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Abstract—Memory bandwidth compression can be an effective way to achieve higher system performance and energy efficiency in modern
data-intensive applications by exploiting redundancy in data. Prior works studied various data compression techniques to improve both
capacity (e.g., of caches and main memory) and bandwidth utilization (e.g., of the on-chip and off-chip interconnects). These works addressed
two common shortcomings of compression: (i) compression/decompression overhead in terms of latency, energy, and area, and (ii) hardware
complexity to support variable data size. In this paper, we make the new observation that there is another important problem related to data
compression in the context of the communication energy efficiency: transferring compressed data leads to a substantial increase in the
number of bit toggles (communication channel switchings from 0 to 1 or from 1 to 0). This, in turn, increases the dynamic energy consumed by
on-chip and off-chip buses due to more frequent charging and discharging of the wires. Our results, for example, show that the bit toggle count
increases by an average of 2.2× with some compression algorithms across 54 mobile GPU applications. We characterize and demonstrate
this new problem across a wide variety of 221 GPU applications and six different compression algorithms. To mitigate the problem, we
propose two new toggle-aware compression techniques: Energy Control and Metadata Consolidation. These techniques greatly reduce the bit
toggle count impact of the six data compression algorithms we examine, while keeping most of their bandwidth reduction benefits.

1 INTRODUCTION AND BACKGROUND

Modern data-intensive computing forces system designers to de-
liver good system performance under multiple constraints: shrinking
power and energy envelopes (power wall), increasing memory la-
tency (memory latency wall), and scarce and expensive bandwidth
resources (bandwidth wall). While many different techniques have
been proposed to address these issues, these techniques often offer
a trade-off: improving one constraint at the cost of another. Ideally,
system architects would like to improve one or more of these sys-
tem parameters, e.g., on-chip/off-chip bandwidth consumption, while
simultaneously avoiding negative effects on other key parameters,
such as overall system cost, energy, and latency characteristics. One
potential way of addressing multiple of the described constraints is
to employ dedicated hardware-based data compression mechanisms
(e.g., [27], [2], [7], [18], [4]) across various data links in the system.
Compression exploits the high data redundancy observed in many
modern applications [18], [20], [4], [26]. It can be used to improve
both capacity (e.g., of caches, DRAM, non-volatile memories [27],
[2], [7], [18], [4], [17], [22], [16], [26]) and bandwidth utilization
(e.g., of on-chip and off-chip interconnects [8], [3], [24], [21], [17],
[22], [26]). Several recent works focus on bandwidth compression to
decrease memory traffic by transmitting data in a compressed form in
both CPUs [17], [24], [3] and GPUs [21], [17], [26], which results in
better system performance and energy consumption. Bandwidth com-
pression proves to be particularly effective in GPUs because GPUs are
often bottlenecked by memory bandwidth [15], [14], [13], [28], [26].
GPU applications also exhibit high degrees of data redundancy [21],
[17], [26], leading to good compression ratios.
1.1 Why Data Compression Can Be Energy-inefficient

The benefits of data compression are well-studied. There are also
two well-known overheads of data compression: (1) compression/de-
compression overhead [2], [18] in terms of latency, energy, and area,
and (2) complexity/cost to support variable data sizes [12], [20],
[17], [22]. Both problems have solutions: e.g., Base-Delta-Immediate
compression [18] provides a low-latency, low-energy hardware-based
compression algorithm, and Decoupled Compressed Cache [20] pro-
vides a mechanism to manage data recompaction and fragmentation
in compressed caches.

In this paper, we make the new observation that there is yet
another important problem with data compression that needs to be
addressed in the context of communication channels: transferring data
in compressed form (as opposed to in uncompressed form) leads to a
significant increase in the number of bit toggles, i.e., the number of
wires that switch from 0 to 1 or 1 to 0. An increase in bit toggle
count leads to a higher switching activity [25], [5], [6] of wires,

leading to higher dynamic energy consumed by on-chip or off-chip
interconnects. We identify two reasons for the increase in bit toggle
count: (i) higher per-bit entropy of compressed data (the same amount
of information is now stored in fewer bits; hence, the “randomness” of
a single bit grows), and (ii) variable-size nature of compressed data,
which can negatively affect the word/flit data alignment in hardware.
Thus, in contrast to the common wisdom that bandwidth compression
saves energy (when it is effective), our key observation reveals a
new tradeoff: energy savings due to reduced bandwidth requirements
versus energy loss due to higher switching energy during compressed
data transfers. This observation and the corresponding tradeoff are the
key contributions of this work.

