analysis. Also, our evaluation was performed using the Apple
Macintosh version, but the user interface issues we address
are not specific to a particular operating system and are
equally applicable to UNIX or Windows security software.

two methods have complementary strengths and
weaknesses. User testing produces more objective
results, but is necessarily limited in scope; direct
analysis can consider a wider range of possibilities and
factors, but is inherently subjective. The sum of the
two methods produces a more exhaustive evaluation
than either could alone.

We present a point by point discussion of the
results of our direct analysis, followed by a brief
description of our user test’s purpose, design, and
participants, and then a compact discussion of the user
test results. A more detailed presentation of this
material, including user test transcript summaries, may
be found in [18].

Based on the results of our evaluation, we conclude
that PGP 5.0’s user interface does not come even
reasonably close to achieving our usability standard – it
does not make public key encryption of electronic mail
manageable for average computer users. This, along
with much of the detail from our evaluation results,
supports our hypothesis that security-specific user
interface design principles and techniques are needed.
In our continuing work, we are using our usability
standard for security, the observations made in our
direct analysis, and the detailed findings from our user
test as a basis from which to develop and apply
appropriate design principles and techniques.

2 Understanding the problem

2.1 Defining usability for security

Usability necessarily has different meanings in different
contexts. For some, efficiency may be a priority, for
others, learnability, for still others, flexibility. In a
security context, our priorities must be whatever is
needed in order for the security to be used effectively.
We capture that set of priorities in the definition below.

Definition: Security software is usable if the
people who are expected to use it:

1. are reliably made aware of the security
tasks they need to perform;

2. are able to figure out how to successfully
perform those tasks;

3. don’t make dangerous errors; and
4. are sufficiently comfortable with the

interface to continue using it.

2.2 Problematic properties of security

Security has some inherent properties that make it a
difficult problem domain for user interface design.
Design strategies for creating usable security will need
to take these properties explicitly into account, and
generalized user interface design does not do so. We
describe five such properties here; it is possible that
there are others that we have not yet identified.

1. The unmotivated user property

Security is usually a secondary goal. People do not
generally sit down at their computers wanting to
manage their security; rather, they want to send
email, browse web pages, or download software,
and they want security in place to protect them
while they do those things. It is easy for people to
put off learning about security, or to optimistically
assume that their security is working, while they
focus on their primary goals. Designers of user
interfaces for security should not assume that users
will be motivated to read manuals or to go looking
for security controls that are designed to be
unobtrusive. Furthermore, if security is too
difficult or annoying, users may give up on it
altogether.

2. The abstraction property

Computer security management often involves
security policies, which are systems of abstract
rules for deciding whether to grant accesses to
resources. The creation and management of such
rules is an activity that programmers take for
granted, but which may be alien and unintuitive to
many members of the wider user population. User
interface design for security will need to take this
into account.

3. The lack of feedback property

The need to prevent dangerous errors makes it
imperative to provide good feedback to the user,
but providing good feedback for security
management is a difficult problem. The state of a
security configuration is usually complex, and
attempts to summarize it are not adequate.
Furthermore, the correct security configuration is
the one which does what the user “really wants”,
and since only the user knows what that is, it is
hard for security software to perform much useful
error checking.

4. The barn door property

The proverb about the futility of locking the barn
door after the horse is gone is descriptive of an
important property of computer security: once a
secret has been left accidentally unprotected, even
for a short time, there is no way to be sure that it
has not already been read by an attacker. Because
of this, user interface design for security needs to
place a very high priority on making sure users
understand their security well enough to keep from
making potentially high-cost mistakes.

5. The weakest link property

It is well known that the security of a networked
computer is only as strong as its weakest
component. If a cracker can exploit a single error,
the game is up. This means that users need to be
guided to attend to all aspects of their security, not
left to proceed through random exploration as they
might with a word processor or a spreadsheet.

2.3 A usability standard for PGP

People who use email to communicate over the Internet
need security software that allows them to do so with
privacy and authentication. The documentation and
marketing literature for PGP presents it as a tool
intended for that use by this large, diverse group of
people, the majority of whom are not computer
professionals. Referring back to our general definition
of usability for security, we derived the following
question on which to focus our evaluation:

If an average user of email feels the need for
privacy and authentication, and acquires
PGP with that purpose in mind, will PGP’s
current design allow that person to realize
what needs to be done, figure out how to do
it, and avoid dangerous errors, without
becoming so frustrated that he or she decides
to give up on using PGP after all?

Stating the question in more detail, we want to know
whether that person will, at minimum:

x understand that privacy is achieved by
encryption, and figure out how to encrypt
email and how to decrypt email received from
other people;

x understand that authentication is achieved
through digital signatures, and figure out how

to sign email and how to verify signatures on
email from other people;

x understand that in order to sign email and
allow other people to send them encrypted
email a key pair must be generated, and figure
out how to do so;

x understand that in order to allow other people
to verify their signature and to send them
encrypted email, they must publish their public
key, and figure out some way to do so;

x understand that in order to verify signatures on
email from other people and send encrypted
email to other people, they must acquire those
people’s public keys, and figure out some way
to do so;

x manage to avoid such dangerous errors as
accidentally failing to encrypt, trusting the
wrong public keys, failing to back up their
private keys, and forgetting their pass phrases;
and

x be able to succeed at all of the above within a
few hours of reasonably motivated effort.

This is a minimal list of items that are essential to
correct use of PGP. It does not include such important
tasks as having other people sign the public key,
signing other people’s public keys, revoking the public
key and publicizing the revocation, or evaluating the
authenticity of a public key based on accompanying
signatures and making use of PGP’s built-in
mechanisms for such evaluation.

