
Automatic Refactoring of Erlang Programs

Konstantinos Sagonas
School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

kostis@cs.ntua.gr

Thanassis Avgerinos
School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

ethan@softlab.ntua.gr

Abstract
This paper describes the design goals and current status of tidier, a
software tool that tidies Erlang source code, making it cleaner, sim-
pler, and often also more efficient. In contrast to other refactoring
tools, tidier is completely automatic and is not tied to any particular
editor or IDE. Instead, tidier comes with a suite of code transfor-
mations that can be selected by its user via command-line options
and applied in bulk on a set of modules or entire applications us-
ing a simple command. Alternatively, users can use tidier’s GUI
to inspect one by one the transformations that will be performed
on their code and manually select only those that they fancy. We
have used tidier to clean up various applications of Erlang/OTP
and have tested it on many open source Erlang code bases of sig-
nificant size. We briefly report our experiences and show opportu-
nities for tidier’s current set of transformations on existing Erlang
code out there. As a by-product, our paper also documents what we
believe are good coding practices in Erlang. Last but not least, our
paper describes in detail the automatic code cleanup methodology
we advocate and a set of refactorings which are general enough to
be applied, as is or with only small modifications, to the source
code of programs written in Haskell or Clean and possibly even in
non-functional languages.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering; D.3.2 [Programming
Languages]: Language Classifications—Applicative (functional)
languages

General Terms Design, Languages

Keywords program transformation, refactoring, code cleanup,
code simplification, Erlang

1. Introduction
Writing code that is as clean and simple as possible is desirable but
also difficult to do in any language, declarative or not. The ability
to achieve this is an acquired skill that requires a lot of experience
in writing programs in the language, studying source code of oth-
ers, having pretty good knowledge of the various alternatives of
expressing programming intentions using the constructs of the lan-
guage, but also having quite a lot of discipline when programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $10.00

To help programmers write better code, most languages these days
come with websites and books that document good coding prac-
tices in the hope that programmers will read and follow them. The
programming language Erlang is no exception in this respect. In-
deed, both the www.erlang.org website and the various books
on Erlang contain many useful pieces of advice on how to write
better programs. Still, at least judging from some open source and
commercial code we have laid our eyes upon, it seems that some
of this advice has never been read or, even if it has been, it has
been largely neglected by some programmers. Once again, Erlang
is by no means the only programming language where one can wit-
ness this phenomenon. On the contrary, the situation regarding code
quality is most probably worse in some other languages, especially
non-declarative ones.

Another reason that often contributes to having lots of code
of sub-optimal quality at any particular point in time is that most
programming languages evolve. For example, some of the language
constructs that Erlang programmers can employ today (e.g., funs,
binaries, comprehensions, etc.) result in better and more succinct
code than code which could be written using Erlang constructs of
ten years ago. Still, even nowadays, it is not uncommon to notice
members of the Erlang programming community write or post
programs that use old-fashioned language constructs or programs
that could be written more succinctly and elegantly in modern
Erlang. This, coupled with the fact that there is a lot of Erlang code
out there that has been written long ago and since then has not been
revised or modernized, does not help much in improving the code
quality of Erlang applications or in having code bases that teach
best practices to language newcomers.

For a long time now, the first author of this paper, both due to ob-
session with code cleanliness and with a desire to show new mem-
bers of his team code with good coding practices only, has been
manually performing code cleanups in code bases of projects that
he has been involved in. (No doubt he is not the only program-
mer who has ever done so.) Sooner or later, anybody involved in
this practice is bound to notice that some code improvements and
modernizations are so simple and standardized that they could be
automated quite easily. This is especially true for code improve-
ments obtained by using more modern language constructs. In fact,
in the syntax tools application [3], the Erlang/OTP system has
a module called erl tidy that can be used from within Erlang to
perform a limited set of these refactorings. We have decided to use
erl tidy as a starting point for our work but we have significantly
modified and extended its capabilities in ways that we will shortly
describe.

Another set of code improvements that can be automated rela-
tively easily are those which are identical or very similar to trans-
formations that optimizing compilers perform. Some of these trans-
formations, especially high-level ones designed for functional lan-
guages, besides improving the running time of programs, have the
nice property that they make code smaller and less complicated.

Such source code is typically cleaner and easier to understand and
maintain than long spaghetti code. For this reason, we hold and ad-
vocate that it is worthwhile to perform such transformations already
at the source level, rather than (only) at the level of the compiler’s
intermediate code representation. Besides the benefits that this has
for source code readability, it also makes programs more portable
as they become less dependent on the compiler version which is
used or even the language implementation on which they will be
compiled and executed.

Rather than continuing performing cleanups by hand, we have
decided to create a software tool, called tidier, that performs all
the above and eases the cleanup and code simplification of Erlang
applications. This has allowed us to apply the tool to code bases of
significant size and fine-tune its functionality. As we will soon see,
tidier is completely automatic, flexible and very easy to use, and
performs a suite of code transformations ranging from very simple
to quite sophisticated. Although we expect that tidier will be used
as an automatic code refactorer in most projects, tidier can also be
used only as an automatic detector of certain bad code smells and
let the user be in total control of the cleanup process. After all, not
all programmers may find all of tidier’s refactorings to their liking.

Perhaps we should also point out that some of the transfor-
mations that tidier performs actually increase the dependency on
language versions (i.e., they require the use of a rather recent Er-
lang/OTP release) and may not be suitable for applications that
have requirements to be able to run in older releases. However,
rewriting old idioms that were once necessary due to a more sim-
plistic language implementation into concise and modern code is
just as efficient (or better) and makes applications more future safe
as older language features often get removed as languages evolve.

Outline of the paper To make the paper relatively self-contained,
the next section briefly overviews the Erlang language and the evo-
lution of its implementation. Section 3 presents the design charac-
teristics and main properties of tidier. It is followed by the main
section of this paper, Section 4, that describes in detail the code
transformations currently performed by the tool. In Section 5 we
briefly mention how tidier can be used and report on our experi-
ences from using tidier in various applications of Erlang/OTP and
in open source code bases. Finally, Section 6 reviews related work
and the paper ends with some concluding remarks.

2. Erlang and Erlang/OTP
Erlang is a concurrency oriented, dynamically typed, strict func-
tional programming language. In Erlang, terms are either variables,
simple terms, structured terms, or function closures. Variables al-
ways begin with a capital letter or an underscore. Simple terms in-
clude atoms, process identifiers, integers and floating point num-
bers. Structured terms are lists (enclosed in brackets) and tuples
(enclosed in braces). Structured terms are constructed explicitly
and deconstructed using pattern matching. Pattern matching is also
used to select function clauses or different branches of case state-
ments; the two forms are equivalent and choosing between them is
a matter of taste. The program on Figure 1 shows all the above. It
also shows how Erlang code is organized in modules, how the code
can contain calls to exported functions of some other module (the
call to function math:sqrt/1 in our example), and how pattern
matching is enriched by the presence of flat guards such as type
tests and arithmetic comparisons.

