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Abstract
Processing-in-memory (PIM) is rapidly rising as a viable

solution for the memory wall crisis, rebounding from its unsuc-
cessful attempts in 1990s due to practicality concerns, which
are alleviated with recent advances in 3D stacking technolo-
gies. However, it is still challenging to integrate the PIM
architectures with existing systems in a seamless manner due
to two common characteristics: unconventional programming
models for in-memory computation units and lack of ability to
utilize large on-chip caches.

In this paper, we propose a new PIM architecture that
(1) does not change the existing sequential programming mod-
els and (2) automatically decides whether to execute PIM
operations in memory or processors depending on the local-
ity of data. The key idea is to implement simple in-memory
computation using compute-capable memory commands and
use specialized instructions, which we call PIM-enabled in-
structions, to invoke in-memory computation. This allows
PIM operations to be interoperable with existing program-
ming models, cache coherence protocols, and virtual memory
mechanisms with no modification. In addition, we introduce a
simple hardware structure that monitors the locality of data
accessed by a PIM-enabled instruction at runtime to adap-
tively execute the instruction at the host processor (instead
of in memory) when the instruction can benefit from large
on-chip caches. Consequently, our architecture provides the
illusion that PIM operations are executed as if they were host
processor instructions.

We provide a case study of how ten emerging data-intensive
workloads can benefit from our new PIM abstraction and its
hardware implementation. Evaluations show that our archi-
tecture significantly improves system performance and, more
importantly, combines the best parts of conventional and PIM
architectures by adapting to data locality of applications.
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1. Introduction
Performance and energy consumption of modern computer
systems are largely dominated by their memory hierarchy.
This memory bottleneck is expected to be aggravated due
to two trends. First, computational power has been continu-
ously increasing through architectural innovations (e.g., chip
multiprocessors, specialized accelerators, etc.), whereas the
memory bandwidth cannot be easily increased due to the pin
count limitation. Second, emerging data-intensive workloads
require large volumes of data to be transferred fast enough
to keep computation units busy, thereby putting even higher
pressure on the memory hierarchy.

The widening discrepancy between computation speed and
data transfer speed, commonly known as the memory wall [49],
motivates the need for a different computing paradigm. In par-
ticular, processing-in-memory (PIM) is regaining attention
because it can minimize data movement by placing the compu-
tation close to where data resides. Although the PIM concept
itself was already studied by many researchers decades ago, it
is worth revisiting it in a new context today: (1) 3D stacking
technology now enables cost-effective integration of logic and
memory and (2) many new applications are data-intensive and
demand great amounts of memory bandwidth [1, 2, 32].

To date, most of the existing PIM architectures are based
on general-purpose computation units inside memory for flex-
ibility across different applications [14–16, 25, 28, 35, 39–41,
46, 48, 50]. However, this introduces two major challenges
in seamlessly integrating such architectures into conventional
systems in the near term. First, prior proposals require new
programming models for in-memory computation units, which
is often significantly different from what is used today. Main
memory products with integrated full-fledged processors with
new programming models may also not be available in the
near future because of the associated design complexity and
changes required across the hardware/software stack.

Second, prior proposals do not utilize the benefits of on-
chip caches and virtual memory provided by host processors.
Specifically, they offload computation to memory with no
consideration of on-chip cache locality, thereby significantly
degrading performance when the applications exhibit high data
locality. Moreover, most prior approaches perform in-memory
computation on noncacheable, physically addressed memory
regions, which inevitably sacrifices efficiency and safety of all
memory accesses from host processors to memory regions that
can potentially be accessed by PIM. In particular, the lack of
interoperability with on-chip caches is critical considering that



commercial processors already integrate large last-level caches
on chip (e.g., Intel Ivytown has a 37.5 MB L3 cache [42]).

To overcome these two major limitations, this paper pro-
poses to enable simple PIM operations by extending the ISA
of the host processor with PIM-enabled instructions (PEIs),
without changing the existing programming model. We define
a PEI as an instruction that can be executed either on the host
processor or on the in-memory computation logic. By provid-
ing PIM capability as part of the existing programming model,
conventional architectures can exploit the PIM concept with
no changes in their programming interface. The approach of
using PEIs also facilitates our architecture to support cache co-
herence and virtual memory seamlessly: existing mechanisms
in place for cache coherence and virtual memory can be used
without modification, unlike other approaches to PIM. We de-
velop a hardware-based scheme that can adaptively determine
the location to execute PEIs by considering data locality: a
PEI can be selectively executed on the host processor (instead
of on the in-memory computation logic) when large on-chip
caches are beneficial for its execution.

This paper makes the following major contributions:
• We introduce the concept of PIM-enabled instructions

(PEIs), which enable simple PIM operations to be inter-
faced as simple ISA extensions. We show that the judicious
usage of PEIs can achieve significant speedup with min-
imal programming effort and no changes to the existing
programming model.

• We design an architecture that supports implementing PEIs
as part of the host-PIM interface in order to provide the
illusion that PIM operations are executed as if they were
host processor instructions. Unlike previous PIM proposals,
PEIs are fully interoperable with existing cache coherence
and virtual memory mechanisms.

• We propose a mechanism to dynamically track locality of
data accessed by PEIs and execute PEIs with high data
locality on host processors instead of offloading them to
memory, in order to exploit large on-chip caches.

• We evaluate our architecture using ten emerging data-
intensive workloads and show significant performance im-
provements over conventional systems. We also show that
our architecture is able to adapt to data locality at runtime,
thereby outperforming PIM-only systems as well.

2. Background and Motivation
2.1. 3D-Stacked DRAM and Processing-in-Memory
Recent advances in die stacking technologies facilitate low-
cost integration of logic and memory dies in a single package.
Considering the Hybrid Memory Cube (HMC) [23] as a con-
crete example: each cube consists of multiple DRAM dies
and one logic die connected via high-bandwidth links called
through-silicon vias (TSVs). Such a 3D-stacked organization
of logic and memory brings multiple opportunities in optimiz-
ing main memory subsystems. First, main memory density can
be improved over conventional 2D designs by stacking multi-
ple DRAM dies on a single chip. Second, the base logic die

can be utilized to integrate memory controllers and high-speed
signaling circuits inside memory. This enables the realiza-
tion of an abstract, packetized memory interface (instead of
low-level DRAM commands) and higher off-chip memory
bandwidth [20]. Third, TSV-based vertical interconnect facili-
tates low-latency, high-bandwidth, and energy-efficient data
transfer between different dies in a package [8].

Among these three major benefits of 3D-stacked DRAM,
this paper concentrates on exploiting especially the last two.
When 3D-stacked DRAM is used as off-chip main memory,
it provides much higher memory bandwidth inside a DRAM
chip (between the logic die and the DRAM die) than between
processors and DRAM chips because TSVs are much more
cost-effective than off-chip wires and package pins. Moreover,
vertical data transfer inside a 3D-stacked DRAM chip between
logic and memory is more energy-efficient than off-chip trans-
fer due to the much shorter wire length.

