SAFARI Technical Report No. 2015-002 (February 28, 2015)

RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads

Amir Yazdanbakhsh
Hadi Esmaeilzadeh
Georgia Institute of Technology

Taesoo Kim

Abstract

This paper aims to tackle two fundamental memory bottle-
necks: limited off-chip bandwidth (bandwidth wall) and long
access latency (memory wall). To achieve this goal, our ap-
proach exploits the inherent error resilience of a wide range
of applications. We introduce an approximation technique,
called Rollback-Free Value Prediction (RFVP). When certain
safe-to-approximate load operations miss in the cache, RFVP
predicts the requested values. However, RFVP never checks
for or recovers from load value mispredictions, hence avoiding
the high cost of pipeline flushes and re-executions. RFVP miti-
gates the memory wall by enabling the execution to continue
without stalling for long-latency memory accesses. To miti-
gate the bandwidth wall, RFVP drops some fraction of load
requests which miss in the cache after predicting their values.
Dropping requests reduces memory bandwidth contention by
removing them from the system. The drop rate then becomes
a knob to control the tradeoff between performance/energy
efficiency and output quality.

For a diverse set of applications from Rodinia, Mars, and
NVIDIA SDK, employing RFVP with a 14KB predictor per
streaming multiprocessor (SM) in a modern GPU delivers, on
average, 40% speedup and 31% energy reduction, with aver-
age 8.8% quality loss. With 10% loss in quality, the benefits
reach a maximum of 2.4 x speedup and 2.0x energy reduction.
As an extension, we also evaluate RFVP’s latency benefits for
a single core CPU. For a subset of the SPEC CFP 2000/2006
benchmarks that are amenable to safe approximation, RFVP
achieves, on average, 8% speedup and 6% energy reduction,
with 0.9% average quality loss.

1. Introduction

The disparity between the speed of processors and off-chip
memory is one of the main challenges in microprocessor de-
sign. Loads that miss in the last level cache can take hundreds
of cycles to deliver data. This long latency causes frequent
long stalls in the processor. This problem is known as the
memory wall. Modern GPUs exploit data parallelism to hide
main memory latency. However, this solution suffers from
another fundamental bottleneck: the limited off-chip commu-
nication bandwidth. In fact, memory bandwidth is predicted to
be one of the main performance-limiting factors in accelerator-
rich architectures as technology scales [12]. This problem is
known as the bandwidth wall [47]. Fortunately, there is an
opportunity to leverage the inherent error resiliency of many
emerging applications and services to tackle these problems.
This paper exploits this opportunity.

Gennady Pekhimenko®

Bradley Thwaites
Onur Mutlu® Todd C. Mowry?®

Carnegie Mellon University®

Large classes of emerging applications such as web search,
data analytics, machine learning, cyber-physical systems, aug-
mented reality, and vision can tolerate error in large parts of
their execution. Hence the growing interest in developing
general-purpose approximation techniques. These techniques
accept error in computation and trade Quality of Result for
gains in performance, energy, and storage capacity. These
techniques include (a) voltage over-scaling [17, 10], (b) loop
perforation [56], (c) loop early termination [6], (d) compu-
tation substitution [49, 18, 3], (e) memoization [2, 48, 5],
(f) limited fault recovery [15, 27], and (g) approximate data
storage [33, 51]. However, there is a lack of approximation
techniques that address the memory system performance bot-
tlenecks of long access latency and limited off-chip bandwidth.

To mitigate these memory subsystem bottlenecks, this paper
introduces a new approximation technique called Rollback-
Free Value Prediction (RFVP). The key idea is to predict the
value of the safe-to-approximate loads when they miss in the
cache, without checking for mispredictions or recovering from
them, thus avoiding the high cost of pipeline flushes and re-
executions. RFVP mitigates the memory wall by enabling
the computation to continue without stalling for long-latency
memory accesses of safe-to-approximate loads. To tackle the
bandwidth wall, RFVP drops a certain fraction of the cache
misses after predicting their values. Dropping these requests
reduces the memory bandwidth demand as well as memory
and cache contention. The drop rate becomes a knob to control
the tradeoff between performance-energy and quality.

In this work, we aim to devise concepts and mechanisms
that maximize RFVP’s opportunities for speedup and energy
gains, while keeping the quality degradations acceptably small.
We provide architectural mechanisms to control quality degra-
dation and always guarantee execution without catastrophic
failures by leveraging programmer annotations. RFVP shares
some similarities with traditional exact value prediction tech-
niques [54, 32, 16, 20, 44] that can mitigate the memory wall.
However, it fundamentally differs from the prior work in that it
does not check for misspeculations and does not recover from
them. Consequently, REVP not only avoids the high cost of
recovery, but is able to drop a fraction of the memory requests
to mitigate the bandwidth wall.

This paper makes the following contributions:

(1) We introduce a new approximation technique, Rollback-
Free Value Prediction (RFVP), that addresses two important
system bottlenecks: long memory latency and limited off-chip
bandwidth by utilizing value prediction mechanisms.

(2) We propose a new multi-value prediction architecture for
SIMD load instructions in GPUs that request multiple values
in one access. To minimize the overhead of the multi-value

SAFARI Technical Report No. 2015-002 (February 28, 2015)

predictor, we exploit the insight that there is significant value
similarity across accesses in the adjacent threads (e.g., adja-
cent pixels in an image). Such value similarity has been shown
in recent works [48, 5]. We use the two-delta predictor [16] as
the base for our multi-value predictor. We perform a Pareto-
optimality analysis to explore the design space of our predictor
and apply the optimal design in a modern GPU.