The Erlang language is rather small, but it has evolved from
an even smaller language which over the years has been enriched
with new language constructs [1]. For example, for some years now
Erlang supports a notation for function closures (known as funs
in the Erlang lingo) when older Erlang versions only supported
apply. Similarly, modern Erlang comes with language constructs

-module(example).
-export([factorial/1, nth/1, area/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

nth(1, [H|_]) -> H;
nth(N, [H|T]) when is_integer(N), N > 1 ->

nth(N-1, T).

area(Shape) ->
case Shape of

{square, Side} when is_number(Side) ->
Side * Side;

{circle, Radius} ->
3.14 * Radius * Radius; %% well, almost

{triangle, A, B, C} ->
S = (A + B + C) / 2,
math:sqrt(S * (S-A) * (S-B) * (S-C))

end.

Figure 1. An example Erlang program.

to perform pattern matching directly on binaries and bit streams [5]
when older Erlang required a conversion of binaries to lists first.
Modern Erlang comes with a notation for records, which allows
referring to tuple elements by name instead of by position. Using
record notation and some appropriate declaration, we could for
example write the first case clause of the area/1 function of our
example program as follows:

#square{side = Side} when is_number(Side) ->
Side * Side;

Over the years Erlang has also adopted various constructs from
other programming languages, most notably list comprehensions,
which are a convenient shorthand for a combination of map,
filter and append on lists. For example, the following list com-
prehension:

List = [{1,2.56}, {3.14,4}, some_atom, {5,6}],
[Y*(Y+1) || {X,Y} <- List, is_integer(X), X > 1].

will silently filter out the some atom element of the list and pro-
duce the list [42]. On the other hand, in non-filter expressions, the
evaluation of list comprehensions might throw a runtime exception.
For example, the list comprehension we just showed would throw
an exception if List also contained the term {7,eleven}.

The main implementation of the language is the Erlang/OTP
(Open Telecom Platform) system from Ericsson. At the time of this
writing the most recent Erlang/OTP version is R13B (release 13B).
Besides libraries containing a large set of built-in functions (BIFs)
for the language, the Erlang/OTP system comes with a number of
ready-to-use components and design patterns (such as finite state
machines, generic servers, supervisors, etc.) providing a set of de-
sign principles for developing fault-tolerant Erlang applications. In-
deed, using the Erlang/OTP system, a number of commercial and
open-source applications have been written over the years, making
Erlang both one of the most industrially relevant declarative lan-
guages and a language with a significant body of existing source
code out there.

One problem with having lots of code is that undoubtedly there
is also a wide variation in code quality between different code
bases; often even within the code base of a single application. We
have witnessed this phenomenon in many Erlang code bases we
have examined. While some projects adopt or even impose rigor-
ous coding standards, others follow a more relaxed attitude in what
code can join their code base. Some applications are quick to adopt

newer language constructs that make their code cleaner and sim-
pler, while other projects never modify or modernize their code if
it isn’t seriously broken. While the above observations are by no
means applicable only to Erlang — or to declarative languages in
general — we hold that they are particularly relevant for this type
of languages because declarative languages: 1) are often moving-
targets and more willing to include higher-level constructs in their
definition, and 2) besides giving programmers the opportunity to
write cleaner and more succinct programs, they also often make
it easier for them to write less efficient code than what they would
have written in some low-level imperative language or in the declar-
ative language given some other, semantically equivalent, language
construct. In this respect, writing good code in a declarative lan-
guage (and Erlang in particular) is actually more difficult than in a
language such as C.

However, declarative languages such as Erlang have one clear
advantage compared with lower-level, imperative languages. Be-
cause of their relatively clean semantics, they are more suited to
high-level, semantics-preserving transformations that can automat-
ically detect and/or cleanup source code from certain old-fashioned
or less efficient ways of writing some program. To ease the mod-
ernization and code improvement of Erlang applications we have
developed tidier, an automatic software refactoring tool whose de-
sign goals and current set of capabilities we will describe below.

3. Tidier’s Design and Goals
Before we describe in detail the code transformations that the cur-
rent version of tidier performs, we present the design characteris-
tics and main properties of the tool. In doing so, we also implicitly
mention how tidier differs from other refactoring tools for Erlang
such as Wrangler [7] or RefactorErl [10].

Main characteristics
The main design characteristics of tidier are that it should be:

fully automatic: In particular tidier should provide a mode of op-
eration where it can be applied in bulk to a set of modules or
entire applications without requiring any interaction from its
user.

reliable: This characteristic is very much related to the previ-
ous one. In a semi-automatic refactoring tool, like Wrangler
or RefactorErl, it is probably OK to rely on the programmer
to confirm and/or take full responsibility for refactorings that
might be unsafe in some, hopefully rare, circumstances. In con-
trast, tidier, being fully automatic, cannot afford this luxury.

universal and easy to use: This means that tidier should not be
tied to any particular editor or integrated development environ-
ment (IDE). Particular editors and IDEs, no matter how popular
or widespread they may be within a particular language com-
munity, always leave out a percentage of users who, for their
own reasons, choose some other editor or environment to do
their development.

flexible: The refactorings performed by tidier should be selectable
by the user. Also, if users want to, they should be allowed to
conveniently inspect the result of the refactoring process and
filter it and/or influence it according to their desires.

fast: The tool should be fast enough so that in most applications
it can become part of the typical make cycle without imposing
any noticeable overhead to the process.

Needless to mention, tidier achieves all the above.

Transformation properties
Regarding the transformations performed by tidier, they should be:

semantics preserving: In particular, the transformations should
faithfully respect the operational semantics of Erlang. As we
will soon see, in some cases tidier could possibly perform bet-
ter refactorings if it had accurate knowledge about types of
variables or the programmers’ intentions. Due to the dynamic
nature of Erlang and tidier being a fully automatic tool, such
information is often not available. In such cases, tidier should
either not perform a refactoring or perform a weaker one that is
guaranteed to be semantics preserving.1

code improving: A transformation should be performed only if it
improves the code according to some criterion. Relevant criteria
used by tidier are: (i) the new code uses a more modern Erlang
construct (e.g. one which is more succinct or is not obsoleted
and retained only for backwards compatibility); (ii) the new
code is shorter and more elegant; (iii) the new code has less
redundancy or (iv) the new code executes faster.

syntactically pleasing and natural: In particular, the transforma-
tions should result in code which is as close as possible to
what expert Erlang programmers would have written if they per-
formed the same transformations by hand. Among other things,
this means that the transformed source code should be natu-
rally indented and, whenever possible, use variable and function
names that accurately reflect the code from which they origi-
nated instead of using artificial names such as Var 4711.

In addition, if possible, tidier should try to guess the intentions of
programmers but never try to outsmart them.