Our approach to leveraging such advantages is to move
computation inside its logic die, which is called processing-in-
memory (PIM). This reduces the latency and energy overhead
caused by off-chip data transfer and, more importantly, enables
utilizing high internal memory bandwidth. Moreover, unlike
PIM architectures in 1990s that required significant modifica-
tion to DRAM dies (e.g., [14, 16, 25, 28, 39, 40]), such integra-
tion can now be realized in a much more cost-effective manner
due to the existence of logic dies in 3D-stacked DRAM. These
benefits can potentially improve system performance and en-
ergy efficiency in a practical manner, but only with careful
design of PIM architectures.

Past work on PIM, including early proposals [16, 25, 35, 39,
40, 46] and more recent ones [1, 15, 41, 50], mostly relies on
fully programmable computation units (e.g., general-purpose
processors, programmable logic, etc.) in memory. While
programmability gives the benefit of broad applicability across
different workloads, such approaches may not be suitable for
a near-term solution due to (1) high design effort required
to integrate such complex modules into memory and (2) new
programming models for in-memory computation units, which
require significant changes to software code to exploit PIM.

Motivated by these difficulties, we explore possibilities of
integrating simple PIM operations by minimally extending
the ISA of host processors. Compared to PIM architectures
based on fully programmable computation units, our approach
improves the practicality of the PIM concept by reducing the
implementation overhead of in-memory computation units
and facilitating the use of existing programming models.1

However, despite these advantages, no prior work, to our
knowledge, explored the methods and their effectiveness of
utilizing simple in-memory computation.

2.2. Potential of ISA Extensions as the PIM Interface
To evaluate the potential of introducing simple PIM operations
as ISA extensions, let us consider a parallel implementation

1Due to these advantages, simple in-memory computation mechanisms
are already starting to become available from the industry, e.g., the in-memory
8/16-byte arithmetic/bitwise/boolean/comparison atomics in HMC 2.0 [21].



1 parallel_for (v: graph.vertices) {
2 v.pagerank = 1.0 / graph.num_vertices;
3 v.next_pagerank = 0.15 / graph.num_vertices;
4 }
5 count = 0;
6 do {
7 parallel_for (v: graph.vertices) {
8 delta = 0.85 * v.pagerank / v.out_degree;
9 for (w: v.successors) {

10 atomic w.next_pagerank += delta;
11 }
12 }
13 diff = 0.0;
14 parallel_for (v: graph.vertices) {
15 atomic diff += abs(v.next_pagerank - v.pagerank);
16 v.pagerank = v.next_pagerank;
17 v.next_pagerank = 0.15 / graph.num_vertices;
18 }
19 } while (++count < max_iteration && diff > e);

Figure 1: Pseudocode of parallel PageRank computation.

of the PageRank algorithm [17], shown in Figure 1, as an
example. PageRank [5] is widely used in web search engines,
spam detection, and citation ranking to compute the impor-
tance of nodes based on their relationships. For large graphs,
the performance bottleneck of this workload is in updating
next_pagerank of successor vertices (line 10) since it gener-
ates a very large amount of random memory accesses across
the entire graph [34]. Due to its high memory intensity and
computational simplicity, this operation in PageRank is a good
candidate for implementation as a simple PIM operation.

Figure 2 shows speedup achieved by implementing an
atomic addition command inside memory (see Section 6 for
our evaluation methodology). The evaluation is based on nine
real-world graphs [29, 45], which have 62 K to 5 M vertices
(y-axis is sorted in ascending order of the number of vertices).
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Figure 2: Performance improvement with an in-memory
atomic addition operation used for the PageRank algorithm.

We observe that employing only one simple PIM opera-
tion can improve system performance by up to 53%. The
main benefit is due to the greatly reduced memory bandwidth
consumption of the memory-side addition compared to its
host-side counterpart. While host-side addition moves the en-
tire cache block back and forth between memory and the host
processor for each update, memory-side addition simply sends
the 8-byte delta to memory to update w.next_pagerank. As-
suming 64-byte cache blocks and no cache hits, the host-side
addition transfers 128 bytes of data from/to off-chip memory
for every single update, whereas the memory-side addition

requires only 8 bytes of off-chip communication per update.
Unfortunately, memory-side addition sometimes incurs sig-

nificant performance degradation as well (up to 20%). This
happens when most of next_pagerank updates can be served
by on-chip caches, in which case host-side addition does not
consume off-chip memory bandwidth at all. In such a situa-
tion, memory-side addition degrades both performance and
energy efficiency since it always accesses DRAM to update
data (e.g., memory-side addition causes 50x DRAM accesses
over host-side addition in p2p-Gnutella31). Thus, one needs
to be careful in using memory-side operations as their benefit
greatly depends on the locality of data in on-chip caches.

In summary, simple PIM operations interfaced as ISA exten-
sions have great potential for accelerating memory-intensive
workloads. However, in order to maximize the effectiveness
of simple PIM operations, a host processor should be smart
enough in utilizing these operations (e.g., importantly, by
considering data locality of applications). Based on these
observations, in the following sections, we describe our new,
simple PIM interface consisting of simple ISA extensions and
the architectural support required to integrate such simple PIM
operations into conventional systems.

3. PIM Abstraction: PIM-Enabled Instructions
In this section, we explain our abstraction model for simple
PIM operations, called PIM-enabled instructions (PEIs). Our
goal is to provide the illusion that PIM operations are executed
as if they were host processor instructions. This section de-
scribes our design choices to achieve this new PIM abstraction.
Section 4 will describe our detailed implementation to realize
this abstraction.

3.1. Operations
In order to integrate PIM capability into an existing ISA ab-
straction, PIM operations are expressed as specialized instruc-
tions (PEIs) of host processors. For example, if the main
memory supports an in-memory atomic add command (PIM
operation), we add a PIM-enabled atomic add instruction (PEI)
to the host processor. This facilitates effortless and gradual
integration of PIM operations into existing software through
replacement of normal instructions with PEIs.

When a PEI is issued by a host processor, our hardware
mechanism dynamically decides the best location to execute
it between memory and the host processor on a per-operation
basis. Software does not provide any information to perform
such a decision and is unaware of the execution location of the
operation, which is determined by hardware.

For memory operands of PIM operations, we introduce an
important design choice, called the single-cache-block restric-
tion: the memory region accessible by a single PIM operation
is limited to a single last-level cache block. Such a restriction
brings at least three important benefits in terms of efficiency
and practicality of PIM operations, as described below.
• Localization: It ensures that data accessed by a PIM oper-

ation are always bounded to a single DRAM module. This
implies that PIM operations always use only vertical links



(without off-chip data transfer) in transferring the target
data between DRAM and in-memory computation units.2

• Interoperability: Since PIM operations and normal last-
level cache accesses now have the same memory access
granularity (i.e., one last-level cache block), hardware sup-
port for coherence management and virtual-to-physical ad-
dress translation for PIM operations becomes greatly sim-
plified (see Section 4).