3 Evaluation methods

We chose to evaluate PGP’s usability through two
methods: an informal cognitive walkthrough [17] in
which we reviewed PGP’s user interface directly and
noted aspects of its design that failed to meet the
usability standard described in Section 2.3; and a user
test [15] performed in a laboratory with test participants
selected to be reasonably representative of the general
population of email users. The strengths and
weaknesses inherent in each of the two methods made
them useful in quite different ways, and it was more
realistic for us to view them as complementary
evaluation strategies [7] than to attempt to use the
laboratory test to directly verify the points raised by the
cognitive walkthrough.

Cognitive walkthrough is a usability evaluation
technique modeled after the software engineering
practice of code walkthroughs. To perform a cognitive
walkthrough, the evaluators step through the use of the
software as if they were novice users, attempting to
mentally simulate what they think the novices’

understanding of the software would be at each point,
and looking for probable errors and areas of confusion.
As an evaluation tool, cognitive walkthrough tends to
focus on the learnability of the user interface (as
opposed to, say, the efficiency), and as such it is an
appropriate tool for evaluating the usability of security.

Although our analysis is most accurately described
as a cognitive walkthough, it also incorporated aspects
of another technique, heuristic evaluation [11]. In this
technique, the user interface is evaluated against a
specific list of high-priority usability principles; our list
of principles is comprised by our definition of usability
for security as given in Section 2.1 and its restatement
specifically for PGP in Section 2.3. Heuristic
evaluation is ideally performed by people who are
“double experts,” highly familiar with both the
application domain and with usability techniques and
requirements (including an understanding of the skills,
mindset and background of the people who are
expected to use the software). Our evaluation draws on
our experience as security researchers and on additional
background in training and tutoring novice computer
users, as well as in theater, anthropology and
psychology.

Some of the same properties that make the design
of usable security a difficult and specialized problem
also make testing the usability of security a challenging
task. To conduct a user test, we must ask the
participants to use the software to perform some task
that will include the use of the security. If, however,
we prompt them to perform a security task directly,
when in real life they might have had no awareness of
that task, then we have failed to test whether the
software is designed well enough to give them that
awareness when they need it. Furthermore, to test
whether they are able to figure out how to use the
security when they want it, we must make sure that the
test scenario gives them some secret that they consider
worth protecting, comparable to the value we expect
them to place on their own secrets in the real world.
Designing tests that take these requirements adequately
into account is something that must be done carefully,
and with the exception of some work on testing the
effectiveness of warning labels [19], we have found
little existing material on user testing that addresses
similar concerns.

4 Cognitive walkthrough

Since this paper is intended for a security audience,
and is subject to space limitations, we present the
results of our cognitive walkthrough in summary form,
focusing on the points which are most relevant to
security risks.

4.1 Visual metaphors

The metaphor of keys is built into cryptologic
terminology, and PGP’s user interface relies heavily on
graphical depictions of keys and locks. The PGPTools
display, shown in Figure 1, offers four buttons to the
user, representing four operations: Encrypt, Sign,
Encrypt & Sign, and Decrypt/Verify, plus a fifth button
for invoking the PGPKeys application. The graphical
labels on these buttons indicate the encryption
operation with an icon of a sealed envelope that has a
metal loop on top to make it look like a closed padlock,
and, for the decryption operation, an icon of an open
envelope with a key inserted at the bottom. Even for a
novice user, these appear to be straightforward visual
metaphors that help make the use of keys to encrypt and
decrypt into an intuitive concept.

Still more helpful, however, would be an extension
of the metaphor to distinguish between public keys for
encryption and private keys for decryption; normal
locks use the same key to lock and unlock, and the key
metaphor will lead people to expect the same for
encryption and decryption if it is not visually clarified
in some way. Faulty intuition in this case may lead
them to assume that they can always decrypt anything
they have encrypted, an assumption which may have
upsetting consequences. Different icons for public and
private keys, perhaps drawn to indicate that they fit
together like puzzle pieces, might be an improvement.

Signatures are another metaphor built into
cryptologic terminology, but the icon of the blue quill
pen that is used to indicate signing is problematic.
People who are not familiar with cryptography
probably know that quills are used for signing, and will
recognize that the picture indicates the signature
operation, but what they also need to understand is that
they are using their private keys to generate signatures.
The quill pen icon, which has nothing key-like about it,
will not help them understand this and may even lead
them to think that, along with the key objects that they
use to encrypt, they also have quill pen objects that they
use to sign. Quill pen icons encountered elsewhere in
the program may be taken to be those objects, rather
than the signatures that they are actually intended to
represent. A better icon design might keep the quill pen

to represent signing, but modify it to show a private key
as the nib of the pen, and use some entirely different
icon for signatures, perhaps something that looks more
like a bit of inked handwriting and incorporates a
keyhole shape.

Signature verification is not represented visually,
which is a shame since it would be easy for people to
overlook it altogether. The single button for
Decrypt/Verify, labeled with an icon that only evokes
decryption, could easily lead people to think that
“verify” just means “verify that the decryption occurred
correctly.” Perhaps an icon that showed a private key
unlocking the envelope and a public key unlocking the
signature inside could suggest a much more accurate
model to the user, while still remaining simple enough
to serve as a button label.