To understand (1) how applicable general-purpose data compres-
sion is for real GPU applications, and (2) how severe the problem we
identify is, we analyze 221 discrete and mobile graphics application
traces from a major GPU vendor using six compression algorithms.
Our analysis shows that although off-chip bandwidth compression
achieves a significant compression ratio (e.g., more than 47% average
effective bandwidth increase with C-Pack [7] across 54 mobile GPU
applications), it also greatly increases the bit toggle count (e.g., 2.2×
average corresponding increase). This effect, in turn, can significantly
increase the energy dissipated in the on-chip/off-chip interconnects,
which constitute a significant portion of the memory subsystem
energy.1
1.2 Our Approach: Toggle-Aware Compression

In this work, we develop two new techniques that make bandwidth
compression more energy-efficient by limiting the overall increase in
bit toggles due to compression. Our first technique, Energy Control
(EC), decides whether it is better to send data in compressed or
uncompressed form, based on a model that takes into account the
compression ratio and the increase in bit toggles. The key insight is
that this decision can be made in a fine-grained manner (e.g., for every
cache line), using a simple model to approximate the commonly-
used Energy × Delay and Energy × Delay2 metrics. In this
model, Energy is directly proportional to the bit toggle count, and
Delay is inversely proportional to the compression ratio. Our second
technique, Metadata Consolidation (MC), reduces the negative effects
of scattering of metadata in a compressed cache line, which happens
with many existing compression algorithms [2], [7], by consolidating
compression-related metadata in a contiguous fashion.

Our toggle-aware compression mechanisms are generic and ap-
plicable to different compression algorithms (e.g., Frequent Pattern
Compression (FPC) [2] and Base-Delta-Immediate (BDI) compres-

1For example, up to 80% energy of the LLC caches is H-tree capacitance interconnects [6].
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sion [18]), different communication channels (e.g., on-chip and off-
chip buses), and, potentially, different architectures (e.g., GPUs,
CPUs, and hardware accelerators). We demonstrate that our proposed
mechanisms are also largely orthogonal to different data encoding
schemes also used to minimize the bit toggle count (e.g., Data Bus
Inversion [23]), and hence can be used together with them to enhance
the energy efficiency of interconnects.

2 MOTIVATION, PROBLEM, AND ANALYSIS

In this work, we examine the use of six compression algorithms for
bandwidth compression in GPU applications, taking into account bit
toggles: (i) FPC (Frequent Pattern Compression) [2]; (ii) BDI (Base-
Delta-Immediate Compression) [18]; (iii) BDI+FPC (combined FPC
and BDI) [17]; (iv) LZSS (Lempel-Ziv compression) [29], [1]; (v)
Fibonacci (a graphics-specific compression algorithm) [19]; and (vi)
C-Pack [7]. To ensure our conclusions are more practically applicable,
we analyze real GPU applications with actual data sets provided by a
major GPU vendor.

Figure 1 shows the potential of these six compression algorithms
in terms of effective bandwidth increase, averaged across all applica-
tions. These results exclude simple data patterns (e.g., zero cache
lines) that are already handled by modern GPUs efficiently, and
assume practical boundaries on bandwidth compression ratios (e.g.,
the highest possible compression ratio is 4.0, because the minimum
flit size is 32 bytes and packet size is 128 bytes).
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Figure 1. Effective bandwidth compression ratios for various GPU ap-
plications and compression algorithms (higher bars are better).

First, for the 167 discrete GPU applications (left side of Figure 1),
all algorithms provide substantial increase in available bandwidth
(25%–44% on average for different compression algorithms). Espe-
cially interesting is that simple compression algorithms are very com-
petitive with the more complex GPU-oriented Fibonacci algorithm
and the software-based Lempel-Ziv algorithm [29]. Second, for the 54
mobile GPU applications (right side of Figure 1), bandwidth benefits
are even more pronounced (reaching up to 57% on average with the
Fibonacci algorithm). Overall, we conclude that existing compression
algorithms (including simple, general-purpose ones) can be effective
in providing high on-chip/off-chip bandwidth compression for both
discrete and mobile GPU compute applications.

