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Abstract

The concept of “information-structures” in decentralized control is a formalization of the
notion of “who knows what and when do they know it.” Even seemingly simple problems with
simply stated information structures can be extremely hard to solve. Perhaps the simplest of
such unsolved problem is the celebrated Witsenhausen counterexample, formulated by Hans
Witsenhausen in 1968. This article discusses how the information structure of the Witsenhausen
counterexample makes it hard, and how an information-theoretic approach, that explores the
knowledge-gradient due to a non-classical information pattern, has helped obtain insights into
the problem.
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Figure 1: The evolution of control systems. Modern “networked control systems” (also called
“cyber-physical systems”) are decentralized and networked using communication channels.

Modern control systems often comprise of multiple decentralized control agents that interact over
communication channels. What characteristic distinguishes a centralized control problem from a
decentralized one? One fundamental difference is a “knowledge gradient”: agents in a decentral-
ized team often observe, and hence know, different things. This observation leads to the idea of
information patterns [1], a formalization of the notion of “who knows what and when do they know
it” [2, 3].

The information pattern is said to be classical if all agents in the team receive the same information,
and have perfect recall (so they do not forget it). What is so special about classical information pat-
terns? For these patterns, the presence of external communication links has no effect on the optimal
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costs! After all, what could the agents use the communication links for, when there is no knowl-
edge gradient? More interesting, therefore, are the problems for which the information-pattern is
non-classical. These problems sit at the intersection of communication and control: communication
between agents can help reduce the knowledge-differential that exists between them, helping them
perform the control task. Intellectually and practically, the concept of non-classical information
patterns motivates a lot of formulations at the control-communication intersection. Many of these
formulations — including some discussed in this Encyclopedia (e.g. [4–8]) — intellectually ask the
question: for a realistic channel that is constrained by noise, bandwidth, and speed, what is the
optimal communication and control strategy?

One could ask the question of optimal control strategy even for decentralized control problems
where no external channel is available to bridge this knowledge gradient. Why could these problems
be of interest? First, these problems are limiting cases of control with communication constraints.
Second, and perhaps more importantly, they bring out an interesting possibility that can allow the
agents to “communicate”, i.e., exchange information, even when the external channel is absent.
It is possible to use control actions to communicate through changing the system state! We now
introduce this form of communication using a simple toy example.

2 Communicating using actions: an example
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Figure 2: Two controllers, with their respective strengths and weaknesses, attempting to bring an
inverted pendulum close to the center. Also shown (using green ‘+’ signs) are possible quantization
points chosen by the controllers for a quantization-based control strategy.

To gain intuition into when communication using actions could be useful, consider the inverted
pendulum example shown in Fig. 2. The goal of the two agents is to bring the pendulum as close to
the origin as possible. Both controllers have their strengths and weaknesses. The “weak” controller
Cw has little energy, but has perfect state observations. On the other hand, the “blurry” controller
Cb has infinite energy, but noisy observations. They act one after the other, and their goal is to
move the pendulum close to the center from any initial state. The information structure of the
problem is nonclassical: the Cw, but not Cb, knows the initial state of the pendulum, and Cw does
not know the precise (noisy) observation of Cb using which Cb takes actions.

A possible strategy : A little thought reveals an interesting strategy: the weak controller, having
perfect observations, can move the state to the closest of some pre-decided points in space, effectively
quantizing the state. If these quantization points are sufficiently far from each other, they can be
estimated accurately (through the noise) by the blurry controller, which can then use its energy to
push the pendulum all the way to zero. In this way, the weak controller expends little energy, but
is able to “communicate” the state through the noise to the blurry controller, by making it take
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values on a finite set. Once the blurry controller has received the state through the noise, it can use
its infinite energy to push the state to zero.

3 The Witsenhausen counterexample
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Figure 3: The Witsenhausen counterexample is a deceptively simple two-time-step two-controller
decentralized control problem. The weak and the blurry controllers, Cw and Cb act in a sequential
manner.

The above two-controller inverted-pendulum example is, in fact, motivated by what is now known
as “the Witsenhausen counterexample,” formulated by Hans Witsenhausen is 1968 [9] (see Fig. 3).
In the counterexample, two controllers (denoted here by Cw for “weak” and Cb for “blurry”) act one
after the other in two time-steps to minimize a quadratic cost function. The system state is denoted
by xt, where t is the time-index. uw and ub denote the inputs generated by the two controllers.
The cost function is k2E

[
u2w

]
+ E

[
x22

]
for some constant k. The initial state x0 and the noise z at

the input of the blurry controller are assumed to be Gaussian distributed and independent, with
variances σ20 and 1 respectively. The problem is a “Linear-Quadratic-Gaussian” (LQG) problem,
i.e., the state evolution is linear, the costs are quadratic, and the primitive random variables are
Gaussian.

