All You Ever Wanted to Know About
Dynamic Taint Analysis
&
Forward Symbolic Execution
(but might have been afraid to ask)

(Yes, we were trying to overflow the title length field
on the submission server)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley

A Few Things You Need to Know About
Dynamic Taint Analysis
&
Forward Symbolic Execution
(but might have been afraid to ask)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley

The Root of All Evil

Humans write programs

WEIRD — MY CODE'S CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL)

=

This Talk:

Computers Analyzing Programs Dynamically at
Runtime

8/16/2010 Carnegie Mellon University 3

Two Essential Runtime Analyses

Detect Exploits e Detect

[Costa2005,Crandall2005, ek packing in malware
Newsome2005,5uh2004] e e [Bayer2009,Yin2007]

Dynamic Taint Analysis:
What values are derived from user input?

— . Son. Feng Mao (University %) Session 4: Malwar
)

Automated Test Case

Generation
[Cadar2008,Godefroid2005,5Sen2005]

' SItE u
1:30pm SHOFt Iaik> = 8 the USEEDOF filinois). _‘ons with

Input Filter Generation
[Costa2007,Brumley2008]

Forward Symbolic Execution:
What input will make execution reach this line of code?

8/16/2010 Carnegie Mellon University

Our Contributions

1: Turn English
descriptions into an
algorithm
— Operational

Dynamic Taint Analysis: Semantics

s this value affected by user input? 2: Algorithm highlights

caveats, issues, and

unsolved problems
that are deceptively

Computers Analyzing Programs
Dynamically at Runtime

Forward Symbolic Execution:

What input will make execution
reach this line of code? hard

8/16/2010 Carnegie Mellon University 5

Our Contributions (cont’d)

3: Systematize recurring themes in a wealth of
previous work

USENIX 2007 = 50

8/16/2010 Carnegie Mellon University

Dynamic Taint Analysis:

What values are derived from user input?

1. How it works — example

2. Desired properties

3. Example issue. Paper has many more.

8/16/2010 Carnegie Mellon University 7

‘ tainted ' untainted A

g 78 Var Val
= @ =get_input(#Ef-)

v = X + 42 X /

Input is tainted

goto vy
T

Input t= IsL.Jntrusted(src) . T

get_input(src)l t

8/16/2010 Carnegie Mellon University 8

‘ tainted ' untainted A

g 78 Var Val
‘=get_input(ﬂ 2)

X 7
- 9-0+®
Y 49
Data derived from
[4
faint Propagation Var | Tainted?

t1 = t[x1], t2 = t[x2] . T
X1+ X2 t1vt2 v T

BinOp

8/16/2010 Carnegie Mellon University 9

' tainted ' untainted A

g 78 Var Val
‘=get_input(ﬂ 2)

= + X 7
Q ®-@ | ag
goto @

[A

Taint Checking Var |Tainted?

Pgoto(ta) =-1a X !
(Must be true to execute) Y T

Policy Violation

Detected

8/16/2010 Carnegie Mellon University 10

Diffeadtsdse:

Pxpgrarb &matroh
Jumping to
overwritten strcpy(buffer,argv([1]) ;
return address
return ;

8/16/2010 Carnegie Mellon University 11

Memory Load

Variables

A

Var

Val

X

7
[

Var

Tainted?

8/16/2010

T

Carnegie Mellon University

Memory

1l

Addr

Val

7

42
[

Tainted?

F

12

Problem: Memory Addresses

A Var Val
->‘ get_ mput(i) y 7

-y Ioad
) Addr | Val
goto Y, u
All values derived / 42
from user input
are taintedss Addr | Tainted?

7/ F

8/16/2010 Carnegie Mellon University 13

PO“CV 1: Taint depends only on the memory cell

). Var | Val
7 A
= get_u . . X 7
= @ = load Undertainting
e Addr | Val
Failing to identify tainted values
= goto @ _ issi i
e.g., missing exploits 7 42
Taint Propagation
Addr | Tainted?
v=A[x],t=tv] T,
Load
load(x) J t 7 i

8/16/2010 Carnegie Mellon University

14

If either the address or the memory
cell is tainted, then the value is tainted

-7}

Policy 2:

Address

Overtainting T

is tainted
Unaffected values are tainted orinta
- e.g., exploits on safe inputs [\ orintb

Taint Propagation

v =A[X], t =tu|v], ta = T[X]
Load load(x) { t v ta

8/16/2010 Carnegie Mellon University 15

Research Challenge
State-of-the-Art is not perfect for all
programs

Overtainting:
Policy may wrongly
detect taint

S A

8/16/2010 Carnegie Mellon University 16

Undertainting:

Policy may miss taint

Forward Symbolic Execution:

What input will make execution reach this line of code?

* How it works — example

* Inherent problems of symbolic execution

* Proposed solutions

8/16/2010 Carnegie Mellon University 17

The Challenge

packet len(int header, char *packet)
232 possible char buf[2048] = “...”;
inputs if (header < 0)

return O;
if (header == 0x12345678)
0x12345678 strcpy(buf, packet);

return strlen(buf);

Forward Symbolic Execution:

What input will make execution
reach this line of code?

8/16/2010 Carnegie Mellon University 18

A Simple Example

header symbolic
can have any pa Interpreter

What input will

make execution Interpreter
reach this line of

SR, .erz20 t

If K rpreter 578 return O;

f

strcpy(buf,packet);

return strlen(buf);

header >0 A\ header >0 A\

header == 0x12345678

8/16/2010 Carnegie Mellon University 19

header |=0x12345678

One Problem:
Exponential Blowup Due to Branches

@ Interpreter - Branch 1
- .- -
docccses

~

Exponential Number of Interpreters/formulas in # of branches

8/16/2010 Carnegie Mellon University 20

Path Selection Heuristics

Symbolic Execution
Tree

However, these are heuristics. In the worst case all create an
exponential number of formulas in the tree height.

* Depth-First Search (bounded) ,Random Search [cadar2008]
* Concolic Testing [Sen2005,Godefroid2008]

8/16/2010 Carnegie Mellon University 21

Symbolic Execution is not Easy

* Exponential number of interpreters/formulas
AN
branching) /& i\
ST

* Exponentially-sized formulas

substitution — —) @

* Solving a formula is NP-Complete!

8/16/2010 Carnegie Mellon University 22

Other Important Issues

Symbolic Memory Sanitization

index Memory

o

FO rm a I |Zat I Onherreasonable assumption ?

ot A e . ‘ Algebraic
e— . =@
. o=

i)

O = Q
More 4

“Like normal execution, where inputs are substituted by symbolic variables”

King et 1976 ~ Symbolic Jumps policies
-

oo

goto symbolic - y / .
Ve / N

\ J

ERE ey = —r—

TR AT @by
. = get_input()
loaded = mem]

FORWARD SYMBOLIC EXECUTION

If symbolic then gotoa
elsegoto b

8/16/2010 Carnegie Mellon University

23

Conclusion

 Dynamic taint analysis and forward symbolic
execution used extensively in literature

— Formal algorithm and what is done for each possible
step of execution often not emphasized

* We provided a formal definition and summarized
— Critical issues
— State-of-the-art solutions
— Common tradeoffs

Thank You!

thanassis@cmu.edu

Questions?