• Simplified Locality Profiling: Locality of data accessed by
PIM operations can be easily identified by utilizing the last-
level cache tag array or similar structures. Such information
is utilized in determining the best location to execute PEIs.
In addition to memory operands, PIM operations can also

have input/output operands. An example of this is the delta
operand of the atomic addition at line 10 of Figure 1. When a
PIM operation is executed in main memory, its input/output
operands are transferred between host processors and memory
through off-chip links. The maximum size of input/output
operands is restricted to the size of a last-level cache block
because, if input/output operands are larger than a last-level
cache block, offloading such PIM operations to memory in-
creases off-chip memory bandwidth consumption compared to
host-side execution due to the single-cache-block restriction.

3.2. Memory Model
Coherence. Our architecture supports hardware cache co-
herence for PIM operations so that (1) PIM operations can
access the latest versions of data even if the target data are
stored in on-chip caches and (2) normal instructions can see
the data modified by PIM operations. This allows program-
mers to mix normal instructions and PEIs in manipulating the
same data without disabling caches, in contrast to many past
PIM architectures.

Atomicity. Our memory model ensures atomicity between
PEIs. In other words, a PEI that reads from and writes to its
target cache block is not interrupted by other PEIs (possibly
from other host processors) that access the same cache block.
For example, if the addition at line 10 of Figure 1 is imple-
mented as a PEI, hardware preserves its atomicity without any
software concurrency control mechanism (e.g., locks).

On the contrary, atomicity of a PEI is not guaranteed if a nor-
mal instruction accesses the target cache block. For example, if
a normal store instruction writes a value to w.next_pagerank
(in Figure 1), this normal write may happen between reading
w.next_pagerank and writing it inside the atomic PEI addi-
tion (line 10), thereby breaking the atomicity of the PEI. This
is because, in order to support atomicity between a PEI and a
normal instruction, every memory access needs to be checked,
which incurs overhead even for programs that do not use PEIs.

2Without the single-cache-block restriction, PIM operations require spe-
cial data mapping to prevent off-chip transfer between multiple DRAM mod-
ules. This comes with many limitations in that (1) it introduces significant
modification to existing systems to expose the physical location of data to
software and (2) the resulting design may not be easily adaptable across
different main memory organizations.

Instead, host processors provide a PIM memory fence in-
struction called pfence to enforce memory ordering between
normal instructions and PEIs. The pfence instruction blocks
host processor execution until all PEIs issued before it (in-
cluding those from other host processors) are completed. In
Figure 1, a pfence instruction needs to be inserted after line 12
since normal instructions in the third loop access data modified
by PEIs in the second loop (i.e., the w.next_pagerank fields).

It should be noted that, although pfence itself might intro-
duce some performance overhead, its overhead can generally
be amortized over numerous PEI executions. For example,
the PageRank algorithm in Figure 1 issues one PEI per edge
before each pfence, which corresponds to millions or even
billions of PEIs per pfence for large real-world graphs.

Virtual Memory. PEIs use virtual addresses just as normal
instructions. Supporting virtual memory for PEIs therefore
does not require any modification to existing operating systems
and applications.

3.3. Software Modification

In this paper, we assume that programmers modify source
code of target applications to utilize PEIs. This is similar
to instruction set extensions in commercial processors (e.g.,
Intel SSE/AVX [12]), which are exploited by programmers
using intrinsics and are used in many real workloads where
they provide performance benefit. However, we believe that
the semantics of the PEIs is simple enough (e.g., atomic add)
for modern compilers to automatically recognize places to
emit them without requiring hints from programmers and/or
complex program analysis. Moreover, our scheme reduces the
burden of compiler designers since it automatically determines
the best location to execute each PEI between memory and the
host processor, which allows compilers to be less accurate in
estimating performance/energy gain of using PEIs.

4. Architecture
In this section, we describe our architecture that implements
our PIM abstraction with minimal modification to existing
systems. Our architecture is not limited to specific types of in-
memory computation, but provides a substrate to implement
simple yet general-purpose PIM operations in a practical and
efficient manner.

4.1. Overview

Figure 3 gives an overview of our architecture. We choose the
Hybrid Memory Cube (HMC) [23] as our baseline memory
technology. An HMC consists of multiple vertical DRAM
partitions called vaults. Each vault has its own DRAM con-
troller placed on the logic die. Communication between host
processors and HMCs is based on a packet-based abstract
protocol supporting not only read/write commands, but also
compound commands such as add-immediate operations, bit-
masked writes, and so on [20]. Note that our architecture can
be easily adopted to other memory technologies since it does
not depend on properties specific to any memory technology.
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Figure 3: Overview of the proposed architecture.

The key features of our architecture are (1) to support PIM
operations as part of the host processor instruction set and
(2) to identify PEIs with high data locality and execute them
in the host processor. To realize these, our architecture is
composed of two main components. First, a PEI Computation
Unit (PCU) is added into each host processor and each vault
to facilitate PEIs to be executed in either the host processor or
main memory. Second, in order to coordinate PEI execution
in different PCUs, the PEI Management Unit (PMU) is placed
near the last-level cache and is shared by all host processors. In
the following subsections, we explain the details of these two
components and their operation sequences in host-/memory-
side PEI execution.

4.2. PEI Computation Unit (PCU)

Architecture. A PCU is a hardware unit that executes PEIs.
Each PCU is composed of computation logic and an operand
buffer. The computation logic is a set of circuits for computa-
tion supported by main memory (e.g., adders). All PCUs in
the system have the same computation logic so that any PEI
can be executed by any PCU.

The operand buffer is a small SRAM buffer that stores
information of in-flight PEIs. For each PEI, an operand buffer
entry is allocated to store its type, target cache block, and
input/output operands. When the operand buffer is full, future
PEIs are stalled until space frees up in the buffer.

The purpose of the operand buffer is to exploit memory-
level parallelism during PEI execution. In our architecture,
when a PEI obtains a free operand buffer entry, the PCU
immediately sends a read request for the target cache block
of the PEI to memory even if the required computation logic
is in use. Then, the fetched data are buffered in the operand
buffer until the computation logic becomes available. As such,
memory accesses from different PEIs can be overlapped by
simply increasing the number of operand buffer entries. This
is especially useful in our case since simple PIM operations
usually underutilize the computation logic of PCUs due to the
small amount of computation they generate.

Interface. A host processor controls its host-side PCU by
manipulating memory-mapped registers inside it (see Sec-
tion 4.5). Assemblers can provide pseudo-instructions for
PCU control, which are translated to accesses to those memory-
mapped registers, in order to abstract the memory-mapped reg-
isters away from application software. Although we choose

this less invasive style of integration to avoid modification to
out-of-order cores, one can add actual instructions for PCU
control by modifying the cores for tighter integration.

Memory-side PCUs are interfaced with the HMC controllers
using special memory commands. It is relatively easy to add
such commands because communication between HMCs and
HMC controllers is based on a packet-based abstract protocol,
which allows the flexible addition of new commands.