Unfortunately, the benefits of compression come with additional
costs. Two overheads of compression are well-known: (i) additional
data processing due to compression/decompression, and (ii) hardware
changes to transfer variable-length cache lines. While these two prob-
lems are significant, multiple compression algorithms [2], [27], [18],
[9] were proposed to minimize the overheads of data compression/de-
compression. Several designs [22], [21], [17], [26] were proposed to
integrate bandwidth compression into existing memory hierarchies. In
this work, we find a new challenge with data compression that needs
to be addressed: the increase in the total number of bit toggles as a
result of compression.

On-chip data communication energy is directly proportional to the
number of bit toggles on the communication channel [25], [5], [6], due
to the charging and discharging of the channel wire capacitance with
each toggle. Data compression may increase or decrease the bit toggle
count on the communication channel for a given data. As a result,

energy consumed for moving this data can change. Figure 2 shows the
increase in bit toggle count for discrete and mobile GPU applications
with the six compression algorithms over a baseline that does not
employ compression. The total number of bit toggles is computed
such that it already includes the positive effects of compression (i.e.,
the decrease in the total number of bits sent due to compression).
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Figure 2. Bit toggle count increase due to compression.
We make two observations. First, all compression algorithms

consistently increase the bit toggle count. The effect is significant yet
smaller (12%–20% increase) in discrete applications, mostly because
they include floating-point data, which already has toggle rates (31%
on average across discrete applications) and is less amenable to
compression. Second, the increase in bit toggle count is more dramatic
for mobile applications (right half of Figure 2), exceeding 1.8× for
all algorithms but one. The FPC algorithm is not as effective in
compressing mobile application data in our pool, and hence does
not greatly affect bit toggle count. In both types of applications, the
increase in bit toggle count can lead to significant increase in the
dynamic energy consumption of the communication channels.

We study the relationship between the effectiveness of compres-
sion and the resultant increase in bit toggle count. Figure 3 shows the
compression ratio and the normalized bit toggle count of each discrete
GPU application after compression with the FPC algorithm. Clearly,
there is a positive correlation between the compression ratio and the
increase in bit toggle count. We observe similarly-shaped curves for
other compression algorithms. This strongly suggests that successful
compression can lead to increased dynamic energy dissipation by on-
chip/off-chip communication channels due to increased toggle counts.
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Figure 3. Normalized bit toggle count vs. compression ratio (with the
FPC algorithm) for each of the discrete GPU applications.

To understand this phenomenon, we examined several example
cache lines where bit toggle count increases significantly after com-
pression. Figures 4 and 5 show one of these cache lines with and
without compression, assuming 8-byte flits.

Without compression, the example cache line in Figure 4, which
consists of 8-byte data elements (4-byte indices and 4-byte pointers)
has a very low number of toggles (2 toggles per 8-byte flit). This
low number of bit toggles is due to the favorable alignment of
the uncompressed data with the boundaries of flits (i.e., transfer
granularity in the on-chip interconnect). With compression, the toggle
count of the same cache line increases significantly, as shown in
Figure 5 (e.g., 31 toggles for a pair of 8-byte flits in this example).
This increase is due to two major reasons. First, because compression
removes zero bits from narrow values, the resulting higher per-bit
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0x00003A00 0x8001D000 0x00003A01 0x8001D008 ...

4 bytes
128‐byte Uncompressed Cache Line

4 bytes

8‐byte flit

0x00003A00 0x8001D000

0x00003A01 0x8001D008

XOR

Flit 0

Flit 1

=
0000...00100...00100... # Toggles = 2

Figure 4. Bit toggles without compression.

0x5 0x3A00 0x7 0x8001D000

128‐byte FPC‐compressed Cache Line

8‐byte flit

5 3A00 7 80001D000 5 1D

XOR

Flit 0

Flit 1

=
001001111...110100011000 # Toggles = 31

0x5 0x3A01 0x7 0x8001D008 0x5 ...

1 01 7 80001D008 5 3A02 1

Metadata

Figure 5. Bit toggles after compression with FPC.
entropy leads to higher “randomness” in data and, thus, a larger toggle
count. Second, compression negatively affects the alignment of data
both at the byte granularity (narrow values replaced with shorter 2-
byte versions) and bit granularity (due to the 3-bit metadata storage;
e.g., 0x5 is the encoding metadata used to indicate narrow values for
the FPC algorithm).

