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1. Introduction and Background
Modern data-intensive computing forces system designers to

deliver good performance under several major constraints: lim-
ited system power/energy budget (power wall [6]), high mem-
ory latency (memory wall [22]), and on-chip/off-chip memory
bandwidth (bandwidth wall [15]). Multiple different techniques
were proposed to address these issues, but, unfortunately, these
techniques usually offer a trade-off: improving one constraint
at the cost of another one.

Ideally, system designers would like to improve one or several
of the system parameters, e.g., on-chip/off-chip bandwidth con-
sumption, with minimal (if any) negative impact on other key
parameters. One potential way of achieving this is hardware-
based data compression mechanisms [23, 1, 8, 14, 4], and more
specifically, bandwidth or link compression. Data compression
exploits high data redundancy observed in many modern ap-
plications [1, 14, 16, 4], and can be used to improve both the
capacity (e.g., caches, DRAMs, non-volative memories [23, 1,
8, 14, 4, 13, 18] and bandwidth utilization of the intercon-
nects (e.g., on-chip and off-chip buses [17, 13, 18]). Several
recent works [17, 13, 18, 3, 21] apply data compression to
decrease memory traffic by sending/receiving data in a com-
pressed form for both CPUs [13, 21, 3], and GPUs [17, 12] that
result in better system performance and/or energy consump-
tion. Bandwidth compression is especially effective for GPU
applications [17, 12] where the limited main memory band-
width usually becomes the major bottleneck to achieve high
performance [10], and there is also significant redundancy in
transferred data [17, 12].

2. Data Compression Can Be Energy Inefficient
While the above benefits of data compression are clear, there

are also two common shortcomings of data compression that
prior work have looked at: (i) compression/decompression over-
head [1, 14] (in terms of latency, energy and area) and (ii)
complexity/cost to support variable size [9, 16, 13, 18]. Both
problems have reasonable solutions to make data compression
practical (e.g., Base-Delta-Immediate compression [14] demon-
strates very low-latency low-energy hardware-based compres-
sion algorithm, and Decoupled Compressed Cache design [16]
proposes an efficient way to deal with data recompaction and
fragmentation in compressed caches).

In this work, we make a new observation that there is yet
another important problem with data compression that needs
to be addressed in the context of communication channels –
increase in the number of bit-toggles (bit-flips) when transfer-
ring compressed data. This increase in the bit-toggles (i.e.,
switching a bit from 0 to 1 or from 1 to 0) or in the activity
factor [5] then leads to increase in dynamic energy consumed
by on-chip/off-chip buses (due to more frequent charging and
discharging the channel wire capacitance). Hence data com-
pression offers a tradeoff – more available bandwidth vs. po-
tentially higher dynamic energy of the data transfers that has
to be properly analyzed.

The reason for this increase in bit-toggles is two-fold: (i)
higher per-bit entropy of the data after compression (the same
amount of information is now stored in less bits, hence, the
“randomness” of a single bit increases), (ii) variable-size nature
of compression that negatively affects data that was originally
more efficiently word-/flit-alligned.

In order to understand (i) how applicable is general-purpose
data compression for real applications (i.e., outside of previ-
ously analyzed SPEC [19] and small GP-GPU applications [7,
11]), and how severe is the observed problem – the increased
number of bit-toggles, we analyze a large (231 total) group
of application traces from major GPU vendor (both general-
purpose and mobile applicatons) with six previously proposed
compression algorithms. Our analysis shows that even though
data compression offers a significant increase in compression
ratio (e.g., more than 47% average increase in effective band-
width with C-Pack compression algorithm [8] for mobile appli-
cations), it can also significantly increase the total number of
toggles (e.g., more than 2.2X average increase with C-Pack for
mobile applications). This, in turn, can significantly increase
the energy of on-chip/off-chip interconnects which constitute a
significant portion of the memory subsystem energy.1

3. Our Approach: Key Idea
In this work, we aim to build a new set of mechanisms to

make bandwidth compression more energy-efficient by reduc-
ing the number of toggles that significantly increases due to
compression. First, we propose a new Energy Control (EC)
mechanism that monitors the benefits and overheads of data
compression, and decides whether it is better to send data in
compressed or uncompressed form (based on both compression
ratio and relative change in bit-toggle rate). The key insight
behind EC is that the decision can be made locally (e.g., for ev-
ery cache line) based on the cost-benefit model derived from the
commonly used Energy ∗Delay and Energy ∗Delay2 metrics.
In this model, Energy is directly proportional to the bit-toggle
number, and Delay is inversely proportional to compression ra-
tio. Second, we define a new Local (Flit) and Global (Packet)
reordering mechanisms that can be used in existing on-chip in-
terconnects to further reduce the number of bit-toggles. Our
proposed solutions are especially effective when the number of
flits is small (e.g., due to data compression). Third, we pro-
pose a new Metadata Consolidation optimization for existing
data compression algorithms to reduce the negative effects of
inserting per word metadata into the cache line data after com-
pression.

Our proposed mechanisms are applicable to different com-
pression algorithms (e.g., FPC [2] and BDI [14] compression),
to different communication channels (e.g., on-chip and off-chip
buses), and potentially to different architectures (e.g., both
GPUs and CPUs). Some of our proposed techniques (Local and
Global reordering) can be efficiently applied to data transfers
even without compression. We also demonstrate that our mech-
anisms are largerly orthogonal to different encoding schemes
(e.g., Data Bus Invertion (DBI) [20]) also used to minimize
the number of bit-toggles, and hence can be efficiently used
together to obtain the benefits of both types of techniques.

4. Novelty and Contributions
In summary, this work makes following contributions:

• We make the new observation that hardware-based data
compression applied to on-chip/off-chip buses poses a new
challenge for system designers – a significant increase in
the number of bit-toggles after compression. Without
proper care, this increase can lead to significant energy

1For example, up to 80% energy of the LLC caches is H-tree
capacitance interconnects [5].



overheads when transferring compressed data that was
not accounted for in prior works.

• We propose a set of new mechanisms to address this new
challenge: Energy Control, Local/Global Reordering, and
Metadata Consolidation.

• We provide a detailed analysis and evaluation of a large
spectrum of GP-GPU applications that justify both the
usefulness of data compression for bandwidth compres-
sion in many real applications, as well as the existence of
the bit-toggle problem for bandwidth compression. Our
proposed solutions can deliver most of benefits of band-
width compression with only minor increase in energy
consumption (in contrast to 2.2X increase in the energy
consumption with the baseline compressed design).
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