4.3. PEI Management Unit (PMU)
In order to coordinate all PCUs in the system, the PMU per-
forms three important tasks for PEI execution: (1) atomicity
management of PEIs, (2) cache coherence management for
PIM operation execution, and (3) data locality profiling for
locality-aware execution of PIM operations. We explain in
detail the proposed hardware structures to handle these tasks.

PIM Directory. As explained in Section 3.2, our architec-
ture guarantees the atomicity of PEIs. If we consider memory-
side PEI execution only, atomicity of PEIs can be maintained
simply by modifying each DRAM controller inside HMCs
to schedule memory accesses (including reads and writes)
from a single PEI as an inseparable group. However, since
our architecture executes PEIs in both host-side PCUs and
memory-side PCUs, this is not enough to guarantee the atom-
icity of host-side PEI execution.

In order to guarantee the atomicity of both host-side and
memory-side PEI execution, our architecture introduces a
hardware structure that manages atomicity of PEI execution at
the host side. Ideally, this structure would track all in-flight
PEIs to ensure that each cache block has either only one writer
PEI (i.e., a PEI that modifies its target cache block) or multiple
reader PEIs (i.e., PEIs that only read their target cache block).
However, this incurs a very large overhead since exact tracking
of such information requires a fully associative table having
as many entries as the total number of operand buffer entries
of all PCUs in the system (which is equal to the maximum
number of in-flight PEIs, as discussed in Section 4.2).

We develop a special hardware unit called PIM directory
to manage atomicity of in-flight PEIs in a cost-effective man-
ner. The key idea of the PIM directory is to allow rare false
positives in atomicity management (i.e., serialization of two
PEIs with different target cache blocks) for storage overhead
reductions. This does not affect the atomicity of PEIs as long
as there are no false negatives (e.g., simultaneous execution of
two writer PEIs with the same target cache block).3 In order
to exploit this idea, the PIM directory is organized as a direct-
mapped, tag-less table indexed by XOR-folded addresses of
target cache blocks. Each entry implements a reader-writer
lock with four fields: (1) a readable bit, (2) a writeable bit,
(3) an n-bit reader counter where n = dlog2(total number of
operand buffer entries)e, and (4) a 1-bit writer counter.

3Although too frequent false positives may incur a performance overhead
due to unnecessary serialization, our evaluation shows that our mechanism
achieves similar performance to its ideal version (an infinite number of entries)
while incurring only a small storage overhead (see Section 7.6).



When a reader PEI arrives at the PIM directory, it is blocked
until the corresponding PIM directory entry is in the readable
state. After that, the entry is marked as non-writeable in order
to block future writer PEIs during the reader PEI execution.
At this moment, the reader PEI can be executed atomically.
After the reader PEI execution, if there are no more in-flight
reader PEIs to the entry, the entry is marked as writeable.

When a writer PEI arrives, it first needs to ensure that there
are no in-flight writer PEIs for the corresponding PIM direc-
tory entry since atomicity allows only a single writer PEI for
each cache block. Then, the entry is marked as non-readable
to avoid write starvation by future reader PEIs. After that,
the writer PEI waits until all in-flight reader PEIs for the PIM
directory entry are completed (i.e., until the PIM directory
entry becomes writeable), in order to prevent the reader PEIs
from reading the cache block in the middle of the writer PEI
execution. Finally, the write PEI is executed atomically and,
upon its completion, the state of the entry is set to readable.

In addition to atomicity management, the PIM directory also
implements the pfence instruction explained in Section 3.2.
When a pfence instruction is issued, it waits for each PIM
directory entry to become readable. This ensures that all in-
flight writer PEIs issued before the pfence are completed when
the pfence returns.

Cache Coherence Management. In our PIM abstraction,
PEIs should be interoperable with existing cache coherence
protocols. This is easily achievable for host-side PEI execution
since host-side PCUs share L1 caches with their host proces-
sors. On the other hand, PEIs offloaded to main memory might
read stale values of their target cache blocks if on-chip caches
have modified versions of these blocks.

Our solution to this problem is simple. Due to the single-
cache-block restriction, when the PMU receives a PEI, it
knows exactly which cache block the PEI will access. Thus,
it simply requests back-invalidation (for writer PEIs) or back-
writeback4 (for reader PEIs) for the target cache block to the
last-level cache before sending the PIM operation to memory.
This ensures that neither on-chip caches nor main memory
has a stale copy of the data before/after PIM operation exe-
cution, without requiring complex hardware support for ex-
tending cache coherence protocols toward the main memory
side. Note that back-invalidation and back-writeback happen
infrequently in practice since our architecture offloads PEIs to
memory only if the target data are not expected to be present
in on-chip caches.

Locality Monitor. One of the key features of our architec-
ture is locality-aware PEI execution. The key idea is to decide
whether to execute a PEI locally on the host or remotely in
memory. This introduces a new challenge: dynamically pro-
filing the data locality of PEIs. Fortunately, our single-cache-
block restriction simplifies this problem since data locality of

4We use the term ‘back-writeback’ to denote a writeback request that
forces writing back the target cache block from any of the L1, L2, or L3
caches it is present in to main memory (analogous to back-invalidation in
inclusive cache hierarchies).

each PEI depends only on the locality of a single target cache
block. With that in mind, the remaining issue is to monitor
locality of the cache blocks accessed by the PEIs, which is
done by the locality monitor in the PMU.

The locality monitor is a tag array with the same number of
sets/ways as that of the last-level cache. Each entry contains a
valid bit, a 10-bit partial tag (constructed by applying folded-
XOR to the original tags), and replacement information bits.
Each last-level cache access leads to hit promotion and/or
block replacement for the corresponding locality monitor entry
(as in the last-level cache).

The key difference between the locality monitor and the tag
array of the last-level cache is that the former is also updated
when a PIM operation is issued to memory. More specifically,
when a PIM operation is sent to main memory, the locality
monitor is updated as if there is a last-level cache access to its
target cache block. By doing so, the locality of PEIs is properly
monitored regardless of the location of their execution.

In our locality monitor, the data locality of a PEI can be
identified by checking to see if its target cache block address
hits in the locality monitor. The key idea behind this is that, if
some cache blocks are accessed frequently (i.e., high locality),
they are likely to be present in the locality monitor. However,
according to our evaluations, if a locality monitor entry is
allocated by a PIM operation, it is often too aggressive to
consider it as having high locality on its first hit in the locality
monitor. Therefore, we add a 1-bit ignore flag per entry to
ignore the first hit to an entry allocated by a PIM operation
(those allocated by last-level cache accesses do not set this
ignore flag).

4.4. Virtual Memory Support

Unlike many other PIM architectures, virtual memory is easily
supported in our architecture since PEIs are part of the con-
ventional ISA. When a host processor issues a PEI, it simply
translates the virtual address of the target cache block by ac-
cessing its own TLB. By doing so, all PCUs and the PMU in
the system handle PEIs with physical addresses only.