3 TOGGLE-AWARE BANDWIDTH COMPRESSION

3.1 Energy vs. Performance Tradeoff
Data compression can reduce energy consumption and improve

performance by reducing communication bandwidth demands. At the
same time, data compression can potentially lead to significantly
higher energy consumption due to increased bit toggle count. To
properly evaluate this tradeoff, we examine commonly-used metrics
like Energy×Delay and Energy×Delay2 [10]. We estimate these
metrics with a simple model, which aids us in making compression-
related performance/energy tradeoffs.2 We define the Energy of a
single data transfer to be proportional to the bit toggle count associated
with it. Similarly, Delay is defined to be inversely proportional to
performance, which we assume is proportional to bandwidth reduction
(i.e., compression ratio). Based on the observations above, we have
developed two techniques to enable toggle-aware compression to
reduce the negative effects of increased bit toggle count.
3.2 Energy Control (EC)

We propose a generic Energy Control (EC) mechanism that can
be applied along with any current (or future) compression algorithm.3
It aims to achieve high compression ratio while minimizing the bit
toggle count. As shown in Figure 6, the Energy Control mechanism
uses a generic decision function that considers (i) the bit toggle count
for transmitting the original data (T0), (ii) the bit toggle count for
transmitting the data in compressed form (T1), and (iii) compression
ratio (CR) to decide whether to transmit the data compressed or
uncompressed. We can calculate the toggle count very energy effi-
ciently (by expending 4pJ per 128-byte cache line with 32-byte flits,
based on initial results from our Verilog implementation). Using this
approach, it is possible to achieve a desirable tradeoff between overall
bandwidth reduction and increase/decrease in communication energy.
The decision function that compares the compression-ratio (A) and
toggle-ratio (B) can be linear (A×B > 1, based on Energy×Delay)
or quadratic (A × B2 > 1, based on Energy × Delay2). The

2We are currently working on verifying our estimations by implementing our techniques
in the open-source simulator GPGPU-Sim [11].
3In this work, we assume that only memory bandwidth is compressed, while on-chip
caches still store data in uncompressed form.

decision function can also use as inputs other metrics, including
application bandwidth requirements, power limitations, available volt-
age/frequency scaling options, and other system power management
opportunities. We leave detailed explorations to future work.
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Figure 6. Energy Control decision mechanism.

3.3 Metadata Consolidation
Traditional energy-oblivious compression algorithms are not op-

timized to minimize the bit toggle count. However, it is possible
to extend existing algorithms (e.g., FPC and C-Pack) such that the
increase in bit toggle count would be less after compression is applied.
Metadata Consolidation (MC) is a new technique that aims to achieve
this. Recall that one major reason for increased bit toggle count was
the misalignment of compressed data with flit width due to alignment
issues caused by compression-related metadata (Section 2). The key
idea of MC is to consolidate compression-related metadata into a
single contiguous metadata block instead of storing (or, scattering)
such metadata in a fine-grained fashion, e.g., on a per-word basis. We
can locate this single metadata block either before or after the actual
compressed data (This can increase decompression latency since the
decompressor needs to know the metadata). The major benefit of MC
is that it eliminates misalignment at the bit granularity. In cases where
a cache line has a majority of similar patterns, a significant portion of
the toggle count increase can be avoided.

Figure 7 shows an example cache line compressed with the FPC
algorithm, with and without MC. We assume 4-byte flits. Without MC,
the bit toggle count between the first two flits is 18 (due to per-word
metadata insertion). With MC, the corresponding bit toggle count is
only 2, showing the effectiveness of MC in reducing bit toggles.

0x5 0x3A00 0x5 0x3A01

128‐byte FPC‐compressed Cache Line

4‐byte Flit 0

# Toggles = 18

0x5 0x3A02 0x5 0x3A03 0x5 0x3A04 0x5 0x3A05...

4‐byte Flit 1

0x3A00  0x3A01 0x3A02 0x3A03        …              0x5 0x5 ... 0x5 0x5

4‐byte Flit 0 4‐byte Flit 1 Consolidated 
Metadata

5 3A00 5 E8

XOR

Flit 0

Flit 101 5 3A02 5 3

# Toggles = 2

3A00 3A01

XOR

Flit 0

Flit 13A02 3A03 

Figure 7. Bit toggle count w/o and with Metadata Consolidation.