(3) We provide a comprehensive evaluation of RFVP using a
modern Fermi GPU architecture. For a diverse set of bench-
marks from Rodinia, Mars, and NVIDIA SDK, employing
RFVP delivers, on average, 40% speedup and 31% energy
reduction, with average 8.8% quality loss. With less than
10% quality loss, the benefits reach a maximum of 2.4 x
speedup and 2.0x energy reduction. For a subset of SPEC
CFP 2000/2006 benchmarks that are amenable to safe approx-
imation, employing RFVP in a modern CPU achieves, on
average, 8% speedup and 6% energy reduction, with 0.9%
average quality loss.

2. Architecture Design for RFVP

2.1. Rollback-Free Value Prediction

Motivation. GPU architectures exploit data-level paral-
lelism through many-thread SIMD execution to mitigate the
penalties of long memory access latency. Concurrent SIMD
threads issue many simultaneous memory accesses that re-
quire high off-chip bandwidth—one of the main bottlenecks
for modern GPUs. Figure 1 illustrates the effects of memory
bandwidth on application performance by varying the avail-
able off-chip bandwidth in the Fermi architecture. Many of the
applications in our workload pool benefit significantly from
increased bandwidth. For instance, a system with twice the
baseline off-chip bandwidth enjoys 26% average speedup, with
up to 80% speedup for the s.srad2 application. These results
support that lowering bandwidth contention can result in sig-
nificant performance benefits. REVP exploits this insight and
aims to lower the bandwidth pressure by dropping a fraction of
the predicted safe-to-approximate loads, trading output quality
for gains in performance and energy efficiency.

Overview. The key idea of rollback-free value prediction
(RFVP) is to predict the values of the safe-to-approximate
loads when they miss in the cache with no checks or recovery
from misspeculations. RFVP not only avoids the high cost
of checks and rollbacks but also drops a fraction of the cache
misses. Dropping these misses enables RFVP to mitigate the
bottleneck of limited off-chip bandwidth, and does not affect
output quality when the value prediction is correct. All other
requests are serviced normally, allowing the core to benefit
from the spatial and temporal locality in future accesses.
Drop rate becomes a knob to control the tradeoff between
performance/energy gains and quality loss. Higher drop rates
cause the core to use more predicted approximate values and
avoid accessing main memory. We expose the drop rate as
a microarchitectural mechanism to the software. The com-
piler or the runtime system can use this knob to control the
performance/energy and quality tradeoff. Furthermore, RFVP

[0 0.5x [Baseline Bandwidth [0 2.0x M 4.0x M 80x M Perfect Memory
22 13.7 25 13.5 26 4.0 26
2
18
% 16
1
314
Q
@D 12
1
0.8
0.6
N N X e 2 3 SN o
«0® 250 o0 @ o R o & @ 2 «©
WCC > xxe"&‘ 6@\‘* ° = o s® 5\(\09‘0 o°

T o
o @™

Figure 1: Performance improvement with different DRAM
bandwidth and perfect memory (last bar). The baseline band-
width is 173.25 GB/sec (based on the NVIDIA GTX 480 chipset
with Fermi architecture). (The N legend indicates a configura-
tion with N times the bandwidth of the baseline.)

enables the core to continue without stalling for long-latency
memory accesses that service the predicted load misses. Con-
sequently, these cache-missing loads are removed from the
critical path of the execution. We now elaborate on the safety
guarantees with RFVP, its ISA extensions and their semantics,
and the microarchitectural integration of RFVP.

2.2. Safe Approximation with RFVP

Not all load instructions can be safely approximated. For ex-
ample, loads that affect critical data segments, array indices,
pointer addresses, or control flow conditionals are usually not
safe to approximate. RFVP is not used to predict the value
of these loads. Furthermore, as prior work in approximation
showed [50], safety is a semantic property of the program, and
language construction with programmer annotations is neces-
sary to identify safely-approximable instructions. As a result,
the common and necessary practice is to rely on programming
language support along with compiler optimizations to identify
which instructions are safe to approximate [6, 8, 50, 17, 18].
Similarly, RFVP requires programmer annotations to deter-
mine the set of candidate load instructions for safe approxima-
tion. Therefore, any architecture that leverages RFVP needs to
provide ISA extensions that enable the compiler to mark the
safely-approximable loads. Section 2.3 describes these ISA
extensions. Section 3 describes the details of our compilation
and language support for RFVP.

2.3. Instruction Set Architecture to Support RFVP

We extend the ISA with two new features: (1) approximate
load instructions, and (2) a new instruction for setting the drop
rate. Similar to prior work [17], we extend the ISA with dual
approximate versions of the load instructions. A bit in the
opcode is set when a load is approximate, thus permitting the
microarchitecture to use RFVP. Otherwise, the load is precise
and must be executed normally. Executing an approximate
load does not always invoke RFVP. RFVP is triggered only
when the load misses in the cache. For ISAs without explicit
load instructions, the compiler marks any safe-to-approximate
instruction that can generate a load micro-op. RFVP will be
triggered only when the load micro-op misses in the cache.
The drop rate is a knob that is exposed to the compiler to
control the quality tradeoffs. We provide an instruction that
sets the value of a special register to the desired drop rate. This

SAFARI Technical Report No. 2015-002 (February 28, 2015)

Streaming

Multiprocessor WarplD/PC
R | Predictor
(R

RTor_e| -oadTpe
Loadl

L1 Data
Cache

Cache Miss

Prediction

Drop Signal

Figure 2: Microarchitecture integration of the predictor.

rate is usually set once during application execution (not for
each load). More precisely, the drop rate is the percentage of
approximate cache misses that will not initiate memory access
requests, and instead trigger rollback-free value prediction .
When the request is not dropped, it will be considered a normal
cache miss, and its value will be fetched from memory.