Why is the problem called a “counterexample”? The traditional “certainty-equivalence” princi-
ple [10] shows that for all centralized LQG problems, linear control laws are optimal. Witsen-
hausen [9] provided a nonlinear strategy for the Witsenhausen problem which outperforms all linear
strategies. Thus, the counterexample showed that the certainty-equivalence doctrine does not ex-
tend to decentralized control.

What is this strategy of Witsenhausen that outperforms all linear strategies? It is, in fact, a
quantization-based strategy, as suggested in our inverted-pendulum story above. Further, it was
shown by Mitter and Sahai [3] that multi-point quantization strategies can outperform linear strate-
gies by an arbitrarily large factor! This observation, combined with the simplicity of the counterex-
ample, makes the problem very important in decentralized control. This simple two-time-step
two-controller LQG problem needs to be understood to have any hope of understanding larger and
more complex problems.

While the optimal costs for the problem are still unknown1, there exists a wealth of understanding of
the counterexample that has helped address more complicated problems. A body of work, starting
with that of Baglietto, Parisini, and Zoppoli [11], numerically obtained solutions that could be close-
to-optimal (although there is no mathematical proof thereof). All these solutions have a consistent
form (illustrated in Fig. 4), with slight improvements in the optimal cost. Because the discrete

1Even though it is known that an optimal strategy exists [9, 14].
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Figure 4: The optimization solution of Baglietto et al. [11] for k2 = 0.5, σ20 = 5. The information-
theoretic strategy of “dirty-paper coding” [12] also yields the same curve [13].

version of the problem, appropriately relaxed, is known to be NP-complete [15], this approach
cannot be used to understand the entire parameter space, and hence has focused on one point:
k2 = 0.5, σ20 = 5. Nevertheless, the approach has proven to be insightful: a recent information-
theoretic body of work shows that the strategies of Fig. 4 can be thought of as information-theoretic
strategies of “dirty-paper coding” [12] that is related to the idea of embedding information in the
state. The question here is: how do we embed the information about the state in the state itself ?

An information-theoretic view of the counterexample: This information-theoretic approach,
that culminated in [16], also obtained the first approximately-optimal solutions to the Witsenhausen
counterexample, as well as its vector extensions. The result is established by analyzing information-
flows in the counterexample that work towards minimizing the knowledge-gradient, effectively an
information-pattern in which Cw can predict the observation of Cb more precisely. The analysis
provides an information-theoretic lower bound on cost that holds irrespective of what strategy is
used. For the original problem, this characterizes the optimal costs (with associated strategies)
within a factor of 8 for all problem parameters (i.e., k, and σ20). For any finite-length extension,
uniform-finite-ratio approximations also exist [16]. The asymptotically infinite-length extension has
been solved exactly [17].

The problem has also driven delineation of decentralized LQG control problems with optimal linear
solutions and those with nonlinear optimal solutions. This led to development and understand-
ing of many variations of the counterexample [2, 18–20], and understanding that can extend to
larger decentralized control problems. More recent work shows that the promise of the Witsen-
hausen counterexample was not a misplaced one: the information-theoretic approach that provides
approximately-optimal solutions to the counterexample [16] yields solutions to other more complex
(e.g. multi-controller, more time-steps) problems as well [21, 22].

4 Summary and future directions

Even simple problems with non-classical information structures can be hard to solve using classical
techniques, as is demonstrated by the Witsenhausen counterexample. However, non-classical in-
formation pattern for some simple problems — starting with the counterexample — have recently
been explored via an information-theoretic lens, yielding the first optimal or approximately-optimal
solutions to these problems. This approach is promising for larger decentralized control problems
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as well. It is now important to explore what is the simplest decentralized control problem that
can not be solved (exactly or approximately) using ideas developed for the counterexample. In
this manner, the Witsenhausen counterexample can provide a platform to unify the more modern
(i.e., external-channel centric approaches, see [4–8] in the encyclopedia) with the more classical
decentralized LQG problems, leading to enriching and useful formulations.
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