
A Case for Core-Assisted

Bottleneck Acceleration in GPUs
Enabling Flexible Data Compression

with Assist Warps

Nandita Vijaykumar

Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick,

Rachata Ausavarangnirun, Chita Das, Mahmut Kandemir,

Todd C. Mowry, Onur Mutlu

Executive Summary

 Observation: Imbalances in execution leave GPU resources
underutilized

 Our Goal: Employ underutilized GPU resources to do something
useful – accelerate bottlenecks using helper threads

 Challenge: How do you efficiently manage and use helper
threads in a throughput-oriented architecture?

 Our Solution: CABA (Core-Assisted Bottleneck Acceleration)

 A new framework to enable helper threading in GPUs

 Enables flexible data compression to alleviate the memory
bandwidth bottleneck

 A wide set of use cases (e.g., prefetching, memoization)

 Key Results: Using CABA to implement data compression in

memory improves performance by 41.7%
2

GPUs today are used for a wide range

of applications …

Computer Vision Data Analytics Scientific

Simulation

Medical

Imaging

3

Challenges in GPU Efficiency

Memory

Hierarchy

Register File Cores

GPU Streaming Multiprocessor

Thread

0

Thread

1

Thread

2

Thread

3

Full! Idle!

Thread limits lead to an underutilized register file The memory bandwidth bottleneck leads to idle cores

Threads

4

Idle!

Full!

Motivation: Unutilized On-chip Memory

 24% of the register file is unallocated on average

 Similar trends for on-chip scratchpad memory

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
 U

n
a
ll
o
ca

te
d
 R

e
g
is

te
rs

5

Motivation: Idle Pipelines

Memory Bound

Compute Bound

0%

20%

40%

60%

80%

100%

CONS JPEG LPS MUM RAY SCP PVC PVR bfs Avg.

%
 C

y
cl

e
s

Active

Stalls

0%

20%

40%

60%

80%

100%

NN STO bp hs dmr NQU SLA lc pt mc

%
 C

y
cl

e
s

Active

Stalls

6

67% of cycles idle

35% of cycles idle

Motivation: Summary

Heterogeneous application requirements lead to:

 Bottlenecks in execution

 Idle resources

7

Our Goal

Memory

Hierarchy

Cores Register File

 Use idle resources to do something useful:

accelerate bottlenecks using helper threads

 A flexible framework to enable helper threading in GPUs:

Core-Assisted Bottleneck Acceleration (CABA)
8

Helper

threads

Helper threads in GPUs

 Large body of work in CPUs …

 [Chappell+ ISCA ’99, MICRO ’02], [Yang+ USC TR ’98],

[Dubois+ CF ’04], [Zilles+ ISCA ’01], [Collins+ ISCA ’01,

MICRO ’01], [Aamodt+ HPCA ’04], [Lu+ MICRO ’05],

[Luk+ ISCA ’01], [Moshovos+ ICS ’01], [Kamruzzaman+

ASPLOS ’11], etc.

 However, there are new challenges with GPUs…

9

Challenge

How do you efficiently

manage and use helper threads

in a throughput-oriented architecture?

10

Managing Helper Threads in GPUs

Thread

Warp

Block Software

Hardware

Where do we add helper threads?
11

Approach #1: Software-only

Regular threads

Helper threads

 No hardware changes

Coarse grained

Not aware of runtime

program behavior

12

Synchronization is

difficult

Where Do We Add Helper Threads?

Thread

Warp

Block Software

Hardware

13

Approach #2: Hardware-only

14

 Fine-grained control

– Synchronization

– Enforcing Priorities

GPU

Cores Register File

Warps

Core 0 Core 1

Reg File 0

Reg File 1

CPU

Reg File 0

Reg File 1Providing contexts

efficiently is difficult

CABA: An Overview

 “Tight coupling” of helper threads and
regular threads

SW

HW
 “Decoupled management” of helper threads

and regular threads

 Efficient context management

 Simpler data communication

 Dynamic management of threads

 Fine-grained synchronization

15

CABA: 1. In Software

Helper threads:

 Tightly coupled to
regular threads

 Simply instructions
injected into the GPU
pipelines

 Share the same
context as the regular
threads

Regs

Block

16

Regular threads

Helper threads

 Efficient context management

 Simpler data communication

CABA: 2. In Hardware

Helper threads:

 Decoupled from regular threads

 Tracked at the granularity of a warp – Assist Warp

 Each regular (parent) warp can have different assist

warps

Parent Warp: X

Assist Warp: A

Assist Warp: B
17

 Dynamic management

of threads

 Fine-grained

synchronization

Key Functionalities

 Triggering and squashing assist warps

 Associating events with assist warps

 Deploying active assist warps

 Scheduling instructions for execution

 Enforcing priorities

 Between assist warps and parent warps

 Between different assist warps

18

Deploy

Scheduler

CABA: Mechanism

ALU

Fetch

I-Cache

Assist
Warp
Store

W
r
i
t
e
b
a
c
k

Instruction
Buffer

Assist Warp
Buffer

ScoreboardD
e
c
o
d
e

ALUALU

Mem

I
s
s
u
e

Trigger

Assist Warp
Controller

Assist
Warp
Store

Holds instructions for different assist warp
routines

Assist Warp
Controller

 Central point of control for:
o Triggering assist warps
o Squashing them

 Tracks progress for active assist
warps

Assist Warp
Buffer

 Stages instructions from triggered
assist warps for execution

 Helps enforce priorities

19

Other functionality

In the paper:

 More details on the hardware structures

 Data communication and synchronization

 Enforcing priorities

20

CABA: Applications

 Data compression

 Memoization

 Prefetching

 …

21

A Case for CABA: Data Compression

 Data compression can help alleviate the memory

bandwidth bottleneck - transmits data in a more

condensed form

Memory

Hierarchy

CompressedUncompressed

 CABA employs idle compute pipelines to perform
compression

Idle!

22

Data Compression with CABA

 Use assist warps to:

 Compress cache blocks before writing to memory

 Decompress cache blocks before placing into the cache

 CABA flexibly enables various compression algorithms

 Example: BDI Compression [Pekhimenko+ PACT ’12]

 Parallelizable across SIMT width

 Low latency

 Others: FPC [Alameldeen+ TR ’04], C-Pack [Chen+ VLSI ’10]

23

Walkthrough of Decompression

Scheduler

L1D
L2 +

Memory

Assist
Warp
Store

Assist
Warp

Controller

Cores

Hit!Miss!

Trigger

24

Walkthrough of Compression

Scheduler

L1D
L2 +

Memory

Assist
Warp
Store

Assist
Warp

Controller

Cores

Trigger

25

Evaluation

Methodology

 Simulator: GPGPUSim, GPUWattch
 Workloads

 Lonestar, Rodinia, MapReduce, CUDA SDK

 System Parameters
 15 SMs, 32 threads/warp
 48 warps/SM, 32768 registers, 32KB Shared Memory
 Core: 1.4GHz, GTO scheduler , 2 schedulers/SM
 Memory: 177.4GB/s BW, 6 GDDR5 Memory Controllers,

FR-FCFS scheduling
 Cache: L1 - 16KB, 4-way associative; L2 - 768KB, 16-way

associative

 Metrics
 Performance: Instructions per Cycle (IPC)
 Bandwidth Consumption: Fraction of cycles the DRAM data

bus is busy 27

Effect on Performance

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
ce

CABA-BDI No-Overhead-BDI

 CABA provides a 41.7% performance improvement
 CABA achieves performance close to that of designs

with no overhead for compression 28

41.7%

Effect on Bandwidth Consumption

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
e
m

o
ry

 B
a
n
d

w
id

th
 C

o
n

su
m

p
ti
o

n

Baseline CABA-BDI

Data compression with CABA alleviates

the memory bandwidth bottleneck 29

Different Compression Algorithms

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
ce

CABA-FPC CABA-BDI CABA-CPack CABA-BestOfAll

CABA is flexible: Improves performance with

different compression algorithms 30

Other Results

 CABA’s performance is similar to pure-hardware

based BDI compression

 CABA reduces the overall system energy (22%) by

decreasing the off-chip memory traffic

 Other evaluations:

 Compression ratios

 Sensitivity to memory bandwidth

 Capacity compression

 Compression at different levels of the hierarchy

31

Conclusion

 Observation: Imbalances in execution leave GPU resources
underutilized

 Our Goal: Employ underutilized GPU resources to do something
useful – accelerate bottlenecks using helper threads

 Challenge: How do you efficiently manage and use helper
threads in a throughput-oriented architecture?

 Our Solution: CABA (Core-Assisted Bottleneck Acceleration)

 A new framework to enable helper threading in GPUs

 Enables flexible data compression to alleviate the memory
bandwidth bottleneck

 A wide set of use cases (e.g., prefetching, memoization)

 Key Results: Using CABA to implement data compression in

memory improves performance by 41.7%
32

A Case for Core-Assisted

Bottleneck Acceleration in GPUs
Enabling Flexible Data Compression

with Assist Warps

Nandita Vijaykumar

Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick,

Rachata Ausavarangnirun, Chita Das, Mahmut Kandemir,

Todd C. Mowry, Onur Mutlu

Backup Slides34

Effect on Energy

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o

rm
a

liz
ed

 E
n

er
g

y

CABA-BDI Ideal-BDI HW-BDI-Mem HW-BDI

CABA reduces the overall system energy by
decreasing the off-chip memory traffic

35

Effect on Compression Ratio

36

Other Uses of CABA

37

 Hardware Memoization

 Goal: avoid redundant computation by reusing
previous results over the same/similar inputs

 Idea:

 hash the inputs at predefined points

 use load/store pipelines to save inputs in shared memory

 eliminate redundant computation by loading stored results

 Prefetching

 Similar to CPU