This scheme greatly improves the practicality of our archi-
tecture. First, it avoids the overhead of adding address transla-
tion capabilities in memory. Second, existing mechanisms for
handling page faults can be used without modification because
page faults are still handled only at the host processor (i.e.,
no need to handle page faults in memory). Third, it does not
increase TLB pressure since the single-cache-block restriction
guarantees that only one TLB access is needed for each PEI
just as a normal memory access operation.

4.5. PEI Execution

Host-side PEI Execution. Figure 4 illustrates the execution
sequence of a PEI with high data locality. First, the host pro-
cessor sends the input operands of the PEI to the PCU and
issues it 1 . The host-side PCU has a set of memory-mapped
registers for control and temporary storage of input operands.
Next, the host-side PCU accesses the PMU to (1) obtain a
reader-writer lock for the target cache block from the PIM
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Figure 4: Host-side PEI execution.

directory and (2) consult the locality monitor to decide the
best location to execute the PEI 2 . In this case, the locality
monitor advises the execution of the PEI on the host-side PCU
as the target block is predicted to have high data locality. After
that, the host-side PCU allocates a new operand buffer entry,
copies the input operands from the memory-mapped register
to this entry, and loads the cache block from the L1 cache 3 .
Once the target cache block is loaded, the PCU executes the
PEI 4 and initiates a store request to the L1 cache if the PEI
modifies the target cache block data 5 . When the PEI execu-
tion is complete, the host-side PCU notifies the completion
to the PMU in background to release the corresponding PIM
directory entry 6 . Finally, the host processor reads the output
operands through memory-mapped registers inside the PCU
and the operand buffer entry is deallocated 7 .

Memory-side PEI Execution. Figure 5 shows the proce-
dure of executing a PEI in main memory. Steps 1 and 2 are
the same as in the above case, except that the locality monitor
advises the execution of the PEI in memory. While this deci-
sion is being returned to the host-side PCU, the PMU sends a
back-invalidation/back-writeback signal to the last-level cache
to clean any local copy of the target cache block 3 . At the
same time, the host-side PCU transfers the input operands
stored in its memory-mapped registers to the PMU 4 . Once
both steps are complete, the PMU sends the PIM operation
to main memory by packetizing the operation type, the tar-
get cache block address, and the input operands 5 . Upon
receiving the response from the main memory 6 , the PMU
releases the corresponding PIM directory entry and sends the
output operands back to the host-side PCU 7 so that the host
processor can read them 8 .
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5. Target Applications for Case Study
The primary target of our architecture is applications with
large memory footprint and very large memory bandwidth
consumption. This makes it difficult to use standard bench-
marks for evaluation as many standard benchmarks do not
stress off-chip memory. Instead, we perform a case study on
ten emerging data-intensive workloads from three important
domains, which are often classified as “big-data” workloads.
Evaluating such big-data applications on PIM architectures
is very important since they are envisioned as the principal
target for PIM due to their importance, broad applicability, and
enormous memory bandwidth demand [2, 41]. Note that other
applications can also be accelerated under our general-purpose
framework by implementing (possibly) different types of PEIs.

5.1. Large-Scale Graph Processing
Average Teenage Follower (ATF) [19] is an example ker-
nel of social network analysis. It counts for each vertex the
number of its teenage followers by iterating over all teenager
vertices and incrementing the ‘follower’ counters of their suc-
cessor vertices. Since this generates a very large amount of
random memory accesses over the entire graph (pointer chas-
ing over edges), we implement 8-byte atomic integer increment
as a PIM operation to accelerate it.

Breadth-First Search (BFS) [19] is a graph traversal algo-
rithm, which visits vertices closer to a given source vertex first.
Our implementation is based on the parallel level-synchronous
BFS algorithm [18, 19], where each vertex maintains a ‘level’
field to track the progress of traversal. Since each vertex
updates the level fields of its neighbors by a min function,
we implement 8-byte atomic integer min as a PIM operation,
which accepts an 8-byte input operand that replaces the target
8-byte word in memory if the input operand is smaller than
the target word in memory.

PageRank (PR) [18] is a well-known algorithm that calcu-
lates the importance of vertices in a graph (see Figure 1). We
implement double-precision floating point addition as a PIM
operation for this application as discussed in Section 2.2.

Single-Source Shortest Path (SP) [19] finds the shortest
path from a given source vertex to other vertices in a graph.
Our application uses the parallel Bellman-Ford algorithm,
which repeatedly iterates over vertices with distance changes
and relaxes their outgoing edges with min functions. There-
fore, our implementation uses the atomic integer min operation
that we already discussed for BFS.

Weakly Connected Components (WCC) [24] identifies
weakly connected components of a graph (a set of vertices
that are reachable from each other when edge direction is
ignored). The algorithm assigns a unique label for each vertex
and collapses the labels of connected vertices into the smallest
one by propagating labels through edges. Thus, this workload
can also benefit from the atomic integer min operation.

5.2. In-Memory Data Analytics
Hash Join (HJ) [3] joins two relations from an in-memory
database by building a hash table with one relation and probing



it with keys from the other. For this application, we implement
a PIM operation for hash table probing, which checks keys in
a given bucket for a match and returns the match result and
the next bucket address. The host processor issues this PIM
operation for the next bucket by performing pointer chasing
with the returned next bucket address. We also modify the soft-
ware to unroll multiple hash table lookups for different rows to
be interleaved in one loop iteration. This allows out-of-order
cores to overlap the execution of multiple PIM operations with
the use of out-of-order execution.

Histogram (HG) builds a histogram with 256 bins from
32-bit integer data. In order to reduce memory bandwidth
consumption of reading the input data, we implement a PIM
operation that calculates the bin indexes of data in memory
by shifting each 4-byte word in a 64-byte cache block with a
given shift amount, truncating each word into a 1-byte value,
and returning all 16 of them as a 16-byte output operand.

Radix Partitioning (RP) [3] is a data partitioning algo-
rithm for an in-memory database, which acts as a preprocess-
ing step for many database operations. Since it internally
builds a histogram of data before partitioning the data, it can
be accelerated by using the PIM operation for HG. However,
unlike HG where input data are read only once in a streaming
manner, radix partitioning accesses the original data again
after building the histogram to move the data to corresponding
partitions. We simulate a usage scenario where this algorithm
is applied to given input data 100 times, which resembles
access patterns of database servers continuously receiving
queries to the same relation.

5.3. Machine Learning and Data Mining

Streamcluster (SC) [4] is an online clustering algorithm for
n-dimensional data. The bottleneck of this algorithm is in
computing the Euclidean distance of two points. To accel-
erate this computation, we implement a PIM operation that
computes the distance between two 16-dimensional single-
precision floating-point vectors, one stored in its target cache
block (A) and the other passed as its input operand (B). Since
the application uses this kernel to calculate distance from few
cluster centers to many data points, we use the PIM opera-
tion by passing a cluster center as B and a data point as A, to
preserve the locality of the cluster centers.