Semantically, an approximate load is a probabilistic load.
That is, executing load.approx Reg<id>, MEMORY<address> as-
signs the exact value stored in MEMORY<address> to Reg<id>
with some probability, referred to as the probability of exact
assignment. The Reg<id> receives an arbitrary value in other
cases. Intuitively, with RFVP, the probability of exact assign-
ment is usually high for three reasons. First, our technique is
triggered only by cache misses. Approximate loads which hit
in the cache (usually a common case) return the correct value.
Second, our automated profiling phase helps to eliminate any
loads from the approximate list which are destructive to quality.
Finally, even in the case of a cache miss, the value predictor
may generate a correct value prediction. Our measurements
with 50% drop rate show that, across all the GPU applications,
the average probability of exact assignment to the approximate
loads is 71%. This probability ranges from 43% to 88%. These
results confirm the effectiveness of using cache misses as a
trigger for RFVP. However, we do not expect the compiler to
reason about these probabilities.

2.4. Integrating RFVP in the Microarchitecture

As Figure 2 illustrates, the value predictor supplies the data
to the core when triggered. The core then uses the data as
if it were supplied by the cache. The core commits the load
instruction without any checks or pipeline stalls associated
with the original miss. In the microarchitecture, we use a
simple pseudo-random number generator, a Linear Feedback
Shift Register (LFSR) [39], to determine when to drop the
request based on the specified drop rate.

In modern GPUs, each Streaming Multiprocessor (SM) con-
tains several Stream Processors (SP) and has its own dedicated
L1. We augment each SM with an RFVP predictor that is
triggered by its L1 data cache misses. Integrating the RFVP
predictor with SMs requires special consideration because
each GPU SIMD load instruction accesses multiple data el-
ements for multiple concurrent threads. In the case of an
approximate load miss, if the predictor drops the request, it

! Another option is to enable dropping after a certain percentage of all cache
accesses including hits. Such a policy may be desirable for controlling error
in multi-kernel workloads.

Programmer Safety Analysis| First Profiling Stage| Second Profiling Stage| Execution|
: r

Test Test :
i |Inputs uts ;!

Annotated " "
Source b Source |- Intermedlale : Final 4
Code : Binary Binary f
Programmer Code © GPU GPU :
moves loads which severe/yf

degrade output fidelity

Code annotations identify Focuses approximation only :
safe-to-approximate operations :on performance-critical loads:

Ci

Figure 3: RFVP Workflow. Programmer annotations guarantee
safety, while profiling assists output quality and performance.

predicts the entire cache line. The predictor supplies the re-
quested words back to the SM, and also inserts the predicted
line in the L1 cache. If RFVP did not update the cache line,
the subsequent safe-to-approximate loads to the same cache
line would produce another miss. Since RFVP does not pre-
dict nor drop all missing safe-to-approximate loads, the line
would be requested from memory in the next access. Due to
the temporal locality of the cache line accesses, REVP would
not be able to effectively reduce bandwidth consumption.

Since predicted lines may be written to memory, we require
that any data accessed by a precise load must not share a cache
line with data accessed by approximate loads. The compiler is
responsible for allocating objects in memory such that precise
and approximate data never share a cache line. We accomplish
this by always requiring that the compiler allocate objects
in memory at cache line granularity. Approximate data will
always begin at a cache line boundary, and will be padded to
end on a cache line boundary. Thus, we can ensure that any
data predictions will not contaminate precise load operations.
The same stipulation has been set forth in several recent works
in approximate computing, such as EnerJ [50] and Truffle [17].

The coalescing logic in the SMs handles memory diver-
gence and serializes the divergent threads. Since RFVP is only
triggered by cache misses that happen after coalescing, RFVP
is agnostic to memory divergence.

3. Language and Software Support for RFVP

Our design principle for RFVP is to maximize the opportu-
nities for gains in performance and energy efficiency, while
limiting the adverse effects of approximation on output quality.
We develop a profile-directed compilation workflow, summa-
rized in Figure 3. In the first step, the workflow uses the
programmer-supplied annotations to determine the loads that
are safe to approximate and will not cause catastrophic failures
if approximated. The second step identifies the performance-
critical safe-to-approximate loads. These safe-to-approximate
loads are the ones that provide a higher potential for per-
formance improvement. These performance-critical safe-to-
approximate loads are the candidate for approximation with
RFVP. However, approximating all of the candidate loads may
significantly degrade output quality. Thus, we develop a third
step that identifies which of the candidate safe-to-approximate
loads need to be excluded from the RFVP-predictable set to
keep the quality degradation to low and acceptable levels. This
step also determines the drop rate.”

2We use GPGPU-Sim [7] for profiling the GPU applications.