4.2 Different key types

Originally, PGP used the popular RSA algorithm for
encryption and signing. PGP 5.0 uses the Diffie-
Hellman/DSS algorithms. The RSA and Diffie-
Hellman/DSS algorithms use correspondingly different
types of keys. The makers of PGP would prefer to see
all the users of their software switch to use of Diffie-
Hellman/DSS, but have designed PGP 5.0 to be
backward compatible and handle existing RSA keys
when necessary. The lack of forward compatibility,
however, can be a problem: if a file is encrypted for
several recipients, some of whom have RSA keys and
some of whom have Diffie-Hellman/DSS keys, the
recipients who have RSA keys will not be able to
decrypt it unless they have upgraded to PGP 5.0;
similarly, those recipients will not be able to verify
signatures created with Diffie-Hellman/DSS without a
software upgrade.

PGP 5.0 alerts its users to this compatibility issue
in two ways. First, it uses different icons to depict the
different key types: a blue key with an old fashioned
shape for RSA keys, and a brass key with a more
modern shape for Diffie-Hellman/DSS keys, as shown
in Figure 2. Second, when users attempt to encrypt
documents using mixed key types, a warning message

Figure 1

is displayed to tell them that recipients who have earlier
versions of PGP may not be able to decrypt it.

Unfortunately, information about the meaning of
the blue and brass key icons is difficult to find,
requiring users either to go looking through the 132
page manual, or to figure it out based on the presence of
other key type data. Furthermore, other than the
warning message encountered during encryption,
explanation of why the different key types are
significant (in particular, the risk of forward
compatibility problems) is given only in the manual.
Double-clicking on a key pops up a Key Properties
window, which would be a good place to provide a
short message about the meaning of the blue or brass
key icon and the significance of the corresponding key
type.

It is most important for the user to pay attention to
the key types when choosing a key for message
encryption, since that is when mixed key types can
cause compatibility problems. However, PGP’s dialog
box (see Figure 3) presents the user with the metaphor
of choosing people (recipients) to receive the message,
rather than keys to encrypt the message with. This is
not a good design choice, not only because the human
head icons obscure the key type information, but also
because people may have multiple keys, and it is
counterintuitive for the dialog to display multiple
versions of a person rather than the multiple keys that
person owns.

4.3 Key server

Key servers are publicly accessible (via the Internet)
databases in which anyone can publish a public key
joined to a name. PGP is set to access a key server at
MIT by default, but there are others available, most of
which are kept up to date as mirrors of each other. PGP
offers three key server operations to the user under the
Keys pull-down menu shown in Figure 4: Get Selected
Key, Send Selected Key, and Find New Keys. The first
two of those simply connect to the key server and
perform the operation. The third asks the user to type
in a name or email address to search for, connects to the
key server and performs the search, and then tells the
user how many keys were returned as a result, asking
whether or not to add them to the user’s key ring.

The first problem we find with this presentation of
the key server is that users may not realize it exists,
since there is no representation of it in the top level of
the PGPKeys display. Putting the key server operations
under a Key Server pull-down menu would be a better
design choice, especially since it is worthwhile to
encourage the user to make a mental distinction
between operations that access remote machines and
those that are purely local. We also think that it should
be made clearer that a remote machine is being
accessed, and that the identity of the remote machine
should be displayed. Often the “connecting…receiving
data…closing connection” series of status messages
that PGP displayed flashed by almost too quickly to be
read.

At present, PGPKeys keeps no records of key
server accesses. There is nothing to show whether a

Figure 2

key has been sent to a key server, or when a key was
fetched or last updated, and from which key server the
key was fetched or updated. This is information that
might be useful to the user for key management and for
verifying that key server operations were completed
successfully. Adding this record keeping to the
information displayed in the Key Properties window
would improve PGP.

Key revocation, in which a certificate is published
to announce that a previously published public key
should no longer be considered valid, generally implies
the use of the key server to publicize the revocation.
PGP’s key revocation operation does not send the
resulting revocation certificate to the key server, which
is probably as it should be, but there is a risk that some
users will assume that it does do so, and fail to take that
action themselves. A warning that the created
revocation certificate has not yet been publicized would
be appropriate.

4.4 Key management policy

PGP maintains two ratings for each public key in a PGP
key ring. These ratings may be assigned by the user or
derived automatically. The first of these ratings is
validity which is meant to indicate how sure the user is
that the key is safe to encrypt with (i.e., that it does

belong to the person whose name it is labeled with). A
key may be labeled as completely valid, marginally
valid, or invalid. Keys that the user generates are
always completely valid. The second of these ratings is
trust which indicates how much faith the user has in the
key (and implicitly, the owner of the key) as a certifier
of other keys. Similarly, a key may be labeled as
completely trusted, marginally trusted, or untrusted, and
the user's own keys are always completely trusted.

What the user may not realize, unless they read the
manual very carefully, is that there is a policy built into
PGP that automatically sets the validity rating of a key
based on whether it has been signed by a certain
number of sufficiently trusted keys. This is dangerous.
There is nothing to prevent users from innocently
assigning their own interpretations to those ratings and
setting them accordingly (especially since “validity”
and “trust” have different colloquial meanings), and it
is certainly possible that some people might make
mental use of the validity rating while disregarding and
perhaps incautiously modifying the trust ratings. PGP's
ability to automatically derive validity ratings can be
useful, but the fact that PGP is doing so needs to be
made obvious to the user.

Figure 3

4.5 Irreversible actions

Some user errors are reversible, even if they require
some time and effort to reconstruct the desired state.
The ones we list below, however, are not, and
potentially have unpleasant consequences for the user,
who might lose valuable data.

Accidentally deleting the private key

A public key, if deleted, can usually be gotten
again from a key server or from its owner. A
private key, if deleted and not backed up
somewhere, is gone for good, and anything
encrypted with its corresponding public key will
never be able to be decrypted, nor will the user
ever be able to make a revocation certificate for
that public key. PGP responds to any attempt to
delete a key with the question “Do you really want
to delete these items?” This is fine for a public
key, but attempts to delete a private key should be
met with a warning about the possible
consequences.