4. Transformations Performed by Tidier
Let us now examine the transformations that tidier performs and
the effect that they have on some source code examples. In doing
so, we also discuss aspects of transformations that require extra
care or make them tricky to implement.

4.1 Simple transformations
We start by describing the simplest transformations. These trans-
formations (and those of Section 4.3) are also provided by the
erl tidy module which we used as a starting point for tidier.

Modernizing guards and calls to old-fashioned functions
For many years now, the Erlang/OTP system has been support-
ing two sets of type checking functions, often used as guards:
old-style (atom/1, binary/1, integer/1, . . .) and new-style
ones (is atom/1, is binary/1, is integer/1, . . .). In addition,
many commonly used library functions have changed and continue
to change names between releases (e.g., dict:list to dict/1
is now called dict:from list/1, unix:cmd/1 changed name to
os:cmd/1 for political correctness, the reserved word/1 func-
tion which used to be in io lib is now located in the erl scan
module, etc.). The modernizing function name refactoring mod-
ernizes the guard names and takes care of such function renaming
issues. Occasionally, this refactoring is aided by the eliminating im-
ports refactoring which expands -import directives and exposes
the proper module name of function calls. In doing so, it also eases
the job of subsequent transformations.

1 As we will see, some of tidier’s refactorings might change the type of
exception that is raised by the code, e.g. from case clause to badmatch.
However, we consider such refactorings semantics preserving because they
will never result in code that misses some exception that would have been
generated or in code that results in some exception being thrown when the
original code would not raise one. Also, note that the issue of not preserving
the exception behaviour of a program is not tidier-specific but also present
in the other refactoring tools for Erlang.

-module(example).
-export([t/1]).

t(A) ->
apply(fun (X) ->

m:foo(X)
end, [A]).

apply
=⇒

elimination

-module(example).
-export([t/1]).

t(A) ->
fun (X) ->

m:foo(X)
end(A).

fun to
=⇒

function

-module(example).
-export([t/1]).

t(A) -> t_1(A).

t_1(X) -> m:foo(X).

inline
=⇒

function

-module(example).
-export([t/1]).

t(A) -> m:foo(A).

Figure 2. Illustration of refactorings that work hand in hand.

This set of refactorings is pretty straightforward for a software
tool that understands Erlang syntax, but quite tedious for program-
mers and very difficult, if not impossible, to perform with a global
search or replace or with a shell script. The interested reader is re-
ferred to a companion paper [2] which shows an interesting code
example that substantiates this claim.

Turning apply calls to remote calls
Another simple but also very useful transformation is the apply
elimination. Whenever the last argument of either apply/2 or
apply/3 is a list whose elements are statically known, the apply
can be rewritten as a remote function call. For example, the call
apply(M,F,[A1,A2]) can be rewritten as M:F(A1,A2). This
refactoring both reduces the code size and improves code read-
ability and understandability. In addition, using remote function
calls instead of apply may allow other program analysis tools rec-
ognize function calls that they would not be able to recognize in
the apply format. So this refactoring may result in more accurate
analyses.

Turning funs into functions
This transformation is known as lambda lifting in functional lan-
guages and is a special case to what is known as the extract method
refactoring in the object-oriented refactoring lingo [4]. It trans-
forms a fun expression to local function and changes the point
where the fun expression was previously applied to a function call.
In order to perform this refactoring, tidier locates all fun expres-
sions in a function clause and replaces them with local function
calls. After the function analysis, tidier generates definitions for
the local functions that correspond to the replaced fun expressions.
These local functions take their name out of the function from
which they were extracted extended by a suitable numerical suffix.
Occasionally, the newly introduced local functions may have dif-
ferent arities than their corresponding initial fun expressions. This
is due to the fact that the fun expression may be using variables that
are available within the scope of the source function and therefore
have to be passed to the extracted functions.

As an example, Figure 2 shows the effect of these two refac-
torings and of inline function on a very simple module. The reader
should notice that even though these refactorings are very simple
on their own, their synergy effects considerably simplify the code.
This is not something which is restricted to the refactorings of this
section; instead, it is a general phenomenon.

4.2 Record transformations
The initial purpose of this refactoring, which is available in tidier
but not in erl tidy, was to eliminate uses of is record/[2,3]
guards which are somewhat superfluous in modern Erlang. Indeed,
in most Erlang programs these guards are not really needed except
in cases where they are used in a disjunction to test for different
alternatives where at least one of them checks that a term is a record
as e.g. in:

foo(T) when is_atom(T); is_record(T, rec) ->
...

With time more transformations were added to that of eliminat-
ing is record guards and nowadays we use the name record
transformations to describe a whole bunch of simple refactor-
ings involving records that tidier performs. We will illustrate
them step-by-step using a code example from Erlang/OTP R13B’s
lib/ssl/src/ssl prim.erl:121 (slightly simplified). The ini-
tial code fragment is the following:

process(St, Pid) when is_record(St, st),
St#st.status =:= open,
is_pid(Pid) ->

inet_tcp:controlling_process(St#st.proxysock, Pid).

As we can see the variable St of the function clause is an #st{}
record. Tidier will detect this fact and will apply the record guard
to matching refactoring, which will substitute the is record/2
guard with an explicit record matching. The use of a matching
instead of a guard is to some extent a matter of taste. However,
as we shall soon see, this change can enable further refactorings.
The clause after this refactoring becomes:

process(#st{} = St, Pid) when St#st.status =:= open,
is_pid(Pid) ->

inet_tcp:controlling_process(St#st.proxysock, Pid).

The code is already shorter but this is only the beginning. In the
clause body there are two record field accesses (for fields named
status and proxysock). These accesses can be eliminated by
introducing fresh variables, using appropriate names, and use a
record expression in the clause head to initialize them by pattern
matching. Then the record accesses can be replaced by the new
variables. After these transformations, the St variable is no longer
needed and it can also be eliminated. After applying tidier’s record
field access elimination refactoring, the clause becomes:

process(#st{status = Status, proxysock = Proxysock}, Pid)
when Status =:= open, is_pid(Pid) ->
inet_tcp:controlling_process(Proxysock, Pid).

The code can be shortened even more. The newly introduced vari-
able Status is only used in an exact equality guard. Therefore this
variable can be eliminated and the exact equality test can be re-
placed by pattern matching. After tidier applies its equality guard
to pattern matching refactoring, the final form of the code is the
one shown below:

process(#st{status = open, proxysock = Proxysock}, Pid)
when is_pid(Pid) ->
inet_tcp:controlling_process(Proxysock, Pid).