SAFARI Technical Report No. 2015-002 (February 28, 2015)

$100%
®®9 backprop

e®e fastwalsh
oO0p gaussian
000 heartwall
+++ matrixmul
aAa particlefilter
xxx reduce

000 similarityscore
vVy srad2

OO stringmatch

80%
60%
40%

. g
20% -1 g~

Percentage of Load Misse

12 3 4 5 6 7 8 9 10
Number of Loads

Figure 4: Cumulative distribution function (CDF) plot of the

LLC load cache misses. A point (x, y) indicates that y percent

of the cache misses are caused by x distinct load instructions.

]
*

3.1. Providing Safety Guarantees

The first step is to ensure that loads which can cause safety
violations are excluded from RFVP. Any viable approxima-
tion technique, including ours, needs to provide strict safety
guarantees. That is to say applying approximation should
only cause graceful quality degradations without catastrophic
failures, e.g., segmentation faults or infinite loops.

Safety is a semantic property of a program [50, 8]. There-
fore, only the programmer can reliably identify which instruc-
tions are safe to approximate. For example, EnerJ [50] pro-
vides language constructs and compiler support for annotating
safe-to-approximate operations in Java. We rely on similar
techniques. The programmer uses the following rule to en-
sure safety. The rule of thumb is that it is usually not safe to
approximate array indices, pointers, and control flow condi-
tionals. However, even after excluding these cases to ensure
safety, as the results confirm, RFVP still provides significant
performance and energy gains because there are still enough
performance critical loads that are safe to approximate.

Figure 5 shows code snippets from our application to illus-
trate how approximating load instructions can lead to safety
violations. In Figure 5a, it is not safe to approximate loads
from ei, row, d_iS[row] variables that are used as array indices.
Approximating such loads may lead to array out-of-bounds
accesses and segmentation faults. In Figure 5b, it is unsafe
to approximate variable d_Src, which is a pointer. Approxi-
mation of this variable may lead to memory safety violations
and segmentation faults. In Figure 5c, it is not safe to approx-
imate the ei_new and in2_elem variables because they affect
control flow. Approximating such loads may lead to infinite
loops or premature termination. In many cases, control flow in
the form of if-then-else statement can be if-converted to data
flow. Therefore, it might be safe to approximate the loads that
affect the if-convertible control flow conditionals. Figure 5d
illustrates such a case. Loads for both value and newValue are
safe-to-approximate even though they affect the if condition.

3.2. Targeting Performance-Critical Loads

The next step is a profiling pass that identifies the subset of
the loads that cause the largest percentage of cache misses. As
prior work has shown [13], and our experiments corroborate,
only a few load instructions cause the large majority of the
total cache misses. Figure 4 illustrates this trend by show-
ing the cumulative distribution function of the LLC cache

misses caused by distinct load instructions in the GPU. As
Figure 4 shows, in all of our GPU applications except one,
six loads cause more than 80% of the misses. We refer to
these loads as the performance-critical loads. Clearly, focus-
ing rollback-free value prediction on these loads will provide
the opportunity to eliminate the majority of the cache misses.
Furthermore, the focus will reduce the predictor size and conse-
quently its overheads. Therefore, this step provides a subset of
this list that contains the most performance-critical and safe-to-
approximate loads as candidates for approximation. Note that
the programmer annotation identify the safe-to-approximate
loads and not the profiling.

3.3. Avoiding Significant Quality Degradations

The first two steps provide a small list of safe and performance-
critical loads. However, approximating all these loads may
lead to significant quality degradation. Therefore, in the last
step, we perform a quality profiling pass that identifies the
approximable loads that significantly degrade quality. This
pass examines the output quality degradation by individually
approximating the safe loads. A load is removed from the
approximable list if approximating it individually leads to
quality degradation higher than a programmer-defined thresh-
old. Furthermore, any approximation technique may prolong
convergence for iterative algorithms. We guard against this
case by removing safe-to-approximate load instructions which
increase run time when approximated.

Finally, the compiler uses a simple heuristic algorithm to
statically determine the highest drop rate given a statistical
quality requirement and a set of representative inputs. Of the
set of representative inputs, half are used for profiling and the
rest are used for validation. The algorithm works as follows:
(1) select a “moderate” drop rate around 25% as the baseline;
(2) run the application with test data to determine the output
error at that drop rate; (3) if the quality degradation is too
large, decrease the drop rate by some small delta, if the quality
degradation is permitted to be higher, increase the drop rate by
the delta; (4) repeat steps 2 and 3 until reaching the maximum
drop rate that statistically satisfies the quality expectation.

Alternatively, we can determine the drop rate dynami-
cally at run time using techniques such as those described
in SAGE [49]. SAGE uses computation sampling and occa-
sional redundant execution on the CPU to dynamically monitor
and control approximation. While setting the drop rate dy-
namically may provide an advantage of more adaptive error
control, it also has a disadvantage of some additional over-
heads. Ultimately, we considered this tradeoff and decided
to use a static drop rate based on profiling information in our
evaluation, but using such a dynamic quality control scheme
is a viable alternative.

Either technique results in a statistical guarantee that the
output error will be within the bounds set by the programmer.
Although these techniques do not strictly guarantee quality for
any program input, they provide confidence that the program
will satisfy the quality expectation if the inputs are drawn
from the same distribution used for profiling. Such statisti-

SAFARI Technical Report No. 2015-002 (February 28, 2015)

void srad2{
N = d_cleil;

float *d_Src = d_Input + base;
for (int pos = threadIdx.x;

S = d_c[d_iS[row] + d_Nr * col]; pos < N; pos += blockDim.x)
W = d_clei]; {
E = d_clrow + d_Nr % d_jE[col]]; s_data[pos] = d_Src[pos];

} }

(a) A snippet from srad (b) A snippet from fastwalsh

while (ei_new < in2_elem) { if (value - newValue < .5f)
row = (ei_new+l) {

% d_common.in2_rows - 1; result = newValue;
(ei_new+1) }
/ d_common.in2_rows + 1;| else

} result =

col =
newValue + 1;

(c) A snippet from heartwall (d) A snippet from particlefilter

Figure 5: Code examples with different safety violations.