Support Vector Machine Recursive Feature Elimina-
tion (SVM) [38] selects the best set of features that describe
the data in support vector machine (SVM) classification. It
is extensively used in finding a compact set of genes that are
correlated with disease. The SVM kernel inside it heavily
computes dot products between a single hyperplane vector
(w) and a very large number of input vectors (x). Thus, we
implement a PIM operation that computes the dot product
of two 4-dimensional double-precision floating-point vectors,
similar to the PIM operation for SC.

5.4. Operation Summary

Table 1 summarizes the PIM operations implemented in this
paper. It also shows reader/writer flags (e.g., if the ‘W’ column

of an operation is marked as ‘O’, it indicates that the operation
modifies the target cache block) and the sizes of input/output
operands. All these operations are supported by both the host-
side and the memory-side PCUs in our system.

Table 1: Summary of Supported PIM Operations

Operation R W Input Output Applications

8-byte integer increment O O 0 bytes 0 bytes AT
8-byte integer min O O 8 bytes 0 bytes BFS, SP, WCC
Floating-point add O O 8 bytes 0 bytes PR
Hash table probing O X 8 bytes 9 bytes HJ
Histogram bin index O X 1 byte 16 bytes HG, RP
Euclidean distance O X 64 bytes 4 bytes SC
Dot product O X 32 bytes 8 bytes SVM

6. Evaluation Methodology
6.1. Simulation Configuration
We use an in-house x86-64 simulator whose frontend is based
on Pin [33]. Our simulator models microarchitectural com-
ponents in a cycle-level manner, including out-of-order cores,
multi-bank caches with MSHRs, on-chip crossbar network,
the MESI cache coherence protocol, off-chip links of HMCs,
and DRAM controllers inside HMCs. Table 2 summarizes the
configuration for the baseline system used in our evaluations,
which consists of 16 out-of-order cores, a three-level inclusive
cache hierarchy, and 32 GB main memory based on HMCs.

Table 2: Baseline Simulation Configuration

Component Configuration

Core 16 out-of-order cores, 4 GHz, 4-issue
L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
On-Chip Network Crossbar, 2 GHz, 144-bit links
Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
HMC 4 GB, 16 vaults, 256 DRAM banks [20]
– DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]
– Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

In our system, each PCU has a single-issue computation
logic and a four-entry operand buffer (512 bytes). Thus, a PCU
can issue memory requests of up to four in-flight PEIs in paral-
lel but executes each PEI serially. We set the clock frequency
of host-side and memory-side PCUs to 4 GHz and 2 GHz, re-
spectively. Our system has 16 host-side PCUs (one per host
processor) and 128 memory-side PCUs (one per vault).

Within the PMU design, the PIM directory is implemented
as a tag-less four-bank SRAM array that can keep track of 2048
reader-writer locks. The storage overhead of the PIM directory
is 3.25 KB, or 13 bits per entry (a readable bit, a writeable
bit, a 10-bit5 reader counter and a 1-bit writer counter). The
locality monitor has 16,384 sets and 16 ways, which is the
same as the organization of the tag array of the L3 cache.

5Since our system has 576 (= 16×4+128×4) operand buffers in total,
at least 10 bits are needed to safely track the number of in-flight PEIs.



Since each entry consists of a valid bit, a 10-bit partial tag,
4-bit LRU information, and a 1-bit ignore flag, the storage
overhead of the locality monitor is 512 KB (3.1% of the last-
level cache capacity). The access latency of the PIM directory
and the locality monitor is set to two and three CPU cycles,
respectively, based on CACTI 6.5 [37].

6.2. Workloads
We simulate ten real-world applications presented in Section 5
for our evaluations. To analyze the impact of data locality, we
use three input sets for each workload as shown in Table 3.
All workloads are simulated for two billion instructions after
skipping their initialization phases.

Table 3: Input Sets of Evaluated Applications

Application Input Sets (Small/Medium/Large)

ATF, BFS, PR,
SP, WCC

soc-Slashdot0811 (77 K vertices, 905 K edges) [45] /
frwiki-2013 (1.3 M vertices, 34 M edges) [29] /
soc-LiveJournal1 (4.8 M vertices, 69 M edges) [45]

HJ R = 128K/1 M/128 M rows, S = 128M rows
HG 106 /107 /108 32-bit integers
RP 128 K/1 M/128 M rows
SC 4 K/64 K/1 M of 32/128/128-dimensional points [4]
SVM 50/130/253 instances from Ovarian cancer dataset [38]

7. Evaluation Results
In this section, we evaluate four different system configura-
tions described below. Unless otherwise stated, all results are
normalized to Ideal-Host.
• Host-Only executes all PEIs on host-side PCUs only. This

disables the locality monitor of the PMU.
• PIM-Only executes all PEIs on memory-side PCUs only.

This also disables the locality monitor.
• Ideal-Host is the same as Host-Only except that its PIM di-

rectory is infinitely large and can be accessed in zero cycles.
This configuration represents an idealized conventional ar-
chitecture. In this configuration, our PEIs are implemented
as normal host processor instructions since atomicity of
operations is preserved exactly without incurring any cost.

• Locality-Aware executes PEIs on both host-side and
memory-side PCUs based on our locality monitor.

7.1. Performance
Figure 6 presents a performance comparison of the four sys-
tems under different workload input set sizes. All results
are normalized to Ideal-Host. The last bars labeled as ‘GM’
indicate geometric mean across 10 workloads.

First, we confirm that the effectiveness of simple PIM op-
erations highly depends on data locality of applications. For
large inputs, PIM-Only achieves 44% speedup over Ideal-Host
since using PIM operations better utilizes the vertical DRAM
bandwidth inside HMCs (2x the internal bandwidth utilization
on average). However, for small inputs, PIM-Only degrades
average performance by 20% because PIM operations always
access DRAM even though the data set comfortably fits in
on-chip caches (causing 17x the DRAM accesses on average).
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Figure 6: Speedup comparison under different input sizes.

In order to analyze the impact of PIM operations on off-chip
bandwidth consumption, Figure 7 shows the total amount of
off-chip transfers in Host-Only and PIM-Only, normalized
to Ideal-Host. For large inputs, PIM-Only greatly reduces
off-chip bandwidth consumption by performing computation
in memory and bringing only the necessary results to the host
processor.6 However, using PIM operations for small inputs,
which usually fit in the large on-chip caches, greatly increases
the off-chip bandwidth consumption (up to 502x in SC).

Our architecture exploits this trade-off between Host-Only
and PIM-Only execution by adapting to the data locality of ap-
plications. As shown in Figure 6, our Locality-Aware system
provides the speedup of PIM-Only in workloads with large
inputs (47% improvement over Host-Only) by offloading 79%
of PEIs to memory-side PCUs. At the same time, our proposal
maintains the performance of Host-Only in workloads with
small inputs (32% improvement over PIM-Only) by executing
86% (96% if HG is excluded) of PEIs on host-side PCUs.