Accidentally publicizing a key

Information can only be added to a key server, not
removed. A user who is experimenting with PGP
may end up generating a number of key pairs that
are permanently added to the key server, without
realizing that these are permanent entries. It is true
that the effect of this can be partially addressed by
revoking the keys later (or waiting for them to
expire), but this is not a satisfactory solution. First,
even if a key is revoked or expired, it remains on
the key server. Second, the notions of revocation
and expiration are relatively sophisticated
concepts; concepts that are likely to be unfamiliar
to a novice user. For example, as discussed above,
the user may accidentally lose the ability to

generate a revocation certificate for a key. This is
particularly likely for a user who was
experimenting with PGP and generating a variety
of test keys that they intend to delete. One way to
address this problem would be to warn the user
when he sends a key to a server that the
information being sent will be a permanent
addition.

Accidentally revoking a key

Once the user revokes a public key, the only way to
undo the revocation is to restore the key ring from
a backup copy. PGP’s warning message for the
revocation operation asks “Are you sure you want
to revoke this key? Once distributed, others will be
unable to encrypt data to this key.” This message
doesn’t warn the user that, even if no distribution
has taken place, a previous backup of the key ring
will be needed if the user wants to undo the
revocation. Also, it may contribute to the
misconception that revoking the key automatically
distributes the revocation.

Forgetting the pass phrase

PGP suggests that the user make a backup
revocation certificate, so that if the pass phrase is
lost, at least the user can still use that certificate to
revoke the public key. We agree that this is a
useful thing to do, but we also believe that only
expert users of PGP will understand what this
means and how to go about doing so (under PGP’s
current design, this requires the user to create a
backup of the key ring, revoke the public key,
create another backup of the key ring that has the
revoked key, and then restore the key ring from the
original backup).

Figure 4

Failing to back up the key rings

We see two problems with the way the mechanism
for backing up the key rings is presented. First, the
user is not reminded to back up the key rings until
he or she exits PGPKeys; it would be better to
remind as soon as keys are generated, so as not to
risk losing them to a system crash. Second,
although the reminder message tells the user that it
is important to back up the keys to some medium
other than the main hard drive, the dialog box for
backing up presents the main PGP folder as a
default backup location. Since most users will just
click the “Okay” button and accept the default, this
is not a good design.

4.6 Consistency

When PGP is in the process of encrypting or signing a
file, it presents the user with a status message that says
it is currently “encoding.” It would be better to say
“encrypting” or “signing”, since seeing terms that
explicitly match the operations being performed helps
to create a clear mental model for the user, and
introducing a third term may confuse the user into
thinking there is a third operation taking place. We
recognize that the use of the term “encoding” here may
simply be a programming error and not a design choice
per se, but we think this is something that should be
caught by usability-oriented product testing.

4.7 Too much information

In previous implementations of PGP, the supporting
functions for key management (creating key rings,
collecting other people’s keys, constructing a “web of
trust”) tended to overshadow PGP’s simpler primary
functions, signing and encryption. PGP 5.0 separates
these functions into two applications: PGPKeys for key
management, and PGPTools for signing and encryption.
This cleans up what was previously a rather jumbled
collection of primary and supporting functions, and
gives the user a nice simple interface to the primary
functions. We believe, however, that the PGPKeys
application still presents the user with far too much
information to make sense of, and that it needs to do a
better job of distinguishing between basic, intermediate,
and advanced levels of key management activity so as
not to overwhelm its users.

Currently, the PGPKeys display (see Figure 2)
always shows the following information for each key
on the user’s key ring: owner’s name, validity, trust

level, creation date, and size. The key type is also
indicated by the choice of icon, and the user can toggle
the display of the signatures on each key. This is a lot
of information, and there is nothing to help the user
figure out which parts of the display are the most
important to pay attention to. We think that this will
cause users to fail to recognize data that is immediately
relevant, such as the key type; that it will increase the
chances that they will assign wrong interpretations to
some of the data, such as trust and validity; and that it
will add to making users feel overwhelmed and
uncertain that they are managing their security
successfully.

We believe that, realistically, the vast majority of
PGP’s users will be moving from sending all of their
email in plain text to using simple encryption when
they email something sensitive, and that they will be
inclined to trust all the keys they acquire, because they
are looking for protection against eavesdroppers and
not against the sort of attack that would try to trick
them into using false keys. A better design of
PGPKeys would have an initial display configuration
that concentrated on giving the user the correct model
of the relationship between public and private keys, the
significance of key types, and a clear understanding of
the functions for acquiring and distributing keys.
Removing the validity, trust level, creation date and
size from the display would free up screen area for this,
and would help the user focus on understanding the
basic model well. Some security experts may find the
downplaying of this information alarming, but the goal
here is to enable users who are inexperienced with
cryptography to understand and begin to use the basics,
and to prevent confusion or frustration that might lead
them to use PGP incorrectly or not at all.

A smaller set of more experienced users will
probably care more about the trustworthiness of their
keys; perhaps these users do have reason to believe that
the contents of their email is valuable enough to be the
target of a more sophisticated, planned attack, or
perhaps they really do need to authenticate a digital
signature as coming from a known real world entity.
These users will need the information given by the
signatures on each key. They may find the validity and
trust labels useful for recording their assessments of
those signatures, or they may prefer to glance at the
actual signatures each time. It would be worthwhile to
allow users to add the validity and trust labels to the
display if they want to, and to provide easily accessible
help for users who are transitioning to this more
sophisticated level of use. But this would only make
sense if the automatic derivation of validity by PGP’s
built-in policy were turned off for these users, for the
reasons discussed in Section 4.4.

