RowC(Clone

Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

Vivek Seshadri

Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutly,
P. B. Gibbons, M. A. Kozuch, T. C. Mowry

SAFARI CarnegieMellon <intel®)

Executive Summary

= Bulk data copy and initialization
* Unnecessarily move data on the memory channel
* Degrade system performance and energy efficiency
= RowClone - perform copy in DRAM with low cost
* Uses row buffer to copy large quantity of data
* Source row — row buffer — destination row
« 11X lower latency and 74X lower energy for a bulk copy
= Accelerate Copy-on-Write and Bulk Zeroing
* Forking, checkpointing, zeroing (security), VM cloning
= Improves performance and energy efficiency at low cost
* 27% and 17% for 8-core systems (0.01% DRAM chip area)

Memory Channel — Bottleneck

Limited Bandwidth \'

High Energy]A

Goal: Reduce Memory Bandwidth Demand

Reduce unnecessary data movement

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Hermrod,
Witchel, and Anoop Gupta

Ha &)
rdware Support for Bulk Data

a Mov inS
ement in Server Platforms

Li Zhao', Ravi Iyert
40", Ravilyer® Srihari Makinenj?

fDePﬁr tmen
Science and .
Engineerin
g

s La_}(1 , +
mit Bhuyan™ and Do Newell*

E, .y L] Uni"r.-’e * iy "
. mail: {zhao, bhuyan }f&‘-‘cqr::g. ;g California, Riverside, CA 92
s, ~edu ' ! "’52[

Co icati
mmunications Technoloey
[

ving Bulk Memory Copying and Initialization
Performance

Architecture Support for Impro

Li Zhao, Ravishankar Iyer
Intel Labs

Intel Corporation

Hillsboro, USA

Nigowei Jiang, Yan Solihin
Dept. of Electrical and Computer Engineering
North Caroling State University
Raleigh, USA

Bulk Copy and Initialization — Applications

00000
00000
00000 - -

Zero initialization

Forking (e.g., security) ~ Checkpointing

Many more

4 L

- -

VM Cloning Page Migration
Deduplication

Shortcomings of Existing Approach

High Energy
(3600nJ to copy 4KB)
Core
High Iatency
(1046ns to copy 4KB)

Interference

Our Approach: In-DRAM Copy with Low Cost

InterN'ence

v’ Introduction
[= DRAM Background]

= RowClone
e Fast Parallel Mode
* Pipelined Serial Mode

* End-to-end Design

= Fvaluation

DRAM Chip Organization

| Bankljo_J|

>
N
Y

Memory Channel
|
Chip 1/O

|

Row of DRAM Cells e
Row Buffer —

11

<€
p
\

DRAM Read Operation

Memory Channel

) .
| — | |(Bankio J| \

I I 1 1
\\\L Yy : ‘I
! I
1
I
!

v\ y .)
ACTIVATE: Copy data from
row to row buffer
READ: Transfer data to
channel using the shared bus

I
|
Chip 1/O

12

DRAM Cell Operation

Voo I i Vpp/2
[W——
0

Ay

Sense Amplifier | .-
(Row Buffer) I Vpp/2

DRAM Cell Operation

DD/2 ¥§D I Y/%

DRAM
Cell

Amplify the
ReGed] re difference
CdHiéata /

In the stable state,

\ALIIMZEE sense amplifier drives the cell)

|L.!U‘

ntroduction
DRAM Background

[= RowClone]
e Fast Parallel Mode
* Pipelined Serial Mode

DN

* End-to-end Design

= Fvaluation

RowClone: Fast Parallel Mode (FPM)

Row Buffer

1. Source row to row buffer

2. Row buffer to destination row

Fast Parallel Mode: Implementation

Vioo/2 ¥ H

B
e o fl—=
dst o<—I e

Amplify the
difference
Data gets
copied
i i Vip/2
110

Sense Amplifier
(Row Buffer)

17

Fast Parallel Mode: Implementation

Row Buffer

1. Activate src row (copy data from src to row buffer)

7

_

2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)