How names for fresh variables are chosen Tidier often needs
to create fresh variables and give them names. For example, we
saw that tidier created variables for the record fields and gave them
names which are based on the names of these fields. Actually, this
is tidier’s second choice. Before generating names for the fresh
variables, tidier searches the clause in order to check whether the
programmer has already given names to the values of these record

fields (usually via matchings). For example, in a clause like the
following:

vn(Peer) when is_record(Peer, peer) ->
MyPid = Peer#peer.pid,
MyPort = Peer#peer.port,
{MyPid, MyPort}.

the programmer has indicated that the names MyPid and MyPort
are suitable for the pid and port fields respectively. Thus, tidier
will transform this clause to:

vn(#peer{pid = MyPid, port = MyPort}) ->
{MyPid, MyPort}.

Whenever none of the above two options are possible for some
record field (i.e., there is no user-supplied name for it and the name
of the field is already used for some other variable in the clause),
tidier will generate a fresh name that is formed by the field name
followed by an appropriate integer (e.g., Port42).

Experience In the above examples we have demonstrated the re-
sult of the records transformations on short pieces of code. On large
segments of code, the changes are often more extensive and radical.
Large code segments may contain multiple record guards or record
variables, which tidier handles simultaneously, and may have much
more record field accesses, which are often identical in different
branches. In our experience, their elimination results in more suc-
cinct, better organized, and more readable code. Finally, we also
should note that any of the refactorings of the records transforma-
tions can jump start the process. For example, if in our first exam-
ple the programmer had manually replaced the is record/2 guard
with a pattern matching, tidier would still have been able to apply
the other refactorings, resulting in the same final code.

4.3 Transformations of common list operations
List processing is very common in functional programs and Erlang
programs are no exception. It is therefore natural for tidier to pay
special effort to simplifying uses of some commonly employed
functions of the lists module of the Erlang standard library.

Transforming appends and subtracts
The lists:append/2 and lists:subtract/2 functions have
convenient shorthands, which are also binary operators. This refac-
toring is trivial and its purpose is to make the source code more
succinct. This is illustrated below.

...
case lists:append(L1, L2) of

...
L = lists:subtract(L3, [a]),

...

=⇒

...
case L1 ++ L2 of

...
L = L3 -- [a],

...

Transforming maps to comprehensions
The lists:map/2 function is one of the most frequently used
library functions in Erlang. It applies a function to all elements of
a list and returns the list with the function’s results.

For a number of years now, Erlang has been enhanced with a
very powerful and expressive construct, called list comprehension,
that provides all functionality of a lists:map/2 and even more.
Besides being more powerful, list comprehensions are typically
more succinct than maps and arguably also more modern. The list
map to comprehension refactoring performs the automatic conver-
sion of a lists:map/2 call to a list comprehension. To perform
the actual transformation, tidier introduces a fresh variable in order
to create the list generator and applies the function to that variable.
Let’s see the refactoring on an example:

mp(L) ->
lists:map(fun ({X, Y}) -> X + Y;

(X) when is_integer(X) -> 2 * X
end, L).

The semantically equivalent code using a list comprehension is:

mp(L) ->
[fun ({X, Y}) -> X + Y;

(X) when is_integer(X) -> 2 * X
end(V) || V <- L].

Although more succinct, very few Erlang programmers, if any,
would consider the above code an improvement over the original
as far as readability is concerned. The situation gets better by tidier
automatically applying the fun to function (aka extract method)
refactoring we have discussed in Section 4.1 and also shown in
Figure 2. Doing so results in the following code:

mp(L) -> [mp_1(V) || V <- L].

mp_1({X, Y}) -> X + Y;
mp_1(X) when is_integer(X) -> 2 * X.

which Erlang programmers would most probably find more to their
liking. In fact, this is the code that the auto list comp option of the
erl tidy module would also generate.

Transforming filters to comprehensions
This refactoring is very similar to the previous one and transforms
occurrences of lists:filter/2 to a semantically equivalent list
comprehension. Tidier performs this transformation by applying
the filtering function to the newly introduced generator variable and
places this call as a filter test immediately after the generator. An
example of the list filter to comprehension refactoring followed by
a fun to function refactoring is shown below:

flt(L) ->
lists:filter(fun ({X, Y}) -> true;

(X) -> is_atom(X)
end, L).

⇓

flt(L) ->
[V || V <- L, fun ({X, Y}) -> true;

(X) -> is_atom(X)
end(V)].

⇓

flt(L) -> [V || V <- L, flt_1(V)].

flt_1({X, Y}) -> true;
flt_1(X) -> is_atom(X).

Once again, the above transformation is quite simple and is also
performed by the erl tidy module of Erlang/OTP.

4.4 List comprehension simplifications
Although the list map/filter to comprehension refactorings followed
by an immediate fun to function refactoring results in good looking
code we noticed that even better looking code could be generated,
especially in certain very commonly occurring cases. We therefore
introduced and implemented in tidier the list comprehension sim-
plifications refactorings, which describes a family of simple refac-
torings that can be applied either to list comprehensions which al-
ready exist in the code or to those created after applying the list
map/filter to comprehension refactorings of the previous section.
Let us examine these refactorings.

Transforming a fun to a direct call
This is a very simple refactoring that can be applied when the func-
tion of the comprehension is just a fun name/arity combination
(possibly also module-qualified). In this case tidier transforms the
fun application to a direct call. The following example illustrates
this refactoring on a lists:map/2 call which exists in the code of
Erlang/OTP R13B’s lib/kernel/src/inet parse.erl:654.

lists:map(fun dig_to_hex/1, lists:reverse(R))

⇓
[dig_to_hex(V) || V <- lists:reverse(R)]

Inlining bodies of simple funs
Whenever the fun definition is simple, the resulting comprehen-
sion is not what an expert Erlang programmer would write when
transforming the call to map or filter by hand. In the context of
list comprehension simplifications, tidier considers a fun definition
simple whenever: 1) the fun’s argument is a single fresh variable,
and 2) the fun’s body is either a single call or a boolean expression
(for the case of transforming a call to lists:filter/2 only). In
such cases, the fun’s body can be inlined in the appropriate place.

We show two examples that illustrate this refactoring. First a
case of transforming a call to lists:map/2:

lists:map(fun (X) -> X + 42 end, L)

⇓
[X + 42 || X <- L]

and also a case of transforming a call to lists:filter/2:

lists:filter(fun (X) ->
is_integer(X) andalso X > 0

end, L)

⇓
[X || X <- L, is_integer(X), X > 0]

Notice that for preserving the semantics of list comprehensions
in Erlang, tidier has to restrict itself to funs whose argument is a
variable. For example, without precise information about the types
of the list elements it is not permitted to perform the following list
map to comprehension refactoring:

lists:map(fun ({X, Y}) -> X + Y end, L)

6⇓
[X + Y || {X, Y} <- L]

because the former code will raise an exception if the list contains
some element other than a pair, while the latter will simply filter
out this element. Similar constraints hold also for transforming
lists:filter/2, even though, as we will see below, we can often
do better in this case.