Key size is really only relevant to those who
actually fear a cryptographic attack, and could certainly

be left as information for the Key Properties dialog, as
could the creation date. Users who are sophisticated
enough to make intelligent use of that information are
certainly sophisticated enough to go looking for it.

5 User test

5.1 Purpose

Our user test was designed to evaluate whether PGP 5.0
meets the specific usability standard described in
Section 2.3. We gave our participants a test scenario
that was both plausible and appropriately motivating,
and then avoided interfering with their attempts to carry
out the security tasks that we gave them.

5.2 Description

5.2.1 Test design

Our test scenario was that the participant had
volunteered to help with a political campaign and had
been given the job of campaign coordinator (the party
affiliation and campaign issues were left to the
participant’s imagination, so as not to offend anyone).
The participant’s task was to send out campaign plan
updates to the other members of the campaign team by
email, using PGP for privacy and authentication. Since
presumably volunteering for a political campaign
implies a personal investment in the campaign’s
success, we hoped that the participants would be
appropriately motivated to protect the secrecy of their
messages.

Since PGP does not handle email itself, it was
necessary to provide the participants with an email
handling program to use. We chose to give them
Eudora, since that would allow us to also evaluate the
success of the Eudora plug-in that is included with
PGP. Since we were not interested in testing the
usability of Eudora (aside from the PGP plug-in), we
gave the participants a brief Eudora tutorial before
starting the test, and intervened with assistance during
the test if a participant got stuck on something that had
nothing to do with PGP.

After briefing the participants on the test scenario
and tutoring them on the use of Eudora, they were
given an initial task description which provided them
with a secret message (a proposed itinerary for the
candidate), the names and email addresses of the
campaign manager and four other campaign team
members, and a request to please send the secret
message to the five team members in a signed and

encrypted email. In order to complete this task, a
participant had to generate a key pair, get the team
members’ public keys, make their own public key
available to the team members, type the (short) secret
message into an email, sign the email using their private
key, encrypt the email using the five team members’
public keys, and send the result. In addition, we
designed the test so that one of the team members had
an RSA key while the others all had Diffie-
Hellman/DSS keys, so that if a participant encrypted
one copy of the message for all five team members
(which was the expected interpretation of the task), they
would encounter the mixed key types warning message.
Participants were told that after accomplishing that
initial task, they should wait to receive email from the
campaign team members and follow any instructions
they gave.

Each of the five campaign team members was
represented by a dummy email account and a key pair
which were accessible to the test monitor through a
networked laptop. The campaign manager’s private
key was used to sign each of the team members’ public
keys, including her own, and all five of the signed
public keys were placed on the default key server at
MIT, so that they could be retrieved by participant
requests.

Under certain circumstances, the test monitor
posed as a member of the campaign team and sent
email to the participant from the appropriate dummy
account. These circumstances were:

1. The participant sent email to that team member
asking a question about how to do something. In
that case, the test monitor sent the minimally
informative reply consistent with the test scenario,
i.e. the minimal answer that wouldn’t make that
team member seem hostile or ignorant beyond the
bounds of plausibility3.

2. The participant sent the secret in a plaintext email.
The test monitor then sent email posing as the
campaign manager, telling the participant what

3 This aspect of the test may trouble the reader in that
different test participants were able to extract different
amounts of information by asking questions in email, thus
leading to test results that are not as standardized as we might
like. However, this is in some sense realistic; PGP is being
tested here as a utility for secure communication, and people
who use it for that purpose will be likely to ask each other for
help with the software as part of that communication. We
point out also that the purpose of our test is to locate extreme
usability problems, not to compare the performance of one set
of participants against another, and that while inaccurately
improved performance by a few participants might cause us to
fail to identify some usability problems, it certainly would not
lead us to identify a problem where none exists.

happened, stressing the importance of using
encryption to protect the secrets, and asking the
participant to try sending an encrypted test email
before going any further. If the participant
succeeded in doing so, the test monitor (posing as
the campaign manager) then sent an updated secret
to the participant in encrypted email and the test
proceeded as from the beginning.

3. The participant sent email encrypted with the
wrong key. The test monitor then sent email
posing as one of the team members who had
received the email, telling the participant that the
team member was unable to decrypt the email and
asking whether the participant had used that team
member’s key to encrypt.

4. The participant sent email to a team member
asking for that team member’s key. The test
monitor then posed as that team member and sent
the requested key in email.

5. The participant succeeded in carrying out the initial
task. They were then sent a signed, encrypted
email from the test monitor, posing as the
campaign manager, with a change for the secret
message, in order to test whether they could
decrypt and read it successfully. If at that point
they had not done so on their own, they received
email prompting to remember to back up their key
rings and to make a backup revocation certificate,
to see if they were able to perform those tasks. If
they had not sent a separately encrypted version of
the message to the team member with the RSA
key, they also received email from the test monitor
posing as that team member and complaining that
he couldn’t decrypt the email message.

6. The participant sent email telling the team member
with the RSA key that he should generate a new
key or should upgrade his copy of PGP. In that
case the test monitor continued sending email as
that team member, saying that he couldn’t or didn’t
want to do those things and asking the participant
to please try to find a way to encrypt a copy that he
could decrypt.

Each test session lasted for 90 minutes, from the point
at which the participant was given the initial task
description to the point when the test monitor stopped
the session. Manuals for both PGP and Eudora were
provided, along with a formatted floppy disk, and
participants were told to use them as much as they
liked.