~\

Fast Parallel Mode: Benefits

Bulk Data Copy

Latency @l Energy @l

1046ns to 90ns 3600nJ to 40nJ

No bandwidth consumption
Very little changes to the DRAM chip

Fast Parallel Mode: Constraints

= | ocation of source/destination
* Both should be in the same subarray

= Size of the copy

* Copies all the data from source row to destination

RowClone: Pipelined Serial Mode (PSM)

A
. [' Y [N\ [/ \\
Q
c B | Bank
G o
O = 2 “ | Shared
Q_—I——l—é’.
> = internal bus
) 4 N\ [/)
o
- I
=
\L)\ J))
\ 4

-

Overlap the latency of the read and the write

19X latency reduction, 3.2X energy reduction)

\

Bulk Copy using RowClone

Inter subarray
Use PSM twice ¢ |
T A —\ \\\ \\\
c Voo
Jr:cs Q [][BankJ_ _________ L[BankI/O]J ‘\: ‘\‘
O Lzl | ;o
> = I I
@)
1100
=
v \ J
Inter ban‘k\lnﬁlsubarra
Use PSM y

Use FPM X

Bulk Initialization

= |nitialization with arbitrary data

* Initialize one row
* Copy the data to other rows

= Zero initialization (most common)
* Reserve arow in each subarray (always zero)
* Copy data from reserved row (FPM mode)
+ 6.0X lower latency, 41.5X lower DRAM energy

* 0.2% loss in capacity

Latency and Energy Benefits

Latency Reduction Energy Reduction

%‘21 111.6x go - [4-4X
41.5x
10 6.0X 60
g 40
6
4 -)]
2 : 20 3.2x 1.5X
0 0 -
- © © © c © © N

Very low cost: 0.01% increase in die area

\. J
‘ Copy ‘ Zem>‘

‘ Copy ‘ Zero

ntroduction
DRAM Background
RowClone

* Fast Parallel Mode
* Pipelined Serial Mode

[= End-to-end Design]

DN

N

= Fvaluation

End-to-end System Design

How does the software
communicate occurrences
of bulk copy/initialization

Application

Operating System to hardware?
How to ensure cache
ISA coherence?

_ _ How to maximize use of
Microarchitecture the Fast Parallel Mode?

Handling data reuse after
zero initialization?

DRAM (RowClone)

1. Hardware/Software Interface

= Two new instructions
* memcopy and meminit
* Similar instructions present in existing ISAs

= Microarchitecture Implementation
* Checks if instructions can be sped up by RowClone

* Exportinstructions to the memory controller

2. Managing Cache Coherence

» RowClone modifies data in memory
* Need to maintain coherence of cached data

= Similarto DMA

* Source and destination in memory
* Can leverage hardware support for DMA

= Additional optimizations

3. Maximizing Use of the Fast Parallel Mode

= Make operating system subarray-aware

= Primitives amenable to use of FPM
* Copy-on-Write
o Allocate destination in same subarray as source
o Use FPM to copy

* Bulk Zeroing

o Use FPM to copy data from reserved zero row

4. Handling Data Reuse After Zeroing

= Data reuse after zero initialization
* Phase 1: OS zeroes out the page
* Phase 2: Application uses cachelines of the page

= RowClone
* Avoids misses in phase 1
* Butincurs misses in phase 2

» RowClone-Zero-Insert (RowClone-ZI)
* Insert clean zero cachelines

ntroduction
DRAM Background

RowClone
e Fast Parallel Mode
* Pipelined Serial Mode

v End-to-end Design
[= Evaluation]

DN

N

Methodology

= Qut-of-order multi-core simulator

= 1MB/core last-level cache

» Cycle-accurate DDR3 DRAM simulator

= 6 Copy/Initialization intensive applications
+SPEC CPU2006 for multi-core

= Performance

* Instruction throughput for single-core
* Weighted Speedup for multi-core

Copy/Initialization Intensive Applications

= System bootup (Booting the Debian OS)

= Compile (GNU C compiler — executing cc1)

» Forkbench (A fork microbenchmark)

* Memcached (Inserting a large number of objects)
= MySql (Loading a database)

= Shell script (find with 1s on each subdirectory)

