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The Root of All Evil

Humans write programs

WEIRD — MY CODE'S CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL)

=

This Talk:

Computers Analyzing Programs Dynamically at
Runtime
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Two Essential Runtime Analyses

Detect Exploits e Detect

[Costa2005,Crandall2005, ek packing in malware
Newsome2005,5uh2004] e e [Bayer2009,Yin2007]

Dynamic Taint Analysis:
What values are derived from user input?

— . Son. Feng Mao (University %) Session 4: Malwar
)

Automated Test Case

Generation
[Cadar2008,Godefroid2005,5Sen2005]

' SItE u
1:30pm SHOFt Iaik> = 8 the USEEDOF filinois). _‘ons with

Input Filter Generation
[Costa2007,Brumley2008]

Forward Symbolic Execution:
What input will make execution reach this line of code?
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Our Contributions

1: Turn English
descriptions into an
algorithm
— Operational

Dynamic Taint Analysis: Semantics

s this value affected by user input? 2: Algorithm highlights

caveats, issues, and

unsolved problems
that are deceptively

Computers Analyzing Programs
Dynamically at Runtime

Forward Symbolic Execution:

What input will make execution
reach this line of code? hard
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Our Contributions (cont’d)

3: Systematize recurring themes in a wealth of
previous work

USENIX 2007 = 50
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Dynamic Taint Analysis:

What values are derived from user input?

1. How it works — example

2. Desired properties

3. Example issue. Paper has many more.
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‘ tainted ' untainted A

g 78 Var Val
= @ =get_input( #Ef-)

v = X + 42 X /

Input is tainted

goto vy
T

Input t= IsL.Jntrusted(src) . T

get_input(src)l t
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‘ tainted ' untainted A

g 78 Var Val
‘=get_input(ﬂ 2)

X 7
- 9-0+®
Y 49
Data derived from
[4
faint Propagation Var | Tainted?

t1 = t[x1], t2 = t[x2] . T
X1+ X2 t1vt2 v T

BinOp
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' tainted ' untainted A

g 78 Var Val
‘=get_input(ﬂ 2)

= + X 7
Q ®-@ | ag
goto @

[A

Taint Checking Var |Tainted?

Pgoto(ta) =-1a X !
(Must be true to execute) Y T

Policy Violation

Detected
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Diffeadtsdse:

Pxpgrarb &matroh
Jumping to
overwritten strcpy(buffer,argv([1]) ;
return address
return ;
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Memory Load

Variables

A

Var

Val

X

7
[

Var

Tainted?
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Memory

1l

Addr

Val

7

42
[

Tainted?

F
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Problem: Memory Addresses

A Var Val
->‘ get_ mput(i) y 7

-y Ioad
) Addr | Val
goto Y, u
All values derived / 42
from user input
are taintedss Addr | Tainted?

7/ F
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PO“CV 1: Taint depends only on the memory cell

). Var | Val
7 A
= get_u . . X 7
= @ = load Undertainting
e Addr | Val
Failing to identify tainted values
= goto @ _ issi i
e.g., missing exploits 7 42
Taint Propagation
Addr | Tainted?
v=A[x],t=tv] T,
Load
load(x) J t 7 i
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If either the address or the memory
cell is tainted, then the value is tainted

-7}

Policy 2:

Address

Overtainting T

is tainted
Unaffected values are tainted orinta
- e.g., exploits on safe inputs [\ orintb

Taint Propagation

v =A[X], t =tu|v], ta = T[X]
Load load(x) { t v ta
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Research Challenge
State-of-the-Art is not perfect for all
programs

Overtainting:
Policy may wrongly
detect taint

S A
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Undertainting:

Policy may miss taint




Forward Symbolic Execution:

What input will make execution reach this line of code?

* How it works — example

* Inherent problems of symbolic execution

* Proposed solutions
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The Challenge

packet len(int header, char *packet)
232 possible char buf[2048] = “...”;
inputs if (header < 0)

return O;
if (header == 0x12345678)
0x12345678 strcpy(buf, packet);

return strlen(buf);

Forward Symbolic Execution:

What input will make execution
reach this line of code?
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A Simple Example

header symbolic
can have any pa Interpreter

What input will

make execution Interpreter
reach this line of

SR, .erz20 t

If K rpreter 578 return O;

f

strcpy(buf,packet);

return strlen(buf);

header >0 A\ header >0 A\

header == 0x12345678
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One Problem:
Exponential Blowup Due to Branches

@ Interpreter - Branch 1
- .- -
docccses

~

Exponential Number of Interpreters/formulas in # of branches
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Path Selection Heuristics

Symbolic Execution
Tree

However, these are heuristics. In the worst case all create an
exponential number of formulas in the tree height.

* Depth-First Search (bounded) ,Random Search [cadar2008]
* Concolic Testing [Sen2005,Godefroid2008]
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Symbolic Execution is not Easy

* Exponential number of interpreters/formulas
AN
branching ) /& i\
ST

* Exponentially-sized formulas

substitution — —) @

* Solving a formula is NP-Complete!
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Other Important Issues

Symbolic Memory Sanitization

index Memory

o

FO rm a I |Zat I Onherreasonable assumption ?

ot A e . ‘ Algebraic
e— . =@
. o=

i)

O = Q
More 4

“Like normal execution, where inputs are substituted by symbolic variables”

King et 1976 ~ Symbolic Jumps policies
-

oo

goto  symbolic - y / .
Ve / N

\ J

ERE ey = —r—

TR AT @by
. = get_input()
loaded = mem ]

FORWARD SYMBOLIC EXECUTION

If symbolic then gotoa
elsegoto b
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Conclusion

 Dynamic taint analysis and forward symbolic
execution used extensively in literature

— Formal algorithm and what is done for each possible
step of execution often not emphasized

* We provided a formal definition and summarized
— Critical issues
— State-of-the-art solutions
— Common tradeoffs



Thank You!

thanassis@cmu.edu

Questions?