5.2.2 Participants

The user test was run with twelve different participants,
all of whom were experienced users of email, and none
of whom could describe the difference between public
and private key cryptography prior to the test sessions.
The participants all had attended at least some college,
and some had graduate degrees. Their ages ranged
from 20 to 49, and their professions were diversely
distributed, including graphic artists, programmers, a
medical student, administrators and a writer. More
detailed information about participant selection and
demographics is available in [18].

5.3 Results

We summarize the most significant results we observed
from the test sessions, again focusing on the usability
standard for PGP that we gave in Section 2.3. Detailed
transcripts of the test sessions are available in [18].

Avoiding dangerous errors

Three of the twelve test participants (P4, P9, and P11)
accidentally emailed the secret to the team members
without encryption. Two of the three (P9 and P11)
realized immediately that they had done so, but P4
appeared to believe that the security was supposed to be
transparent to him and that the encryption had taken
place. In all three cases the error occurred while the
participants were trying to figure out the system by
exploring.

One participant (P12) forgot her pass phrase during
the course of the test session and had to generate a new
key pair. Participants tended to choose pass phrases
that could have been standard passwords, eight to ten
characters long and without spaces.

Figuring out how to encrypt with any key

One of the twelve participants (P4) was unable to figure
out how to encrypt at all. He kept attempting to find a
way to “turn on” encryption, and at one point believed
that he had done so by modifying the settings in the
Preferences dialog in PGPKeys. Another of the twelve
(P2) took more than 30 minutes4 to figure out how to
encrypt, and the method he finally found required a
reconfiguration of PGP (to make it display the
PGPMenu inside Eudora). Another (P3) spent 25

4 This is measured as time the participant spent working on
the specific task of encrypting a message, and does not
include time spent working on getting keys, generating keys,
or otherwise exploring PGP and Eudora.

minutes sending repeated test messages to the team
members to see if she had succeeded in encrypting
them (without success), and finally succeeded only after
being prompted to use the PGP Plug-In buttons.

Figuring out the correct key to encrypt with

Among the eleven participants who figured out how to
encrypt, failure to understand the public key model was
widespread. Seven participants (P1, P2, P7, P8, P9,
P10 and P11) used only their own public keys to
encrypt email to the team members. Of those seven,
only P8 and P10 eventually succeeded in sending
correctly encrypted email to the team members before
the end of the 90 minute test session (P9 figured out
that she needed to use the campaign manager’s public
key, but then sent email to the the entire team encrypted
only with that key), and they did so only after they had
received fairly explicit email prompting from the test
monitor posing as the team members. P1, P7 and P11
appeared to develop an understanding that they needed
the team members’ public keys (for P1 and P11, this
was also after they had received prompting email), but
still did not succeed at correctly encrypting email. P2
never appeared to understand what was wrong, even
after twice receiving feedback that the team members
could not decrypt his email.

Another of the eleven (P5) so completely
misunderstood the model that he generated key pairs for
each team member rather than for himself, and then
attempted to send the secret in an email encrypted with
the five public keys he had generated. Even after
receiving feedback that the team members were unable
to decrypt his email, he did not manage to recover from
this error.

Decrypting an email message

Five participants (P6, P8, P9, P10 and P12) received
encrypted email from a team member (after
successfully sending encrypted email and publicizing
their public keys). P10 tried for 25 minutes but was
unable to figure out how to decrypt the email. P9
mistook the encrypted message block for a key, and
emailed the team member who sent it to ask if that was
the case; after the test monitor sent a reply from the
team member saying that no key had been sent and that
the block was just the message, she was then able to
decrypt it successfully. P6 had some initial difficulty
viewing the results after decryption, but recovered
successfully within 10 minutes. P8 and P12 were able
to decrypt without any problems.

Publishing the public key

Ten of the twelve participants were able to successfully
make their public keys available to the team members;
the other two (P4 and P5) had so much difficulty with
earlier tasks that they never addressed key distribution.
Of those ten, five (P1, P2, P3, P6 and P7) sent their
keys to the key server, three (P8, P9 and P10) emailed
their keys to the team members, and P11 and P12 did
both. P3, P9 and P10 publicized their keys only after
being prompted to do so by email from the test monitor
posing as the campaign manager.

The primary difficulty that participants appeared to
experience when attempting to publish their keys
involved the iconic representation of their key pairs in
PGPKeys. P1, P11 and P12 all expressed confusion
about which icons represented their public keys and
which their private keys, and were disturbed by the fact
that they could only select the key pair icon as an
indivisible unit; they feared that if they then sent their
selection to the key server, they would be accidentally
publishing their private keys. Also, P7 tried and failed
to email her public key to the team members; she was
confused by the directive to “paste her key into the
desired area” of the message, thinking that it referred to
some area specifically demarcated for that purpose that
she was unable to find.

Getting other people’s public keys

Eight of the twelve participants (P1, P3, P6, P8, P9,
P10, P11 and P12) successfully got the team members’
public keys; all of the eight used the key server to do
so. Five of the eight (P3, P8, P9, P10 and P11) received
some degree of email prompting before they did so. Of
the four who did not succeed, P2 and P4 never seemed
aware that they needed to get the team members’ keys,
P5 was so confused about the model that he generated
keys for the team members instead, and P7 spent 15
minutes trying to figure out how to get the keys but
ultimately failed.

P7 gave up on using the key server after one failed
attempt in which she tried to retrieve the campaign
manager’s public key but got nothing back (perhaps due
to mis-typing the name). P1 spent 25 minutes trying
and failing to import a key from an email message; he
copied the key to the clipboard but then kept trying to
decrypt it rather than import it. P12 also had difficulty
trying to import a key from an email message: the key
was one she already had in her key ring, and when her
copy and paste of the key failed to have any effect on
the PGPKeys display, she assumed that her attempt had
failed and kept trying. Eventually she became so
confused that she began trying to decrypt the key
instead.

