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Executive Summary

= Bulk data copy and initialization
* Unnecessarily move data on the memory channel
* Degrade system performance and energy efficiency
= RowClone - perform copy in DRAM with low cost
* Uses row buffer to copy large quantity of data
* Source row — row buffer — destination row
« 11X lower latency and 74X lower energy for a bulk copy
= Accelerate Copy-on-Write and Bulk Zeroing
* Forking, checkpointing, zeroing (security), VM cloning
= Improves performance and energy efficiency at low cost
* 27% and 17% for 8-core systems (0.01% DRAM chip area)



Memory Channel — Bottleneck
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Goal: Reduce Memory Bandwidth Demand

Reduce unnecessary data movement




Bulk Data Copy and Initialization
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Bulk Copy and Initialization — Applications
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Shortcomings of Existing Approach

High Energy
(3600nJ to copy 4KB)
Core
High Iatency
(1046ns to copy 4KB)

Interference




Our Approach: In-DRAM Copy with Low Cost
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DRAM Chip Organization
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DRAM Read Operation
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DRAM Cell Operation
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DRAM Cell Operation
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RowClone: Fast Parallel Mode (FPM)

Row Buffer

1. Source row to row buffer

2. Row buffer to destination row




Fast Parallel Mode: Implementation
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Fast Parallel Mode: Implementation

Row Buffer

1. Activate src row (copy data from src to row buffer)
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2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)
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Fast Parallel Mode: Benefits

Bulk Data Copy

Latency @l Energy @l

1046ns to 90ns 3600nJ to 40nJ

No bandwidth consumption
Very little changes to the DRAM chip




Fast Parallel Mode: Constraints

= | ocation of source/destination
* Both should be in the same subarray

= Size of the copy

* Copies all the data from source row to destination




RowClone: Pipelined Serial Mode (PSM)
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Bulk Copy using RowClone
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Bulk Initialization

= |nitialization with arbitrary data

* Initialize one row
* Copy the data to other rows

= Zero initialization (most common)
* Reserve arow in each subarray (always zero)
* Copy data from reserved row (FPM mode)
+ 6.0X lower latency, 41.5X lower DRAM energy

* 0.2% loss in capacity



Latency and Energy Benefits
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%‘21 111.6x go - [4-4X
41.5x
10 6.0X 60
g 40
6
4 - ) ]
2 : 20 3.2x 1.5X
0 0 -
- © © © c © © N

Very low cost: 0.01% increase in die area

\. J
‘ Copy ‘ Zem>‘

‘ Copy ‘ Zero




ntroduction
DRAM Background
RowClone

* Fast Parallel Mode
* Pipelined Serial Mode

[ = End-to-end Design ]

DN

N

= Fvaluation




End-to-end System Design

How does the software
communicate occurrences
of bulk copy/initialization

Application

Operating System to hardware?
How to ensure cache
ISA coherence?

_ _ How to maximize use of
Microarchitecture the Fast Parallel Mode?

Handling data reuse after
zero initialization?

DRAM (RowClone)




1. Hardware/Software Interface

= Two new instructions
* memcopy and meminit
* Similar instructions present in existing ISAs

= Microarchitecture Implementation
* Checks if instructions can be sped up by RowClone

* Exportinstructions to the memory controller




2. Managing Cache Coherence

» RowClone modifies data in memory
* Need to maintain coherence of cached data

= Similarto DMA

* Source and destination in memory
* Can leverage hardware support for DMA

= Additional optimizations



3. Maximizing Use of the Fast Parallel Mode

= Make operating system subarray-aware

= Primitives amenable to use of FPM
* Copy-on-Write
o Allocate destination in same subarray as source
o Use FPM to copy

* Bulk Zeroing

o Use FPM to copy data from reserved zero row



4. Handling Data Reuse After Zeroing

= Data reuse after zero initialization
* Phase 1: OS zeroes out the page
* Phase 2: Application uses cachelines of the page

= RowClone
* Avoids misses in phase 1
* Butincurs misses in phase 2

» RowClone-Zero-Insert (RowClone-ZI)
* Insert clean zero cachelines
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Methodology

= Qut-of-order multi-core simulator

= 1MB/core last-level cache

» Cycle-accurate DDR3 DRAM simulator

= 6 Copy/Initialization intensive applications
+SPEC CPU2006 for multi-core

= Performance

* Instruction throughput for single-core
* Weighted Speedup for multi-core



Copy/Initialization Intensive Applications

= System bootup (Booting the Debian OS)

= Compile (GNU C compiler — executing cc1)

» Forkbench (A fork microbenchmark)

* Memcached (Inserting a large number of objects)
= MySql (Loading a database)

= Shell script (find with 1s on each subdirectory)




Memory Traffic due to Copy/Initialization

Fraction of Memory Traffic
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Single-Core — Performance and Energy
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Multi-Core Systems

» Reduced bandwidth consumption benefits all
applications.

= Run copy/initialization intensive applications
with memory intensive SPEC applications.

= Half the cores run copyl/initialization intensive
applications. Remaining half run SPEC
applications.




Multi-Core Results: Summary

B System Performance B Memory Energy Efficiency
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Other Results and Discussion in the Paper

= Discussion on interleaving and copy granularity
» Detailed analysis of the fork benchmark

» Detailed multi-core results and analysis

= Results with the PSM mode

= Analysis of RowClone-Z|

= Comparison to memory-controller-based DMA




Conclusion

= Bulk data copy and initialization
* Unnecessarily move data on the memory channel
* Degrade system performance and energy efficiency

= RowClone - perform copy in DRAM with low cost
* Uses row buffer to copy large quantity of data
* Source row — row buffer — destination row
« 11X lower latency and 74X lower energy for a bulk copy

= Accelerate Copy-on-Write and Bulk Zeroing
* Forking, checkpointing, zeroing (security), VM cloning

= Improves performance and energy efficiency at low cost
o 27% and 17% for 8-core systems (0.01% chip area overhead)
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Multi-core Metrics

_ 2-core | 4-core | 8-core

# Workloads 1
Weighted Speedup 15% 20% 27%
Instruction Throughput 14% 15% 25%
Harmonic Speedup 13% 16% 29%
Max Slowdown Reduction 6% 12% 23%
Bandwidth/Instruction Reduction 29% 27% 28%
Energy/Instruction Reduction 19% 17% 17%




RowClone-ZI Single-Core
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RowClone-ZI Multi-Core

—Baseline  —RowClone  —RowClone-ZI|
o 1.4 /1
2135
1]
9 1.25 A
g L2 A
2115 A / VV
% 1.1 /_/_/_fJ-’_/U'\,
e 1
Fos VAW WA




Forkbench - Fraction of Memory Traffic
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Forkbench — Performance
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Forkbench - Energy
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Comparison to Prior Work

= Copy engines (Zhao et al. 2005, Jiang et al. 2009)
* Addresses cache pollution, pipeline stalls due to copy
* But requires data transfer over the memory channel

= |RAM (Patterson et al. 1997)
* Compute + memory using same technology
* Exploit high DRAM bandwidth
* Goal: Wider range of SIMD operations
* High cost



Why is FPM not done today?

= Copy/lnitialization is important

 But not well known

= Opportunity to perform in DRAM

 Not well known

» This paper: Proof of concept
* More challenges to be addressed