Inlining simple boolean filtering funs
The most commonly occurring fun used in a lists:filter/2 is a
fun consisting of two clauses. The first clause, which is usually the
true branch, has a specific clause head pattern and possibly also a
set of guards (either in the clause head or in the body) specifying
which list elements to keep. The second is a match-all clause to
filter out all other elements.

For such list filtering funs, tidier’s refactoring uses the head
pattern as a filter expression in the list comprehension generator,
and the guards (if any) as further filters after the generator. We
illustrate this refactoring with a code fragment from Erlang/OTP
R13B’s lib/appmon/src/appmon dg.erl:69:

efilter(Es) ->
lists:filter(fun ({_V1, _V2, primary}) -> true;

(_E) -> false
end, Es).

⇓
efilter(Es) ->

[E || E = {_V1, _V2, primary} <- Es].

and with a clause from lib/asn1/src/asn1ct.erl:2436 (but
with the actual function name abbreviated):

gff(_, Name, L) when is_atom(Name); is_list(Name) ->
lists:filter(fun ({N,_,_}) when N == Name -> true;

(_) -> false
end, L);

⇓
gff(_, Name, L) when is_atom(Name); is_list(Name) ->

[T || T = {N, _, _} <- L, N == Name];

In both cases, we have taken the liberty to also use the static
structure reuse refactoring we are going to present in Section 4.6.

4.5 Transformations requiring type information
Some refactorings require or benefit from type information. We
describe those that tidier currently implements.

Specializing the size function
Till quite recently, there was only one way to find the size of a
tuple or a binary: by employing the overloaded function size/1,
which could also be used as a guard. Consequently, many programs
have been written using this function. Erlang/OTP R12 introduced
two specializations of this function: tuple size/1 which works
with tuples only and byte size/1 which works with bitstrings
(binaries are just a special case of bitstrings). These functions
are preferable because they express in a better way the intention
of the programmer, provide more information to static analysis
tools such as Dialyzer [9], and are slightly more efficient than
size/1. Unfortunately, manual conversion of existing programs
is both tedious and error prone. Tidier comes to the rescue here:
it employs local type inference to determine the type of size’s
argument and specializes the call appropriately. At least in the code
of Erlang/OTP, we have seen only few cases where the inference
is not strong enough to automatically perform this specialization.
These cases are left for manual refactoring.

Simplifying guard sequences
This refactoring started because we noticed that, especially with
size/1 being overloaded, it was quite common for tidier to come
across code that looks as follows:

foo(T) when is_tuple(T), size(T) > 2 -> ...

The size specialization refactoring of the previous paragraph will
transform this code to:

foo(T) when is_tuple(T), tuple_size(T) > 2 -> ...

and it is pretty easy to notice now that the is tuple/1 guard
is semantically not needed anymore, because the tuple size/1
guard does not succeed for anything but tuples. Consequently the
code can be simplified to the following:

foo(T) when tuple_size(T) > 2 -> ...

Once this refactoring was in place, we decided to extend it to sim-
plify other guard sequences that Erlang programmers occasionally
write most probably unaware that they are unnecessarily cluttering
their code with tests which are implied by others.

foo(Rec, Fields, Key) when is_tuple(Rec), is_list(Fields),
size(Rec)-1 =:= length(Fields) ->

lists:zip([Key|Fields], tuple_to_list(Rec)).
=⇒

foo(Rec, Fields, Key)
when tuple_size(Rec)-1 =:= length(Fields) ->

lists:zip([Key|Fields], tuple_to_list(Rec)).

Figure 3. A guard simplification refactoring from actual code (apache-couchdb-0.8.1/src/mochiweb/mochiweb util.erl:422).

decode_octets(<<0:1,Len:7,Bin/binary>>, C, Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(reverse([Value|Acc])),
case C of

Int when is_integer(Int), size(BinOctets) == Int ->
{BinOctets,Bin2};

...

=⇒

decode_octets(<<0:1,Len:7,Bin/binary>>, C, Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(reverse([Value|Acc])),
case C of

Int when byte_size(BinOctets) =:= Int ->
{BinOctets,Bin2};

...

Figure 4. Another guard simplification refactoring from actual code (lib/asn1/src/asn1rt per bin.erl:495).

Two examples Figure 3 shows one interesting such case from the
code of CouchDB. The first two guards are unnecessary as they are
implied by the third once the size/1 guard has been specialized.

Similarly, Figure 4 shows a case from the code of the asn1
application of Erlang/OTP R13B. Given built-in knowledge that the
return type of size functions is integer, the guard sequence can be
simplified.2

4.6 Transformations that eliminate redundancy
As the astute reader has no doubt noticed from the examples of
the previous section, there is a fine line between code simplifica-
tion refactorings and transformations that an optimizing compiler
performs. Tidier further explores this idea and offers some refac-
torings that are partly inspired by compiler optimizations.

Avoid re-creation of existing tuples and lists
In Erlang identical tuples or lists created in different points of a
clause, where one point dominates the other, can be assigned to
variables and subsequently become shared, thereby avoiding their
unnecessary re-creation. This refactoring, called static structure
reuse, is illustrated below:

t({X, [3, Y]}) ->
case m:foo(X) of

true ->
[3, Y];

false ->
{X, [3, Y]}

end.

=⇒

t({X, [3, _Y] = L} = T) ->
case m:foo(X) of

true ->
L;

false ->
T

end.

This is exactly what tidier would do in this case. The notion of
identity that tidier uses to identify opportunities for this refactoring
is syntactic identity: i.e., two structures are considered identical if
they have exactly the same statically known sub-terms, including
the same variable names, in all their corresponding positions. Note
however that these sub-terms cannot contain function calls because
these calls may invoke side-effects.

The main advantages of this refactoring are that it typically
makes the source code shorter and its execution more efficient
both in time and in space. Indeed, many Erlang programmers who
are aware of its benefits perform this refactoring by hand on their
programs.3 However, it is often quite difficult for the human eye to
spot all opportunities for structure reuse in programs, especially
those that are not immediately obvious. For example we have
noticed that, even in code of performance conscious programmers,

2 Actually, a global type analysis would discover that the is integer/1
guard is completely redundant in the code of Figure 4.
3 The inclusion on the list of refactorings performed by tidier of the struc-
ture reuse refactoring was a suggestion to us by Kenneth Lundin.

the following case of deconstructing and constructing the same
term typically remains untransformed:

[{A, B, C, D} || {A, B, C, D} <- List]

The static structure reuse refactoring of tidier transforms the above
to:

[T || T = {_A, _B, _C, _D} <- List]

which is both shorter and will execute more efficiently, both in time
and in space. (The BEAM bytecode compiler currently does not
perform this optimization and will create copies of the tuples for
the list comprehension’s result.)

On the other hand, a problem with this refactoring is that if per-
formed aggressively, as an optimizing compiler performing com-
mon subexpression elimination would do it, it results in code which
is quite unnatural and, in all probability, would not be something
performed also by a human programmer. This is especially true for
lists and we illustrate it by the following example:

t([X, Y, Z]) ->
case m:foo(X) of

true ->
[Z];

false ->
[Y, Z]

end.

