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Executive Summary

 Observation: Imbalances in execution leave GPU resources 
underutilized

 Our Goal: Employ underutilized GPU resources to do something 
useful – accelerate bottlenecks using helper threads

 Challenge: How do you efficiently manage and use helper 
threads in a throughput-oriented architecture?

 Our Solution: CABA (Core-Assisted Bottleneck Acceleration)

 A new framework to enable helper threading in GPUs

 Enables flexible data compression to alleviate the memory 
bandwidth bottleneck

 A wide set of use cases (e.g., prefetching, memoization)

 Key Results: Using CABA to implement data compression in 

memory improves performance by 41.7%
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GPUs today are used for a wide range 

of applications …

Computer Vision Data Analytics Scientific 

Simulation

Medical 

Imaging
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Challenges in GPU Efficiency
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Motivation: Unutilized On-chip Memory

 24% of the register file is unallocated on average

 Similar trends for on-chip scratchpad memory 
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Motivation: Idle Pipelines

Memory Bound

Compute Bound

0%

20%

40%

60%

80%

100%

CONS JPEG LPS MUM RAY SCP PVC PVR bfs Avg.

%
 C

y
cl

e
s

Active

Stalls

0%

20%

40%

60%

80%

100%

NN STO bp hs dmr NQU SLA lc pt mc

%
 C

y
cl

e
s

Active

Stalls

6

67% of cycles idle

35% of cycles idle



Motivation: Summary

Heterogeneous application requirements lead to:

 Bottlenecks in execution

 Idle resources
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Our Goal

Memory

Hierarchy

Cores Register File

 Use idle resources to do something useful: 

accelerate bottlenecks using helper threads

 A flexible framework to enable helper threading in GPUs: 

Core-Assisted Bottleneck Acceleration (CABA)
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Helper threads in GPUs

 Large body of work in CPUs …

 [Chappell+ ISCA ’99, MICRO ’02], [Yang+ USC TR ’98], 

[Dubois+ CF ’04], [Zilles+ ISCA ’01], [Collins+ ISCA ’01, 

MICRO ’01], [Aamodt+ HPCA ’04], [Lu+ MICRO ’05], 

[Luk+ ISCA ’01], [Moshovos+ ICS ’01], [Kamruzzaman+ 

ASPLOS ’11], etc.

 However, there are new challenges with GPUs…
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Challenge

How do you efficiently 

manage and use helper threads 

in a throughput-oriented architecture?
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Managing Helper Threads in GPUs

Thread

Warp

Block Software
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Where do we add helper threads?
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Approach #1: Software-only

Regular threads

Helper threads

 No hardware changes

Coarse grained

Not aware of runtime 

program behavior
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Where Do We Add Helper Threads?

Thread

Warp

Block Software

Hardware
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Approach #2: Hardware-only

14

 Fine-grained control

– Synchronization

– Enforcing Priorities

GPU

Cores Register File

Warps

Core 0 Core 1

Reg File 0

Reg File 1

CPU

Reg File 0

Reg File 1Providing contexts 

efficiently is difficult



CABA: An Overview

 “Tight coupling” of helper threads and 
regular threads

SW

HW
 “Decoupled management” of helper threads 

and regular threads

 Efficient context management

 Simpler data communication 

 Dynamic management of threads

 Fine-grained synchronization
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CABA: 1. In Software

Helper threads:

 Tightly coupled to  
regular threads

 Simply instructions 
injected into the GPU 
pipelines

 Share the same 
context as the regular 
threads

Regs

Block
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Regular threads

Helper threads

 Efficient context management

 Simpler data communication 



CABA: 2. In Hardware

Helper threads:

 Decoupled from regular threads 

 Tracked at the granularity of a warp – Assist Warp

 Each regular (parent) warp can have different assist 

warps

Parent Warp: X

Assist Warp: A

Assist Warp: B
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 Dynamic management 

of threads

 Fine-grained 

synchronization



Key Functionalities

 Triggering and squashing assist warps

 Associating events with assist warps

 Deploying active assist warps

 Scheduling instructions for execution

 Enforcing priorities

 Between assist warps and parent warps

 Between different assist warps
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Deploy
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CABA: Mechanism
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Holds instructions for different assist warp 
routines