Handling the mixed key types problem

Four participants (P6, P8, P10 and P12) eventually
managed to send correctly encrypted email to the team
members (P3 sent a correctly encrypted email to the
campaign manager, but not to the whole team). P6 sent
an individually encrypted message to each team
member to begin with, so the mixed key types problem
did not arise for him. The other three received a reply
email from the test monitor posing as the team member
with an RSA key, complaining that he was unable to
decrypt their email.

P8 successfully employed the solution of sending
that team member an email encrypted only with his
own key. P10 explained the cause of the problem
correctly in an email to that team member, but didn’t
manage to offer a solution. P12 half understood,
initially believing that the problem was due to the fact
that her own key pair was Diffie-Hellman/DSS, and
attempting to generate herself an RSA key pair as a
solution. When she found herself unable to do that, she
then decided that maybe the problem was just that she
had a corrupt copy of that team member’s public key,
and began trying in various ways to get a good copy of
it. She was still trying to do so at the end of the test
session.

Signing an email message

All the participants who were able to send an encrypted
email message were also able to sign the message
(although in the case of P5, he signed using key pairs
that he had generated for other people). It was unclear
whether they assigned much significance to doing so,
beyond the fact that it had been requested as part of the
task description.

Verifying a signature on an email message

Again, all the participants who were able to decrypt an
email message were by default also verifying the
signature on the message, since the only decryption
operation available to them includes verification.
Whether they were aware that they were doing so, or
paid any attention to the verification result message, is
not something we were able to determine from this test.

Creating a backup revocation certificate

We would have liked to know whether the participants
were aware of the good reasons to make a backup
revocation certificate and were able to figure out how to
do so successfully. Regrettably, this was very difficult
to test for. We settled for direct prompting to make a
backup revocation certificate, for participants who

managed to successfully send encrypted email and
decrypt a reply (P6, P8 and P12).

In response to this prompting, P6 generated a test
key pair and then revoked it, without sending either the
key pair or its revocation to the key server. He
appeared to think he had successfully completed the
task. P8 backed up her key rings, revoked her key, then
sent email to the campaign manager saying she didn’t
know what to do next. P12 ignored the prompt,
focusing on another task.

Deciding whether to trust keys from the key server

Of the eight participants who got the team members’
public keys, only three (P1, P6, and P11) expressed
some concern over whether they should trust the keys.
P1’s worry was expressed in the last five minutes of his
test session, so he never got beyond that point. P6
noted aloud that the team members’ keys were all
signed by the campaign manager’s key, and took that as
evidence that they could be trusted. P11 expressed
great distress over not knowing whether or not she
should trust the keys, and got no further in the
remaining ten minutes of her test session. None of the
three made use of the validity and trust labeling
provided by PGPKeys.

6 Conclusions

6.1 Failure of standard interface design

The results seen in our case study support our
hypothesis that the standard model of user interface
design, represented here by PGP 5.0, is not sufficient to
make computer security usable for people who are not
already knowledgeable in that area. Our twelve test
participants were generally educated and experienced at
using email, yet only one third of them were able to use
PGP 5.0 to correctly sign and encrypt an email message
when given 90 minutes in which to do so. Furthermore,
one quarter of them accidentally exposed the secret they
were meant to protect in the process, by sending it in
email they thought they had encrypted but had not.

In Section 2.1, we defined usability for security in
terms of four necessary qualities, which translate
directly to design priorities. PGP 5.0’s user interface
fails to enable effective security where it is not
designed in accordance with those priorities: test
participants did not understand the public key model
well enough to know that they must get public keys for
people they wish to send secure email to; many who
knew that they needed to get a key or to encrypt still
had substantial difficulties in figuring out how to do so;
some erroneously sent secrets in plaintext, thinking that

they had encrypted; and many expressed frustration
and unhappiness with the experience of trying to use
PGP 5.0, to the point where it is unlikely that they
would have continued to use it in the real world.

All this failure is despite the fact that PGP 5.0 is
attractive, with basic operations neatly represented by
buttons with labels and icons, and pull-down menus for
the rest, and despite the fact that it is simple to use for
those who already understand the basic models of
public key cryptography and digital signature-based
trust. Designing security that is usable enough to be
effective for those who don’t already understand it must
thus require something more.

6.2 Usability evaluation for security

Since usable security requires user interface design
priorities that are not the same as those of general
consumer software, it likewise requires usability
evaluation methods that are appropriate to testing
whether those priorities have been sufficiently
achieved. Standard usability evaluation methods,
simplistically applied, may treat security functions as if
they were primary rather than secondary goals for the
user, leading to faulty conclusions. A body of public
work on usability evaluation in a security context would
be extremely valuable, and will almost certainly have to
come from research sources, since software developers
are not eager to make public the usability flaws they
find in their own products.

In our own work, which has focused on personal
computer users who have little initial understanding of
security, we have assigned a high value to learnability,
and thus have found cognitive walkthrough to be a
natural evaluation technique. Other techniques may be
more appropriate for corporate or military users, but are
likely to need similar adaptation to the priorities
appropriate for security. In designing appropriate user
tests, it may be valuable to look to other fields in which
there is an established liability for consumer safety;
such fields are more likely to have a body of research
on how best to establish whether product designs
successfully promote safe modes of use.