6⇒

t([X | [Y | [Z] = L1] = L2]) ->
case m:foo(X) of

true ->
L1;

false ->
L2

end.

Since only few programmers would consider the code on the right
an improvement over the one on the left as far as code readability is
concerned, tidier does not perform such refactorings. In particular,
the static structure reuse refactoring treats lists as atomic objects
and never breaks them into smaller parts.

Simplifying control
Refactorings under this category involve cases and ifs and come
in two flavours: straightening statements and simplifying (matching
or logical) expressions.

Straightening Sometimes, perhaps due to code evolution, control
statements can end up having only one alternative and this refactor-
ing straightens their code. This is illustrated in Figure 5. It is clear
that the code becomes smaller and actually in this case it is also
more uniform in style. The only side-effect, albeit a relatively in-
nocent one, is that this code might raise a badmatch rather than a
case clause exception if Reply is not an ok-tagged pair.

...
case Reply of

{ok, Socket} ->
{ok, {IP, _Port}} = inet:peername(Socket),
true = member_address(IP, which_slaves()),
PS = erl_prim_loader:prim_init(),
boot_loop(Socket, PS)

end.

=⇒

...
{ok, Socket} = Reply,
{ok, {IP, _Port}} = inet:peername(Socket),
true = member_address(IP, which_slaves()),
PS = erl_prim_loader:prim_init(),
boot_loop(Socket, PS).

Figure 5. An example of case straightening (from R13B’s lib/kernel/src/erl boot server.erl:274).

Sometimes, the source code has clear signs that the control flow
of the case statement is intentional as in the code shown below:

case mod:has_property(X) of
true -> handle(X)
%% all other cases not handled yet
%% false -> ...
%% unknown -> ...

end,

Since tidier cannot read comments (or the minds of programmers!),
as a rather ad hoc heuristic, it will never perform straightening on
code that has a comment inside a case statement.

Simplifying expressions The case expression in Erlang is a pow-
erful construct, but occasionally some case expressions clutter the
code unnecessarily. The following is an example from the source
code of Erlang/OTP R13B’s lib/kernel/src/group.erl:368.

case get_value(binary, Opts, case get(read_mode) of
binary -> true;
_ -> false

end) of
true -> ...

Tidier simplifies the above code to:

case get_value(binary, Opts, get(read_mode) =:= binary) of
true -> ...

As another, rather interesting example of unnecessary code clut-
tering, we show the refactoring of code from Erlang/OTP R13B’s
lib/xmerl/src/xmerl ucs.erl:549. (The function name and
one variable name are shorter so that the example fits here.)

t_charset(Fun, In) ->
case lists:all(Fun, In) of

true ->
true;

_ ->
false

end.

⇒ t_charset(Fun, In) ->
lists:all(Fun, In).

Such refactorings are aided by tidier having knowledge about the
return type of commonly employed functions; e.g., that the return
value of lists:all/2 is either true or false. Similar cases,
involving the lists:member/2 function, occur in the code of
lib/inviso/src/inviso tool lib.erl:342 and in the code
of lib/inviso/src/inviso tool.erl:2125.

Switching on true and false is very common and this pro-
gramming idiom often clutters the code unnecessarily. The clause
on Figure 6 is from lib/hipe/cerl/cerl to icode.erl:2370
and is simplified as shown in the figure.

Naturally, such simplifications are not restricted to case expres-
sions, but are also applicable to ifs. The following example is from
the code of lib/percept/src/egd render.erl:313.

if
Yp =:= Y -> true;
true -> false

end

=⇒ Yp =:= Y

is_pure_op(N, A) ->
case is_bool_op(N, A) of

true -> true;
false ->

case is_comp_op(N, A) of
true -> true;
false -> is_type_test(N, A)

end
end.

⇓
is_pure_op(N, A) ->

is_bool_op(N, A) orelse is_comp_op(N, A)
orelse is_type_test(N, A).

Figure 6. Simplification of nested case expressions.

Many other similar expression simplifications are currently auto-
matically performed by tidier. We will see in the next section how
such simplifications come in handy in creating better looking list
comprehensions.

4.7 Simplifying list comprehensions even further
Having the ability to simplify expressions allows us to do more
effective transformations of maps and filters to list comprehensions.
For example, consider the following code:

lf(X, List) ->
lists:filter(fun (Y) ->

if
X =:= Y -> true;
true -> false

end
end,
List).

By combining the power of the refactorings we have shown, the
code can be simplified to:

lf(X, List) ->
[Y || Y <- List, X =:= Y].

While the above example is fictitious, it does not differ much
from actual Erlang code that tidier has identified as simplifiable.
For example, the code of lib/kernel/src/pg2.erl:280 in Er-
lang/OTP R13B reads:

lists:filter(fun(Pid) when node(Pid) =:= Node -> false;
(_) -> true

end,
Pids)

Tidier automatically transforms the above code to:

[Pid || Pid <- Pids, node(Pid) =/= Node]

Similarly, the code of src/web/ejabberd http bind.erl:956
from Ejabberd 2.0.1 reads:

lists:filter(fun (I) ->
case I of
{xmlelement, _, _, _} -> true;
_ -> false

end
end,
Els)

and is automatically transformed by tidier to:

[I || I = {xmlelement, _, _, _} <- Els]

Once this functionality was in place, it whetted our appetite for
more. Unfortunately, to do considerably more requires information
from a global type analysis. Writing such an analysis and hooking
tidier to it is currently future work. However, we noticed that in
some cases even a simple function-local type analysis can provide
sufficient information for what we wanted to do. This is especially
true when calls to lists:map/2 and lists:filter/2 are nested
within each other. Currently tidier handles this case specially, ef-
fectively performing deforestation [17] at the level of source code.
Some of the cases we found in real code are interesting and worth
the effort. Let’s see some examples.

The code of lib/inviso/src/inviso tool sh.erl:1638
from Erlang/OTP R13B (when pretty-printed) reads:

get_all_tracing_nodes_rtstates(RTStates) ->
lists:map(fun ({N,_,_}) -> N end,

lists:filter(fun ({_,{tracing,_},_}) -> true;
(_) -> false

end,
RTStates)).

Tidier automatically transforms this code to:

get_all_tracing_nodes_rtstates(RTStates) ->
[N || {N,{tracing,_},_} <- RTStates].

The transformation is correct since the lists:filter/2 call pro-
vides sufficient type information, namely that the intermediate list
will consist of triples only, which guarantees that the lists:map/2
call will not throw an exception.