4 EVALUATION

4.1 Methodology
We analyze 221 memory traces from discrete (167) and mobile

(54) GPU applications. We quantify bit toggle count, which reflects
energy consumption, and compression ratio, which serves as a proxy
for bandwidth consumption (and also a proxy for performance, for
bandwidth-limited applications). Different data encoding techniques
(e.g., DBI [23] or DESC [6]) can be applied to decrease the baseline
bit toggle count of any data transfer (uncompressed or compressed).
We find that the benefits of these data encoding techniques are largely



IEEE COMPUTER ARCHITECTURE LETTERS 4

orthogonal to whether or not data compression is used. We use
DBI [23] as part of our baseline, for transferring both compressed
and uncompressed data.
4.2 Effect of Energy Control

Figure 8 and Figure 9) show, respectively, the normalized bit
toggle count and compression ratio with and without Energy Control
(using various compression algorithms). Results are normalized to a
system that does not employ data compression and averaged across all
discrete and mobile workloads. The number on top of bars indicates
the reduction EC (right bar for each compression algorithm) provides
over the system that employs compression (left bar). The EC decision
function based on the Energy ×Delay2 metric (Section 3.2).
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Figure 8. Effect of Energy Control on bit toggle count.
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2.4%

1.3%

0.3%

9.8% 9.8%

5.4% 9.8%
10.7%

0.7%
1.0% 0.9%

Figure 9. Effect of Energy Control on compression ratio.

EC significantly reduces the bit toggle count increase due to
compression in both discrete and mobile GPU applications (Figure 8).
For discrete workloads, EC’s toggle count reduction varies from 5.8%
to 15.9% on average, for different compression algorithms. EC almost
completely eliminates the toggle count increase due to compression
with the Fibonacci algorithm. For mobile workloads, which suffer
much more from the bit toggle count increase, EC is even more
effective: it reduces toggle count by as much as 51% on average for
the BDI+FPC compression algorithm, which corresponds to a 32×
reduction in extra bit toggles due to compression.

EC’s toggle count benefits come with only a modest reduction in
compression ratio4 (Figure 9). In discrete workloads, EC reduces the
compression ratio almost negligibly, e.g., by 0.7% for the BDI+FPC
algorithm. In mobile workloads, EC’s compression ratio reduction is
more noticeable, e.g., 9.8% for BDI+FPC. However, EC’s trade-off

of compression ratio with bit toggle count is still very attractive since
the 2.2× growth in bit toggle count is reduced to less than 10% for
BDI+FPC. We conclude that EC offers a new and effective way to
control the energy efficiency of data compression by applying it judi-
ciously: it enables data compression when it provides a compression
ratio at only a small increase in bit toggle count.
4.3 Effect of Metadata Consolidation

Metadata Consolidation (MC) is able to reduce bit-level mis-
alignment for several compression algorithms (e.g., FPC and C-
Pack). The additional toggle reduction (on top of EC) is 3.2%/2.9%
for FPC/C-Pack compression algorithms correspondingly. We also
observe that even though MC can hide some negative effects of bit-
level misalignment after compression, it is not effective in cases where
data compression compresses data values within the cache line to

4Compression ratio reduces because EC decides to transfer some compressible lines in
the uncompressed form, as it does not optimize solely for compression ratio.

different sizes. These variable sizes frequently lead to misalignment
at the byte granularity. While it is possible to insert some amount
of padding into the compressed line to minimize the misalignment
effects, this would go against the primary goal of compression, i.e., to
minimize the data size after compression. We leave the investigation
of this potential tradeoff to future work.

5 CONCLUSION

We observe that data compression, while very effective in im-
proving bandwidth efficiency in GPUs, can greatly increase the bit
toggle count in the on-chip/off-chip interconnect. Based on this
new observation, we develop two new toggle-aware compression
techniques to reduce bit toggle count while preserving most of the
bandwidth reduction benefits of compression. Our evaluations across
six compression algorithms and 221 workloads show these techniques
are effective: they greatly reduce the bit toggle count while retaining
most of the bandwidth reduction advantages of compression. We
conclude that toggle-awareness is an important consideration in data
compression mechanisms for modern GPUs (and likely CPUs as
well), and encourage future work to develop new solutions for it.
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