More importantly, Locality-Aware often outperforms both
Host-Only and PIM-Only by simultaneously utilizing host-
side and memory-side PCUs for PEI execution. This is espe-
cially noticeable in graph processing workloads with medium
inputs (i.e., ATF, BFS, PR, SP, and WCC in Figure 6b), where
Locality-Aware achieves 12% and 11% speedup over Host-

6An exception to this trend is observed in SC and SVM with large inputs,
which will be discussed in Section 7.4.
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Figure 7: Normalized amount of off-chip transfer.

Only and PIM-Only, respectively. The major reason is that, in
those workloads, vertices have different data locality according
to the shape of the graph. For example, in the PageRank algo-
rithm shown in Figure 1, vertices with many incoming edges
(called high-degree vertices) receive more updates than those
with few incoming edges since the atomic increment at line 10
is propagated through outgoing edges. Such characteristics
play an important role in social network graphs like the ones
used in our evaluations since they are known to show a large
variation in the number of edges per vertex (often referred to as
power-law degree distribution property) [36]. In this context,
Locality-Aware provides the capability of automatically opti-
mizing computation for high-degree and low-degree vertices
separately without complicating software programming.

7.2. Sensitivity to Input Size
Figure 8 compares the performance of Host-Only, PIM-Only,
and Locality-Aware using the PageRank workload with nine
input graphs. We use the same input graphs as in Figure 2.
Graphs are sorted based on their number of vertices: graphs
with larger numbers of vertices appear toward the right side of
the figure. Figure 8 also depicts the fraction of PEIs executed
on memory-side PCUs (denoted as ‘PIM %’).

Most notably, Locality-Aware gradually shifts from host-
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Figure 8: PageRank performance with different graph sizes.

side execution to memory-side execution as input size grows
from left to right in the figure. For example, only 0.3% of the
PEIs are executed on memory-side PCUs in soc-Slashdot0811,
while this ratio reaches up to 87% in cit-Patents. This indi-
cates the adaptivity of our architecture to a wide range of data
locality behavior and different input sets.

We confirm that our locality monitoring scheme facilitates
the use of both host-side and memory-side execution in a
robust manner. For example, in amazon-2008 and frwiki-2013,
which are medium-size input sets (and thus do not fully fit in
on-chip caches), our technique enables a sizeable fraction of
PEIs to be executed on the memory side, yet a sizeable fraction
is also executed on the host side. This adaptive behavior of PEI
execution shows the importance of hardware-based schemes
for locality-aware PIM execution, as fine-grained (per-cache-
block) information of data locality cannot be easily obtained
with software-only approaches.

7.3. Multiprogrammed Workloads

To further analyze the benefit of our dynamic mechanism for
locality-aware PIM execution, we evaluate our architecture
with 200 multiprogrammed workloads. Each workload is con-
structed by randomly picking two target applications, each
of which is set to spawn eight threads. We choose their in-
put size uniformly at random from six possible combinations
(small-small, medium-medium, large-large, small-medium,
medium-large, and small-large). We use the sum of IPCs as a
performance metric since most of our target applications are
server workloads, which are throughput-oriented.

Figure 9 shows the performance of Locality-Aware and
PIM-Only normalized to Host-Only, showing that our locality-
aware architecture performs better than both Host-Only and
PIM-Only execution for an overwhelming majority of the
workloads. Hence, our architecture effectively selects the best
place to execute PEIs even if applications with very differ-
ent locality behavior are mixed. This is an important con-
tribution since, without hardware-based locality monitoring
mechanisms like ours, it is infeasible or very difficult for the
software to determine where to execute a PEI, in the presence
of multiple workloads scheduled at runtime. In many systems,
a diverse spectrum of applications or workloads are run to-
gether and their locality behavior changes dynamically at a
fine granularity. As such, it is critical that a technique like
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Figure 9: Performance comparison using randomly picked
multiprogrammed workloads (normalized to Host-Only).



ours can dynamically profile the locality behavior and adapt
PEI execution accordingly.

7.4. Balanced Dispatch: Idea and Evaluation
As shown in Figure 7, most of the speedup achieved by PIM-
Only comes from the reduction in memory bandwidth con-
sumption. However, we observe an intriguing behavior for
some workloads: PIM-Only outperforms Host-Only in SC and
SVM with large inputs even though it increases off-chip band-
width consumption. This is because PIM-Only shows better
balance between request and response bandwidth consumption
(note that HMCs have separate off-chip links for requests and
responses). For example, in SC, Host-Only reads 64-byte data
per PEI, while PIM-Only sends 64-byte data to memory per
PEI (see Table 1). Although the two consume nearly the same
amount of memory bandwidth in total, the latter performs bet-
ter because these two applications are read-dominated, which
makes response bandwidth more performance-critical than
request bandwidth.7

Leveraging this observation, we devise a simple idea called
balanced dispatch, which relies on the host-side PEI execu-
tion capability of our architecture. In this scheme, PEIs are
forced to be executed on host-side PCUs regardless of their
locality if doing so achieves a better balance between request
and response bandwidth. For this purpose, two counters, Creq
and Cres, are added to the HMC controller to accumulate the
total number of flits transferred through the request and re-
sponse links, respectively (the counters are halved every 10 µs
to calculate the exponential moving average of off-chip traffic).
When a PEI misses in the locality monitor, if Cres is greater
than Creq (i.e., higher average response bandwidth consump-
tion), our scheme chooses the one that consumes less response
bandwidth between host-side and memory-side execution of
that PEI. Similarly, if Creq is greater than Cres, the execution
location with less request bandwidth consumption is chosen.

As shown in Figure 10, balanced dispatch further improves
the performance of our architecture by up to 25%. We believe
that this idea can be generalized to other systems with separate
request/response channels such as buffer-on-board memory
systems [7] (e.g., Intel SMB [22], IBM Centaur [13], etc.), the
evaluation of which is left for our future work.
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Figure 10: Performance improvement of balanced dispatch.
7To be more specific, a memory read consumes 16/80 bytes of request/

response bandwidth and a memory write consumes 80 bytes of request band-
width in our configuration. Thus, if an application is read-dominated, the
response bandwidth is likely to be saturated first.
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Figure 11: Performance sensitivity to different PCU designs.

7.5. Design Space Exploration for PCUs

Operand Buffer Size. Figure 11a shows the performance
sensitivity of Locality-Aware to the operand buffer size in each
PCU. The results are averaged over all applications and then
normalized to the default configuration (four entries). Error
bars show the minimum and the maximum values.

According to the results, incorporating a four-entry operand
buffer per PCU (i.e., 576 in-flight PEIs) enables the PCU to
exploit the maximum level of memory-level parallelism across
PEIs, thereby improving the system performance by more than
30% compared to the one with a single-entry operand buffer.
Having more than four operand buffer entries per PCU does
not yield a noticeable difference in performance due to the
saturation of instruction-level parallelism across PEIs.

Execution Width. Figure 11b depicts the impact of PCU
execution width on the performance of Locality-Aware. As
shown in the figure, increasing the issue width of the compu-
tation logic shows a negligible effect since execution time of a
PEI is dominated by memory access latency.