Memory Traffic due to Copy/Initialization

Fraction of Memory Traffic

=
|

O
o¢

O
o

o
D
|

O
N

o
!

mZero] Read

ECopy = erte

bootup compile forkbench mcached mysql

shell

Single-Core — Performance and Energy

®m |PC Improvement ®Memory Energy Reduction
70%

60%

50%

Baseline

*’\tbo
2
DS

Improvements correlate with fraction of
memory traffic due to copy/initialization

\\§

0% -

bootup compile forkbench mcached mysql shell

Multi-Core Systems

» Reduced bandwidth consumption benefits all
applications.

= Run copy/initialization intensive applications
with memory intensive SPEC applications.

= Half the cores run copyl/initialization intensive
applications. Remaining half run SPEC
applications.

Multi-Core Results: Summary

B System Performance B Memory Energy Efficiency

30%

25%
20%
15% -
10% -

Consistent improvement in
energy/instruction

ment over Baseline

~N

Other Results and Discussion in the Paper

= Discussion on interleaving and copy granularity
» Detailed analysis of the fork benchmark

» Detailed multi-core results and analysis

= Results with the PSM mode

= Analysis of RowClone-Z|

= Comparison to memory-controller-based DMA

Conclusion

= Bulk data copy and initialization
* Unnecessarily move data on the memory channel
* Degrade system performance and energy efficiency

= RowClone - perform copy in DRAM with low cost
* Uses row buffer to copy large quantity of data
* Source row — row buffer — destination row
« 11X lower latency and 74X lower energy for a bulk copy

= Accelerate Copy-on-Write and Bulk Zeroing
* Forking, checkpointing, zeroing (security), VM cloning

= Improves performance and energy efficiency at low cost
o 27% and 17% for 8-core systems (0.01% chip area overhead)

RowC(Clone

Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization

Vivek Seshadri

Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutly,
P. B. Gibbons, M. A. Kozuch, T. C. Mowry

SAFARI CarnegieMellon <intel®)

Backup Slides

Multi-core Metrics

_ 2-core | 4-core | 8-core

Workloads 1
Weighted Speedup 15% 20% 27%
Instruction Throughput 14% 15% 25%
Harmonic Speedup 13% 16% 29%
Max Slowdown Reduction 6% 12% 23%
Bandwidth/Instruction Reduction 29% 27% 28%
Energy/Instruction Reduction 19% 17% 17%

RowClone-ZI Single-Core

. B Baseline ®M RowClone B RowClone-ZI

9
9
S\ 2
O
,
Q15
(V)]
5
S 1
O
D
-
05
<

0

bootup compile forkbench mcached mysq| shell

RowClone-ZI Multi-Core

—Baseline —RowClone —RowClone-ZI|
o 1.4 /1
2135
1]
9 1.25 A
g L2 A
2115 A / VV
% 1.1 /_/_/_fJ-’_/U'\,
e 1
Fos VAW WA

Forkbench - Fraction of Memory Traffic

0.6 —
—
7

03 — _—

0.2 -

01 . — —64MB —128MB
0

2 4 8 16 32 64 128256 512 1k 2k 4k 8k 16k
Number of Pages Updated

Forkbench — Performance

2.5

2
O
= //
T 15 /
N
Tg //
E 11— -
> —64MB —128MB
0.5
0

2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Number of Pages Updated

Forkbench - Energy

—Baseline —RowClone-PSM —RowClone-FPM

1.2

-

/

Normalized Energy
o
o

//

o

2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k
Number of Pages Updated

Comparison to Prior Work

= Copy engines (Zhao et al. 2005, Jiang et al. 2009)
* Addresses cache pollution, pipeline stalls due to copy
* But requires data transfer over the memory channel

= |RAM (Patterson et al. 1997)
* Compute + memory using same technology
* Exploit high DRAM bandwidth
* Goal: Wider range of SIMD operations
* High cost

Why is FPM not done today?

= Copy/lnitialization is important

 But not well known

= Opportunity to perform in DRAM

 Not well known

» This paper: Proof of concept
* More challenges to be addressed