Last
Value

(PC} -
'
Hash + [Prediction

Figure 6: Structure of the base two-delta [16] predictor.

Stride, Stride, Fp

cal guarantees are commensurate with other state-of-the-art
techniques in approximate computing [35, 49, 56, 6]. Even
dynamic quality control only provides statistical guarantees.
Generally, providing formal quality guarantees for approxi-
mation techniques across all possible inputs is still an open
research problem. Altogether, these steps provide a compila-
tion workflow that focus RFVP on the safe-to-approximate
loads with the highest potential-both in terms of performance
and effect on the output quality.

4. Value Predictor Design for RFVP

One of the main design challenges for effective rollback-free
value prediction is devising a low-overhead fast-learning value
predictor. The predictor needs to quickly adapt to the rapidly-
changing value patterns in every approximate load instruction.
There are several modern exact value predictors [20, 44]. We
use the two-delta stride predictor [16] due to its low com-
plexity and reasonable accuracy as the base for multi-value
prediction. We have also experimented with other value pre-
diction mechanisms such as dfcm [20], last value [31] and
stride [54]. Empirically, two-delta provides a good tradeoff
between accuracy and complexity. We choose this scheme
because it only requires one addition to perform the predic-
tion and a few additions and subtractions for learning. It also
requires lower storage overhead than more accurate context-
sensitive alternatives [20, 44]. However, this predictor cannot
be readily used for multi-value prediction which is required for
GPUs. Due to the SIMD execution model in modern GPUs,
the predictor needs to generate multiple concurrent predictions
for multiple concurrent threads.

Below, we first describe the design of the base predictor,
and then devise an architecture that performs full cache line
multi-value GPU prediction.

4.1. Base Predictor for RFVP

Figure 6 illustrates the structure® of the two-delta predic-
tor [16], which we use as a base design for rollback-free value
prediction in GPUs. The predictor consists of a value history
table that tracks the values of the load instructions. The table
is indexed by a hash of the approximate load’s PC. We use a
hash function that is similar to the one used in [20]. Each row
in the table stores three values: (1) the last precise value, (2)

3For clarity, Figure 6 does not depict the update logic of the predictor.

Prediction for Th0-Th15 Prediction for Th16-Th31

LV\yo Two-Delta|(Th0-Th15) LV\y1g Two-Delta(Th16-Th31) VFP Tag LRU

{WarpID,PC} Set,
Hash '—4 H |
SetN

00 01 10 11,
Active[ThreadID]: 0 .oe
Thread|D_Bit[¢ \

[wo] [[[[[[

00 01 10 1
0
¢

| eee [W31]

V: Valid Bit (1 bit), FP: Floating Point Entry (1 bit), Tag:{WarpID, PC} (38 bits), LRU: LRU Bits (6 bits)

Figure 7: Structure of the multi-value predictor for RFVP in
GPUs. The GPU predictor consists of two two-delta and
two last value predictors. The GPU predictor is also set-
associative to reduce the conflicts between loads from differ-
ent active warps. It produces predictions for full cache lines.

Stride;, and (3) Stride,. The last value plus Stride; makes up
the prediction. When a safe-to-approximate load misses in the
cache but is not dropped, the predictor updates the last value
upon receiving the data from lower level memory. We refer to
the value from memory as the current value. Then, it calculates
the stride, the difference between the last value and the current
value. If the stride is equal to the Stride;, it stores the stride in
Stride;. Otherwise Stride; will not be updated. The predictor
always stores the stride in Stride;. The two-delta predictor
only updates the Stride;, which is the prediction stride, if it
observes the same stride twice in a row. This technique lowers
the rate of mispredictions. However, for floating point loads,
it is unlikely to observe two matching strides. Floating point
additions and subtractions are also costly. Furthermore, RFVP
is performing approximate value predictions for error-resilient
applications that can tolerate small deviations in floating point
values. Considering these challenges and the approximate na-
ture of the target applications, our two-delta predictor simply
outputs the last value for floating point loads. We add a bit
to each row of the predictor to indicate whether or not the
corresponding load is a floating point instruction.

4.2. Rollback-Free Value Predictor for GPUs

Here we expound the RFVP predictor design for multi-value
prediction in GPUs, where SIMD loads read multiple words.

GPU predictor structure. The fundamental challenge in
designing the GPU predictor is that a single data request is
a SIMD load that must produce values for many concurrent
threads. A naive approach to performing value prediction
in GPUs is to replicate the single value predictor for each
concurrent thread. For example, in a typical modern GPU,
there may be as many as 1536 threads in flight during exe-

SAFARI Technical Report No. 2015-002 (February 28, 2015)

cution. Therefore, the naive predictor would require 1536
two-delta predictors, which of course is impractical. Fortu-
nately, while each SIMD load requires many predicted data
elements, adjacent threads operate on data that has significant
value similarity. In other words, we expect that the value in a
memory location accessed by thread N will be similar to the
values accessed by threads N-1 and N+1. This insight drives
our value predictor design.