7.6. Performance Overhead of the PMU

Compared to an ideal PMU with infinite storage, our PMU
design can potentially degrade performance in three ways.
First, the limited PIM directory size unnecessarily serializes
two PEIs with different target cache blocks if the two cache
blocks happen to be mapped to the same PIM directory entry.
Second, partial tags of the locality monitor could potentially
report false data locality if two cache blocks in a set have the
same partial tag. Third, access latency of the PIM directory
and the locality monitor delays PEI execution.

Fortunately, we observe that these sources of potential per-
formance degradation have a negligible impact on system per-
formance. According to our evaluations, idealizing the PIM
directory and the locality monitor (with unlimited storage and
zero latency) improves the performance of our architecture by
only 0.13% and 0.31%, respectively. Therefore, we conclude
that our PMU design supports atomicity and locality-aware
execution of PEIs with negligible performance overhead.

7.7. Energy, Area, and Thermal Issues

Figure 12 shows the energy consumption of the memory hierar-
chy in Host-Only, PIM-Only, and Locality-Aware, normalized
to that of Ideal-Host. We use CACTI 6.5 [37] to model en-
ergy consumption of on-chip caches, the PIM directory, and
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Figure 12: Energy consumption of memory hierarchy.

the locality monitor. The energy consumption of 3D-stacked
DRAM, DRAM controllers, and off-chip links of an HMC
is modeled by CACTI-3DD [6], McPAT 1.2 [30], and an en-
ergy model from previous work [27], respectively. The energy
consumption of the PCUs is derived from synthesis results of
our RTL implementation of computation logic and operand
buffers based on the Synopsys DesignWare Library [47].

Among the three configurations, Locality-Aware consumes
the lowest energy across all input sizes. For small inputs, it
minimizes DRAM accesses by executing most of the PEIs
at host-side PCUs, unlike PIM-Only, which increases energy
consumption of off-chip links and DRAM by 36% and 116%,
respectively. For large inputs, Locality-Aware saves energy
over Host-Only due to the reduction in off-chip traffic and
execution time. Hence, we conclude that Locality-Aware
enables energy benefits over both Host-Only and PIM-Only
due to its ability to adapt PEI execution to data locality.

Figure 12 also clearly indicates that our scheme introduces
negligible energy overhead in existing systems. Specifically,
the memory-side PCUs contribute only 1.4% of the energy
consumption of HMCs. This implies that integration of such
simple PIM operations into memory likely has a negligible
impact on peak temperature, which is one of the important
issues in 3D-stacked memory design from a practical view-
point [8, 31]. Finally, our synthesis results and CACTI-3DD
estimate the area overhead of memory-side PCUs to be only
1.85% of the logic die area, assuming that a DRAM die and a
logic die occupy the same area.

8. Related Work
To our knowledge, this is the first work that proposes (1) a
processing-in-memory execution model that is compatible
with modern programming models and existing mechanisms
for cache coherence and virtual memory, which is enabled
by our new extensions to modern ISAs, called PIM-enabled
instructions (PEIs), and (2) a new mechanism, called locality-
aware PEI execution, that adaptively determines whether a
PEI should be executed in memory or in the host processor
based on data locality, thereby achieving the benefits of both
memory-side and host-side execution.

As we already explained in Section 1, most past works
on PIM share two common limitations: (1) unconventional
programming models for in-memory computation units and
(2) limited interoperability with on-chip caches and virtual

memory [14, 16, 25, 39, 40, 46]. This is true even for recent
studies that revisit the PIM concept using 3D-stacked DRAM
technologies [1, 11, 41, 50, 51]. Although such approaches
might achieve higher performance than conventional architec-
tures, they require disruptive changes in both hardware and
software, thereby hindering cost-effective and seamless inte-
gration of the PIM concept with existing systems. Our work
overcomes these two major limitations.

Little has been studied on the effect of on-chip caches on
PIM system design. With respect to cache coherence, most
previous PIM approaches either operate on a noncacheable
memory region [15, 39–41, 46], insert explicit cache block
flushes into software code [16, 25, 44, 46], or require invalida-
tions of a memory region [43], all of which introduce perfor-
mance overhead and/or programming burden. Although it is
possible to extend host-side cache coherence protocols to main
memory [26], this incurs nontrivial overhead in implementing
coherence protocols inside memory and, more importantly,
tightly couples memory design to host processor design. Our
architecture supports cache coherence without such drawbacks
by introducing the single-cache-block restriction and manag-
ing coherence entirely from the host side.

To the best of our knowledge, no previous work considered
cache locality in PIM systems from a performance perspective
and proposed mechanisms to adaptively execute PIM opera-
tions either in the host processor or in memory. As shown in
Section 2.2, simply offloading computation to memory all the
time (as done in previous proposals) often noticeably degrades
system performance when the computation exhibits high data
locality. Our scheme provides adaptivity of execution location
to data locality, thereby significantly improving performance
and energy efficiency especially in the presence of varying
dynamic factors (e.g., input sets and workload composition).

In terms of PIM operation granularity, the most relevant
research to ours is active memory operations (AMOs) [9, 10],
in which on-chip memory controllers support a limited set of
simple computations. However, our approach is different from
AMOs in at least three aspects. First, unlike our PIM-based ar-
chitecture, computation in on-chip memory controllers, as op-
posed to in memory, still suffers from the off-chip bandwidth
limitation, which is the bottleneck of our target applications.
Second, AMOs are always executed in memory controllers,
which requires cache block flushes for each AMO, thereby
degrading performance compared to host-side execution under
high data locality. This is not the case for our system since
host-side PCUs see exactly the same memory hierarchy as the
host processor. Third, the memory controller design for AMOs
needs dedicated TLBs for virtual memory support, whereas
our architecture achieves the same goal without such overhead
by performing address translation with host processor TLBs.

9. Conclusion
In this paper, we proposed PIM-enabled instructions (PEIs),
a practical model for processing-in-memory and its hardware
implementation, which is compatible with existing cache co-
herence and virtual memory mechanisms. The key idea of



this paper is to express PIM operations by extending the ISA
of the host processor with PEIs. This greatly improves the
practicality of the PIM concept by (1) seamlessly utilizing the
sequential programming model for in-memory computation,
(2) simplifying the hardware support for interoperability with
existing cache coherence and virtual memory mechanisms,
and (3) minimizing area, power, and thermal overheads of
implementing computation units inside memory. Importantly,
our architecture is also capable of dynamically optimizing PEI
execution according to the data locality of applications and
PEIs. Our extensive evaluation results using emerging data-
intensive workloads showed that our architecture combines the
best part of conventional architectures and simple PIM opera-
tions in terms of both performance and energy consumption
while minimizing the overhead of in-memory computation
units and management structures for PEI execution. We con-
clude that our PEI abstraction and its implementation provide
a practical approach to realizing high-performance and energy-
efficient integration of in-memory computation capability into
commodity computer systems in the near future.
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