A case similar to the above also occurs in the code of Wrangler
(src/refac rename fun.erl:344):

lists:map(fun ({_, X}) -> X end,
lists:filter(fun (X) ->

case X of
{atom, _X} -> true;
_ -> false

end
end,
R))

Tidier transforms this code to:

[X || {atom, X} <- R]

In both cases, the code is not only considerably more readable but
also more efficient as the input list is traversed only once and no
intermediate list is constructed.

4.8 List comprehensions in conjunction with zip and unzip
One case that is currently treated specially by tidier is when the
list that will become the generator of a list comprehension is a
list produced by a call to lists:zip/2, which produces a list of
pairs from two lists. The following example is also from the code
of Wrangler (src/refac annotate pid.erl:274):

lists:map(fun ({A, P}) -> F(A, P) end,
lists:zip(Args, ParSig))

Having built-in type information about the result of lists:zip/2
being a list of pairs, allows tidier to currently transform the above
code to the following:

[F(A, P) || {A, P} <- lists:zip(Args, ParSig)]

However, our plan is that if the comprehension multigenerators
Erlang Enhancement Proposal (EEP-19 [14]) is accepted and im-
plemented in Erlang/OTP, tidier will transform the above case to:

[F(A, P) || A <- Args && P <- ParSig]

thereby avoiding the construction of the intermediate list.
Since the case of lists:zip/2 was treated specially, it felt nat-

ural that tidier should also pay some attention to lists:unzip/1.
The following is an interesting example of a significant simplifi-
cation of actual code that tidier currently performs (from Nokia’s
tuulos-disco-0.1/master/src/event server.erl:123):

event_filter(Key, EvLst) ->
Fun = fun ({K, _}) when K == Key ->

true;
(_) ->

false
end,

{_, R} = lists:unzip(lists:filter(Fun, EvLst)),
R.

Tidier simplifies the above code to:

event_filter(Key, EvLst) ->
[V || {K, V} <- EvLst, K == Key].

thereby completely eliminating the construction of the list of pairs,
and its deconstruction by the lists:unzip/1 call.

We have seen enough examples of transformations performed
by tidier. We stress again that all these refactorings are performed
in a completely automatic way by tidier. Let us now briefly see how
tidier can be used.

5. Tidier at Work
For those not faint at heart, the simplest way to use tidier on some
Erlang file is via the command:

> tidier myfile.erl

If all goes well, this command will automatically refactor the
source code of myfile.erl and overwrite the contents of the file
with the resulting source code. Multiple source files can also be
given. Alternatively, the user can tidy a whole set of applications
by a command of the form:

> tidier dir1 ... dirN

which will tidy all *.erl files under these directories. Both of these
commands will apply the default set of transformations on all files.
If only some of the transformations are desired, the user can select
them via appropriate command-line options. For example, one can
issue the command:

> tidier --comprehensions --size myfile.erl

to only transform uses of lists:map/2 and lists:filter/2
to list comprehensions and uses of size/1 to tuple size/1 or
byte size/1. We refer the reader to tidier’s manual for the com-
plete set of command-line options.

A very handy option is the option that will cause tidier to
just print on the standard output the list of transformations that

Figure 7. Tidier in action: simplifying the code of Wrangler.

would be performed on these files, together with their lines, without
performing them. Alternatively the user can use the -g (or --gui)
option to invoke tidier’s GUI and perform refactoring interactively.
We expect that tidier users will probably prefer this mode of using
tidier, at least initially.

Figure 7 shows tidier’s GUI in action. In fact, the snapshot
depicts tidier refactoring the src/refac rename fun.erl file
from the code of the current development branch of Wrangler.
Tidier has identified two opportunities for transforming maps and
filters to list comprehensions. The first combination of map and
filter is the example we discussed in Section 4.7. As can be seen
in the snapshot, that code has been changed to a one-liner. The
second map and filter combination cannot be simplified to the
same extent and still preserve its semantics. Tidier’s GUI shows
the old code (on the left) and the new code (right); the code parts
that differ between the two versions are coloured appropriately. At
this point, the user can either press the “Use suggested version”
button to accept tidier’s refactoring or the “Keep original version”
button to bypass it. In either case, tidier will continue with the next
refactoring (or exit if this is the last one).

Current experiences
As it is probably obvious by now, during its development, tidier
has been repeatedly applied to large code bases; most notably
to the source code of Erlang/OTP, currently consisting of about
1,200,000 lines of Erlang code. As a side comment, on a relatively
recent desktop, tidier is able to virtually refactor all this code (i.e.,
just detect and print out the list of transformations that would
be performed on these files) in about two and a half minutes.
On those Erlang/OTP libraries that we are directly involved in
their development or have permission to change them, tidier’s
suggestions have been adopted. Moreover, on those libraries that
our group is responsible for, tidier is now part of the tools used for
their development and is run periodically over their code.

We have also applied tidier on various open source and of-
ten widely used applications written in Erlang (Apache CouchDB,
ejabberd, Erlang Web, RefactorErl, Scalaris, Wings, Wrangler,
Yaws, etc.), totalling about 300,000 lines of Erlang code. A de-
tailed experience report on using tidier on them is beyond the
scope of the current paper but instead is described in a companion
paper [2]. It suffices to say that there are plenty of opportunities for
modernizing Erlang code out there, eliminating various bad code
smells, automatically cleaning up source code of applications and
simplifying it. Overall, given the ease of use of tidier, we see few
reasons not to try it out and adopt most of its suggestions.

6. Related Work
Software refactoring [4], the process of restructuring an existing
body of program code in order to alter its internal structure and
improve its readability and maintainability without changing its
external behaviour, is by now an established and well-researched
technique in many programming languages. Especially in object-
oriented languages, refactoring is supported by a number of tools
such as editors, IDEs, and refactoring browsers; see the survey by
Mens and Tourwé [12] and the references therein.

In the context of declarative languages, although program trans-
formation is a well-researched area by now, explicit tool support for
refactoring programs at the level of source code is less common.
Besides tidier, notable exceptions of semi-automatic code refactor-
ing tools are the HaRe tool for Haskell [8], the ViPReSS tool for
Prolog [16], and the RefactorErl and Wrangler tools for Erlang.
The last two tools we review in more detail below.

RefactorErl is an Erlang refactoring tool, developed by researchers
at the Eötvös Loránd University in Budapest, Hungary, that aims
to assist Erlang programmers perform semi-automatic refactoring
of their code. The tool follows a disciplined approach to refactor-
ing and works by creating a formal semantical graph model from

Erlang source code and storing this graph in a relational database.
This graph can be modified on the syntax tree level and the source
code is reproducible from there. The RefactorErl tool comes with a
user interface provided as an Emacs minor mode to help program-
mers perform a predefined set of refactoring transformations. Some
of these refactorings are very simple (e.g., rename a variable or a
record). Some other refactorings are more sophisticated and can for
example be used to change uses of tuples to records in some mod-
ule [11] or refactor the module structure of an existing application
by using code clustering techniques [10]. However, it is unclear to
what extent the more sophisticated refactorings are available in the
public release of RefactorErl at the time of this writing.