In many GPU applications, the adjacent threads in a warp
process data elements with some degree of value similarity,
e.g. pixels of an image. We also leverage the fact that predic-
tions are only approximations and the application can tolerate
small errors. We exploit these opportunities and design a
predictor that consists of only two parallel specialized two-
delta predictors. As Figure 7 shows, the Two-Delta (Th0-Th15)
structure generates predictions for threads with Thread|D=0-15.
Similarly, the Two-Delta (Th16-Th32) structure generates pre-
dictions for threads with ThreadlD=16-31. The GPU predictor
is indexed by the hash of the WarpID plus the load PC. This
combination uniquely identifies the load. We always update
the predictor with the value of the active thread with the low-
est threadID. The GPU predictor also performs full cache line
prediction. Each cache line in our design has 32 4-byte words.

We add a column to each two-delta predictor that tracks
the last value of the wordy and word¢ in the cache line being
accessed by the approximate load. When predicting the cache
line, all the words that are accessed by the active thread will be
filled by the pair of two-delta predictors. However, there might
be less than 32 active threads, leaving “gaps” in the predicted
cache line. These gaps are filled in with the value of wordg and
wordig. The last value of wordy may fill wordsg_15 and the last
value of word;g may fill wordsjg_3;. To reduce the conflicts
between loads from different active warps, we make the GPU
predictor set associative with LRU replacement policy. As
Figure 7 shows, for each row in the predictor, we keep the
corresponding load’s {WarplID, PC} as the row tag. The load
values will only be predicted if their {WarpID, PC} matches the
row tag. For measurements, we use a predictor that has 192
entries, is 4-way set associative, and consists of two two-delta
predictors and two last value predictors. Section 6 provides a
detailed design space exploration for the GPU predictor. Note
that the none of the predictors store the full cache line. Instead,
the predicted cache line is inserted in the cache. Each predictor
only tracks the value of the active thread with the lowest ID.

5. Experimental Methodology

We use a diverse set of applications, cycle-accurate simulation,
and low-level energy modeling to evaluate RFVP in a modern
GPU. This section details our experimental methodology and
Section 6 presents the results.

5.1. Experimental Methodology for GPUs

Applications. As Table 1 shows, we use a diverse set of
GPU applications from the Rodinia [11], NVIDIA SDK [1],
and Mars [22] benchmark suites to evaluate RFVP with the
GPU architectures. Columns 1-3 of Table 1 summarize these
applications and their domains. The applications are amenable

Table 1: GPU applications, input data, and quality metrics.

T . Quality Profiling Set Test Set Approx
Name | Suite Domain Metric (10 of) (10 of) Loads
. . . _|Avg Relative |A Neural Network A Neural Network with
backprop | Rodinia Machine Learning Error with 65,536 Neurons (262,144 Neurons (10,2)
" . " 128x128-Pixel Color {512x512-Pixel Color
fastwalsh |NVIDIA SDK|Signal Processing |Image Diff \mage Image (2,1,4)
gaussian |NVIDIA SDK|Image Processing [Image Diff 128x128-Pixel Color |512x512-Pixel Color 5
@ Image Image
c . . Avg A Frame of Five Frames of
.g heartwall |Rodinia Medical Imaging |, L \d Image Ultrasound Images 10
«©
O |matrixmul |Mars Scientific NRMSE H‘;?réggx‘ 2 Two 512x512 Matrices 8
o -
particle " . Avg 256x256x10 Cube [512x512x10 Cube
Zfitter Rodinia | Medical Imaging |pjgpiacement |with 100 Particles _|with 2,000 Particles | %3
2 [Simitarity | ars Web Mining NRMSE |OneHTMLFile |Five HTML Files 8
O - -
. . 128x128-Pixel Color |512x512-Pixel Color
s.reduce |Rodinia Image Processing |[NRMSE \mage Image 2
" " 128x128-Pixel Color |512x512-Pixel Color
s.srad2 Rodinia Image Processing |[NRMSE Image Image 4
string Mars Web Mining pissmateh 4 MB File 16 MB File 1

to approximation and represent a wide range of domains in-
cluding pattern recognition, machine learning, image process-
ing, scientific computing, medical imaging, and web mining.
One of the applications, srad takes an inordinately long time
to simulate to completion. Therefore, we evaluate the two
kernels that dominate srad’s runtime separately. These kernels
are denoted as s.reduce and s.srad2 in Table 1. We use NVCC
4.2 from the CUDA SDK to compile the applications. Further-
more, we optimize the number of thread blocks and number of
threads per block of each kernel for our simulated hardware.

Quality metrics. Column 4 of Table 1 lists each applica-
tion’s quality metric. Each application-specific error metric
determines the application’s output quality loss as it under-
goes RFVP approximation. Using application-specific qual-
ity metrics is commensurate with other work on approxima-
tion [17, 50, 6, 18, 3]. To measure quality loss, we compare
the output from the RFVP-enabled execution to the output
with no approximation. For similarityscore, s.reduce, s.rad2
and matrixmul, which generate numerical outputs, we use the
normalized root-mean-square error (NRMSE) as the quality
metric. The backprop application solves a regression problem
and generates a numeric output. The regression error is mea-
sured in relative error. Since gaussian and fastwalsh output
images, we use the image difference RMSE as the quality met-
ric. The heartwall application finds the inner and outer walls
of a heart from 3D images and computes the location of each
wall. We measure the quality loss using the average Euclidean
distance between the corresponding points of the approximate
and precise output. We use the same metric for particlefilter,
which computes locations of particles in a 3D space. Finally,
we use the total mismatch rate for stringmatch.