Assist Warp 
Controller

 Central point of control for: 
o Triggering assist warps
o Squashing them

 Tracks progress for active assist 
warps

Assist Warp
Buffer

 Stages instructions from triggered 
assist warps for execution

 Helps enforce priorities
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Other functionality

In the paper:

 More details on the hardware structures

 Data communication and synchronization

 Enforcing priorities
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CABA: Applications

 Data compression

 Memoization

 Prefetching

 …
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A Case for CABA: Data Compression

 Data compression can help alleviate the memory 

bandwidth bottleneck - transmits data in a more 

condensed form

Memory

Hierarchy

CompressedUncompressed

 CABA employs idle compute pipelines to perform 
compression

Idle!
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Data Compression with CABA

 Use assist warps to:

 Compress cache blocks before writing to memory

 Decompress cache blocks before placing into the cache

 CABA flexibly enables various compression algorithms

 Example: BDI Compression [Pekhimenko+ PACT ’12]

 Parallelizable across SIMT width

 Low latency

 Others: FPC [Alameldeen+ TR ’04], C-Pack [Chen+ VLSI ’10]
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Walkthrough of Decompression
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Walkthrough of Compression
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Evaluation



Methodology

 Simulator:  GPGPUSim, GPUWattch
 Workloads

 Lonestar, Rodinia, MapReduce, CUDA SDK

 System Parameters
 15 SMs, 32 threads/warp
 48 warps/SM, 32768 registers, 32KB Shared Memory
 Core: 1.4GHz, GTO scheduler , 2 schedulers/SM
 Memory: 177.4GB/s BW, 6 GDDR5 Memory Controllers, 

FR-FCFS scheduling
 Cache: L1 - 16KB, 4-way associative; L2 - 768KB, 16-way 

associative

 Metrics
 Performance: Instructions per Cycle (IPC)
 Bandwidth Consumption: Fraction of cycles the DRAM data 

bus is busy 27



Effect on Performance
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 CABA provides a 41.7% performance improvement
 CABA achieves performance close to that of designs 

with no overhead for compression 28

41.7%



Effect on Bandwidth Consumption
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Data compression with CABA alleviates 

the memory bandwidth bottleneck 29



Different Compression Algorithms
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CABA-FPC CABA-BDI CABA-CPack CABA-BestOfAll

CABA is flexible: Improves performance with 

different compression algorithms 30



Other Results

 CABA’s performance is similar to pure-hardware 

based BDI compression 

 CABA reduces the overall system energy (22%)  by 

decreasing the off-chip memory traffic

 Other evaluations:

 Compression ratios

 Sensitivity to memory bandwidth

 Capacity compression

 Compression at different levels of the hierarchy
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Conclusion

 Observation: Imbalances in execution leave GPU resources 
underutilized

 Our Goal: Employ underutilized GPU resources to do something 
useful – accelerate bottlenecks using helper threads

 Challenge: How do you efficiently manage and use helper 
threads in a throughput-oriented architecture?

 Our Solution: CABA (Core-Assisted Bottleneck Acceleration)

 A new framework to enable helper threading in GPUs

 Enables flexible data compression to alleviate the memory 
bandwidth bottleneck

 A wide set of use cases (e.g., prefetching, memoization)

 Key Results: Using CABA to implement data compression in 

memory improves performance by 41.7%
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Effect on Energy
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CABA reduces the overall system energy by 
decreasing the off-chip memory traffic
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Effect on Compression Ratio
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Other Uses of CABA
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 Hardware Memoization

 Goal: avoid redundant computation by reusing 
previous results over the same/similar inputs

 Idea: 

 hash the inputs at predefined points

 use load/store pipelines to save inputs in shared memory

 eliminate redundant computation by loading stored results

 Prefetching

 Similar to CPU