Wrangler is a more mature Erlang refactoring tool, developed by
Huiqing Li and Simon Thompson at the University of Kent, U.K.
The tool supports the interactive refactoring of Erlang programs
under both Emacs and ErlIDE (the Erlang plug-in for Eclipse),
and is publicly available under an open source licence. Wrangler
supports various semi-automatic data and process refactorings [7]
and quite recently has also been enhanced with the ability to detect
and remove duplicated code [6]. All these refactorings are initiated
and controlled by the programmer. According to a published survey
of Erlang tools [13] conducted in the spring of 2008, Wrangler
was moderately well-known in the Erlang community (33%) but
not used much (5%), although the situation may of course have
changed by now.

Compared with these refactoring tools for Erlang, tidier differs
significantly both in the kind of refactorings that it performs but,
more importantly, also in design philosophy. In its primary mode
of operation, tidier is fully automatic and requires no interaction
from its user. As such, tidier needs to provide strong guarantees
of preservation of semantic equivalence between the original and
transformed program and cannot afford to leave this responsibility
on the programmer. On the other hand, this means that tidier’s
refactorings are more limited in scope (currently, they are mostly
clause-local) than those of RefactorErl or Wrangler which can
perform module-scope or even application-wide refactorings. Still,
we think that some of tidier’s refactorings are very interesting.

Perhaps surprisingly, with the exception of the ReSharper [15]
add-in to Visual Studio, we were not able to locate any other
fully automatic code cleanup tools in any high-level language.4 We
hope that tidier will pave the way for more fully automatic code
simplification and cleanup tools in Erlang and other languages.

7. Concluding Remarks
In this paper we described tidier, a software tool that automatically
tidies Erlang source code, making it cleaner, simpler, and often also
more efficient. In doing so, tidier not only simplifies and modern-
izes the code of an application, but also increases its readability,
maintainability and often performance. We strongly believe that the
ease of use of our tool makes tidier attractive to use in any Erlang
project, if not as an automatic refactorer, at least as a detector of bad
code smells in the code. Alternatively, tidier’s GUI can be used in
existing Erlang code bases to illustrate to programmers excerpts of
existing code that could be written more elegantly or simply.

In this respect, our paper is interesting to its community not
only as a tool description paper but also as a catalog of good coding
practices, some of which are publicly documented for the first time.

We stress that the paper described the architecture and current
status of our tool. Various additions to tidier’s functionality are
already planned; their priority might change based on feedback that
we may receive from users of our tool after its first public release.

4 There are of course plenty of tools that automatically indent source code
of many languages or automatically cleanup and/or validate HTML pages.

Acknowledgements
Although by now there are relatively few remains of erl tidy’s
original code in the source code of tidier, the erl tidy module of
the syntax tools library has served both as inspiration and as a
very good starting point for the development of tidier. We thank
its author, Richard Carlsson, both for releasing his code and for the
comments and suggestions that he sent us.

References
[1] J. Armstrong. A history of Erlang. In HOPL III: Proceedings of

the third ACM SIGPLAN Conference on History of Programming
Languages, pages 6–1–6–26, New York, NY, USA, 2007. ACM.

[2] T. Avgerinos and K. Sagonas. Cleaning up Erlang code is a dirty
job but somebody’s gotta do it. In Proceedings of the Eighth ACM
SIGPLAN Erlang Workshop, New York, NY, USA, Sept. 2009. ACM.

[3] R. Carlsson. Syntax tools reference manual, version 1.6, Apr. 2009.
http://www.erlang.org/doc/apps/syntax_tools/.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
Reading, Massachusetts, 2001.

[5] P. Gustafsson and K. Sagonas. Bit-level binaries and generalized
comprehensions in Erlang. In Proceedings of the Fourth ACM
SIGPLAN Erlang Workshop, pages 1–8, New York, NY, USA, Sept.
2005. ACM.

[6] H. Li and S. Thompson. Clone detection and removal for Erlang/OTP
within a refactoring environment. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 169–177, New York, NY, USA, Jan.
2009. ACM.

[7] H. Li, S. Thompson, G. Orösz, and M. Tóth. Refactoring with
Wrangler, updated: Data and process refactorings, and integration
with Eclipse. In Proceedings of the 7th ACM SIGPLAN Workshop on
Erlang, pages 61–72, New York, NY, USA, Sept. 2008. ACM.

[8] H. Li, S. Thompson, and C. Reinke. Tool support for refactoring
functional programs. In Proceedings of the ACM SIGPLAN Workshop
on Haskell, pages 27–38, New York, NY, USA, Aug. 2003. ACM.

[9] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story.
In C. Wei-Ngan, editor, Programming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS’04), volume
3302 of LNCS, pages 91–106. Springer, Nov. 2004.

[10] L. Lövei, Cs. Hoch, H. Köllő, T. Nagy, A. Nagyné-Vı́g, D. Horpácsi,
R. Kitlei, and R. Király. Refactoring module structure. In Proceedings
of the 7th ACM SIGPLAN Workshop on Erlang, pages 83–89, New
York, NY, USA, Sept. 2008. ACM.

[11] L. Lövei, Z. Horváth, T. Kozsik, and R. Király. Introducing records
by refactoring. In Proceedings of the 6th ACM SIGPLAN Workshop
Erlang, pages 18–28, New York, NY, USA, Sept. 2007. ACM.

[12] T. Mens and T. Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, Feb. 2004.

[13] T. Nagy and A. Nagyné-Vı́g. Erlang testing and tools survey. In
Proceedings of the 7th ACM SIGPLAN Workshop on Erlang, pages
21–28, New York, NY, USA, Sept. 2008. ACM.

[14] R. A. O’Keefe. Erlang Enhancement Proposal: Comprehension
multigenerators, Aug. 2008. http://www.erlang.org/eeps/
eep-0019.html.

[15] ReSharper 4.5. http://www.jetbrains.com/resharper/.

[16] A. Serebrenik, T. Schrijvers, and B. Demoen. Improving Prolog
programs: Refactoring for Prolog. Theory and Practice of Logic
Programming, 8(2):201–215, Mar. 2008.

[17] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Comput. Sci., 73(2):231–248, 1990.

http://www.erlang.org/doc/apps/syntax_tools/
http://www.erlang.org/eeps/eep-0019.html
http://www.erlang.org/eeps/eep-0019.html
http://www.jetbrains.com/resharper/

	Introduction
	Erlang and Erlang/OTP
	Tidier's Design and Goals
	Transformations Performed by Tidier
	Simple transformations
	Record transformations
	Transformations of common list operations
	List comprehension simplifications
	Transformations requiring type information
	Transformations that eliminate redundancy
	Simplifying list comprehensions even further
	List comprehensions in conjunction with zip and unzip

	Tidier at Work
	Related Work
	Concluding Remarks