Profiling and load identification. As Table 1 shows in
columns 5 and 6, we use distinct data sets for profiling and fi-
nal measurements. Doing so avoids biasing our results towards
a particular data set. We use smaller data sets for profiling
and larger datasets for final measurements. Using larger data
sets ensures that the simulations capture all relevant applica-
tion behavior. The final column of Table 1 lists the number
of approximate loads, which are identified in the profiling
phase. For some applications, such as backprop, fastwalsh, and
particlefilter, we identify approximable loads for each kernel
individually. In this case we list the number of loads for each

SAFARI Technical Report No. 2015-002 (February 28, 2015)

Table 2: GPU microarchitectural parameters.

Processor: 700 MHz, No. Compute Units: 30, SMs: 16, Warp Size: 32, SIMD
Width: 8, No. of Threads per Core: 1024, L1 Data Cache: 16KB, 128B line,
4-way, LRU; Shared Memory: 48KB, 32 banks; L2 Unified Cache: 768KB, 128B
line, 8-way, LRU; Memory: GDDRS5, 924 MHz, FR-FCFS, 4 memory channels,
Bandwidth: 173.25 GB/sec

kernel as a tuple in Table 1 (e.g., (2, 1, 4) for fastwalsh).

Cycle-accurate simulations. We use the GPGPU-Sim
cycle-accurate simulator version 3.1 [7]. We modified the
simulator to include our ISA extensions, value prediction, and
all necessary cache and memory logic to support REVP. We
use one of GPGPU-Sim’s default configurations that closely
models an NVIDIA GTX 480 chipset with Fermi architecture.
Table 2 summarizes the microarchitectural parameters of the
chipset. To account for random events in the simulations, we
run each application 10 times and report the average results.
We also run the applications to completion.

Energy modeling and overheads. To measure the energy
benefits of RFVP, we use GPUWattch [25], which is integrated
with GPGPU-Sim. RFVP comes with overheads including the
prediction tables, arithmetic operation, and allocation of the
predicted lines in the cache. Our simulator changes enable
GPUWattch to account for the caching overheads. We esti-
mate the prediction table read and write energy using CACTI
version 6.5 [38]. We extract the overhead of arithmetic opera-
tions from McPAT [26]. Our energy evaluations use a 40 nm
process node and 700 MHz clock frequency. Furthermore, we
have synthesized the LFSR and the hash function and incor-
porated the energy overheads. The default RFVP prediction
table size is 14 KB per SM and the GPU consists of 16 SMs.
The GPU off-chip memory bandwidth is 173.25 GB/sec.

6. Experimental Results

This section empirically evaluates the tradeoffs between per-
formance, energy, and quality when RFVP is employed in a
modern GPU. This section also includes a Pareto analysis of
the RFVP predictor design.

6.1. GPU Measurements

6.1.1. Performance, Energy, Bandwidth, and Quality Fig-
ure 8a shows the speedup with RFVP for 1%, 3%, 5%, and 10%
quality degradation. We have explored this tradeoff by setting
different drop rates, which is RFVP’s knob for quality control.
The baseline is the default architecture without RFVP. Fig-
ures 8b and 8c illustrate the energy reduction and the reduction
in off-chip bandwidth consumption, respectively.

As Figures 8a and 8b show, RFVP yields, on average, 36%
speedup and 27% energy reduction with 10% quality loss. The
speedup is as high as 2.2 for matrixmul and 2.4 x for similar-
ityscore with 10% quality loss. The maximum energy reduction
is 2.0x for similarityscore. RFVP yields these benefits despite
approximating less than 10 static performance-critical load instruc-
tion per kernel. The results show the effectiveness of our profiling

stage in focusing approximation where it is most beneficial.

With 5% quality loss, the average performance and energy
gains are 16% and 14%, respectively. These results demon-

O Error<1% O Error<3% M Error<5% M Error <10%

22 2.4
16
15
2 14
3 s
& 12
1.1
1.0
2 X Y Ny e 3 Ny
Q\° 22 R &g» & g & 06\,0 (9 & &eo
& & & & RO 8 o ¢
f & I & b\ \\é\ & & S
¢ © @
)
(a) Speedup
1.9 1.6 2.0
c 14
S
3 13
]
T
g 12
E]
S 14
2
oo
- X 2
& PO &‘@\ & o °6°° & S &
o‘* o > & & o Q) A P s o
o @ & o & & 9\‘\0 &
9'\
(b) Energy Reduction
- 1.9 23 1.9
18
B17
516
5&1.5
Eci14
213
S g1.2
m g '
311
210
-3 2
8 & & & & & P S
Q@b ‘.’-cl‘ o"" & &F < & R &% s &
K & L «f & ® &€ °

< &
(c) Bandwidth Consumption Reduction
Figure 8: GPU (a) performance improvement, (b) energy reduc-
tion, and (c) bandwidth consumption reduction for 1%, 3%, 5%,
and 10% quality degradation.
strate RFVP’s ability to navigate the tradeoff between quality
and performance-energy based on the user requirements.
Even with a small quality degradation of 1%, RFVP yields sig-
nificant speedup and energy reduction in several cases, including
fastwalsh, particlefilter, similarityscore, s.srad2. In particular, the
benefits are as high as 22% speedup and 20% energy reduction
for particlefilter with 1% quality loss.