6.3 Toward better design strategies

The detailed findings in our case study suggest several
design strategies for more usable security, which we are
pursuing in our ongoing work. To begin with, it is clear
that there is a need to communicate an accurate
conceptual model of the security to the user as quickly
as possible. The smaller and simpler that conceptual
model is, the more plausible it will be that we can

succeed in doing so. We thus are investigating
pragmatic ways of paring down security functionality to
that which is truly necessary and appropriate to the
needs of a given demographic, without sacrificing the
integrity of the security offered to the user.

After a minimal yet valid conceptual model of the
security has been established, it must be communicated
to the user, more quickly and effectively than has been
necessary for conceptual models of other types of
software. We are investigating several strategies for
accomplishing this, including the possibility of
carefully crafting interface metaphors to match security
functionality at a more demanding level of accuracy.

In addition, we are looking to current research in
educational software for ideas on how best to guide
users through learning to manage their security. We do
not believe that home users can be made to cooperate
with extensive tutorials, but we are investigating gentler
methods for providing users with the right guidance at
the right time, including how best to make use of
warning messages, wizards, and other interactive tools.

7 Related work

We have found very little published research to date on
the problem of usability for security. Of what does
exist, the most prominent example is the Adage project
[12, 20], which is described as a system designed to
handle authorization policies for distributed
applications and groups. Usability was a major design
goal in Adage, but it is intended for use by professional
system administrators who already possess a high level
of expertise, and as such it does not address the
problems posed in making security effectively usable
by a more general population. Work has also been
done on the related issue of usability for safety critical
systems [10], like those which control aircraft or
manufacturing plants, but we may hope that unlike the
users of personal computer security, users of those
systems will be carefully selected and trained.

Ross Anderson discusses the effects of user non-
compliance on security in [1], and Don Davis analyzes
the unrealistic expectations that public-key based
security systems often place on users in [3].

Beyond that, we know only of one paper on
usability testing of a database authentication routine [8],
and some brief discussion of the security and privacy
issues inherent in computer supported collaborative
work [16]. John Howard’s thesis [6] provides
interesting analyses of the security incidents reported to
CERT5 between 1989 and 1995, but focuses more on

5 CERT is the Computer Emergency Response Team formed
by the Defense Advanced Research Projects Agency, and
located at Carnegie Mellon University.

the types of attacks than on the causes of the
vulnerabilities that those attacks exploited, and
represents only incidents experienced by entities
sophisticated enough to report them to CERT.

Acknowledgements

We thank Robert Kraut for helpful advice on the design
of our user test. This publication was supported in part
by Contract No. 102590-98-C-3513 from the United
States Postal Service. The contents of this publication
are solely the responsibility of the authors.

References

1. Ross Anderson. Why Cryptosystems Fail. In
Communications of the ACM, 37(11), 1994.

2. Matt Bishop. UNIX Security: Threats and
Solutions. Presentation to SHARE 86.0, March
1996. At http://seclab.cs.ucdavis.edu/
~bishop/scriv/1996-share86.pdf.

3. Don Davis. Compliance Defects in Public-Key
Cryptography. In Proceedings of the 6th USENIX
Security Symposium, 1996.

4. The Economist. The End of Privacy. May 1, 1999,
pages 21-23.

5. Simson Garfinkel. PGP: Pretty Good Privacy.
O’Reilly and Associates, 1995.

6. John D. Howard. An Analysis of Security Incidents
on the Internet 1989-1995. Carnegie Mellon
University Ph.D. thesis, 1997.

7. John, B. E., & Mashyna, M. M. (1997) Evaluating
a Multimedia Authoring Tool with Cognitive
Walkthrough and Think-Aloud User Studies. In
Journal of the American Society of Information
Science, 48 (9).

8. Clare-Marie Karat. Iterative Usability Testing of a
Security Application. In Proceedings of the
Human Factors Society 33rd Annual Meeting, 1989.

9. Stephen Kent. Security. In More Than Screen
Deep: Toward Every-Citizen Interfaces to the
Nation’s Information Infrastructure. National
Academy Press, Washington, D.C., 1997.

10. Nancy G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley Publishing
Company, 1995.

11. Jakob Nielsen. Heuristic Evaluation. In Usability
Inspection Methods, John Wiley & Sons, Inc.,
1994.

12. The Open Group Research Institute. Adage System
Overview. Published on the web in July 1998 at
http://www.osf.org/www/adage/
relatedwork.htm

13. Pretty Good Privacy, Inc. PGP 5.0 Features and
Benefits. Published in 1997 at
http://pgp.com/products/PGP50-fab.cgi

14. Pretty Good Privacy, Inc. User’s Guide for PGP
for Personal Privacy, Version 5.0 for the Mac OS.
Packaged with software, 1997.

15. Jeffrey Rubin. Handbook of usability testing: how
to plan, design, and conduct effective tests. Wiley,
1994.

16. HongHai Shen and Prasun Dewan. Access Control
for Collaborative Environments. In Proceedings of
CSCW ’92.

17. Cathleen Wharton, John Rieman, Clayton Lewis
and Peter Polson. The Cognitive Walkthrough
Method: A Practioner’s Guide. In Usability
Inspection Methods, John Wiley & Sons, Inc.,
1994.

18. Alma Whitten and J.D. Tygar. Usability of
Security: A Case Study. Carnegie Mellon
University School of Computer Science Technical
Report CMU-CS-98-155, December 1998.
ftp://reports-archive.adm.cs.cmu.edu/
1998/CMU-CS-98-155.ps

19. Wogalter, M. S., & Young, S. L. (1994).
Enhancing warning compliance through alternative
product label designs. Applied Ergonomics, 25,
53-57.

20. Mary Ellen Zurko and Richard T. Simon. User-
Centered Security. New Security Paradigms
Workshop, 1996.