Comparing Figures 8a, 8b, and 8c shows that the ben-
efits strongly correlate with the reduction in bandwidth
consumption. This strong correlation suggests that RFVP
is able to significantly improve both GPU performance and
energy consumption by predicting load values and dropping
memory access requests. The applications for which the
bandwidth consumption is reduced the most (matrixmul,
similarityscore), are usually the ones that benefit the most from
RFVP. One notable exception is s.reduce. Figure 8c shows
that RFVP reduces this application’s bandwidth consumption
significantly (up to 90%), yet the performance and energy
benefits are relatively modest (about 10%). However, Figure |
illustrates that s.reduce yields less than 40% performance
benefit even with unlimited memory bandwidth. Therefore,
the benefits from RFVP are predictably limited even with
significant bandwidth reduction. This case shows that
the applications’ sensitivity to off-chip communication
bandwidth is an important factor in RFVP’s ability to achieve
performance and energy benefits. Also, Figure 8 shows no
benefits for stringmatch with less than 10% quality degradation.
This case is an interesting outlier which we discuss in greater
detail in the next subsection. To better understand the sources

SAFARI Technical Report No. 2015-002 (February 28, 2015)

l [] Drop Rate =12.5% [] Drop Rate =25% [[] Drop Rate =50% [Drop Rate =60% [Drop Rate =75% [l Drop Rate =80% [l Drop Rate = 90%
~

NON®

Seore o~

ol

1.6 e - aeIFo

1.5
S 14
T
] 1.3
s ool 100 ol |

]:(1) il |] 0 Tl ﬂlf 1

backprop fastwalsh gaussian heartwall matrixmul particlefilter similarityscore s.reduce s.srad2 stringmatch

(a) Speedup

A

—ANNM

geomean

Qeoe
NS

N
i

5 16
° 15
§ 1.4
I
> .
o
g 1(1) crrmill HﬂF“lll mﬂw —crosill HH HH hr\llll nll =
w backprop fastwalsh gaussian heartwall matrixmul particlefilter similarityscore s.reduce s.srad2 stringmatch! geomean
(b) Energy Reduction
& 100%
% 80%
5, 60%
[=) 40%
2 20%
3 Oo/o -.I -III r—v—\l_\..ll ’_\H.lll hmﬂdd_ﬂlll r_l.lll -.ll r_\l_lllll
backprop fastwalsh gaussian heartwall matrixmul particlefilter similarityscore s.reduce s.srad2 stringmatchi average
(c) Quality Degradation
Figure 9: Exploring (a) speedup, (b) energy reduction, and (c) quality trade-offs with different drop rates.
100% .
o0% : [] show that on average only 2% (max 5.4%) of all dynamic load
Xact value
8 8% instructions return imprecise values. Thus, the large majority
g L of all dynamic loads return correct values. The prediction
8 5% accuracy is relatively low, yet commensurate with prior works
£ o on value prediction [16, 20, 9]. However, our profiling phase
g o focuses approximation on the safe-to-approximate loads that
10% do not significantly degrade output quality. These observations
%R S help justify the low quality degradation shown in Figure 9c.
& & 6.1.3. Quality Tradeoffs with Drop Rate Drop rate is

Figure 10: Fractions of load instruction that receive exact and
approximate values during execution. The drop rate is 25%.
of the benefits, we perform an experiment in which RFVP
fills the L1 cache with predicted values, but does not drop
the corresponding memory accesses. In this scenario, RFVP
yields only 2% performance improvement and increases
energy consumption by 2% on average for these applications.
These results further suggest that the source of RFVP’s
benefits come primarily from reduced bandwidth consumption,
which is a large bottleneck in GPUs that hide latency with
many-thread execution. We study the effects of RFVP on
single-core CPUs that are more latency sensitive in Section 7.
All applications but one benefit considerably from RFVP due to
reduced off-chip communication. Particularly, the energy benefits
are due to reduced runtime and fewer costly data fetches from
off-chip memory. Overall, these results confirm the effectiveness of
rollback-free value prediction in mitigating the bandwidth bottleneck
for a diverse set of GPU applications.

6.1.2. Sources of Quality Degradation To determine the
effectiveness of our value prediction, we measure the portion
of load operations which ultimately return imprecise values.
Figure 10 shows the result of these measurements. The results

RFVP’s knob for navigating the quality tradeoffs. It dictates
what percentage of the missed approximate loads to predict
and drop. For example, with 12.5% rate, RFVP drops one out
of eight approximate load misses. We examine the effect of
this knob on performance, energy, and quality by sweeping
the drop rate from 12.5% to 90%. Figure 9 illustrates the
effect of drop rate on speedup (Figure 9a), energy reduction
(Figure 9b), and quality degradation (Figure 9c).

As the drop rate increases, so do the performance and energy
benefits. However, the benefits come with some cost in output
quality. On average, speedup ranges from 1.07 X with 12.5% drop
rate, to as much as 2.1x with 90% drop rate. Correspondingly,
the average energy reduction ranges from 1.05X to 1.7 and the
quality degradation ranges from 6.5% to 31%.

Figure 9c shows that in all but one case, quality degradation
increases slowly and steadily as the drop rate increases. The
clear exception is stringmatch. It searches a file with a large
number of strings to find the lines that contain a search word.
This application’s input data set only contains English words
with very low value locality. Furthermore, the application
output is the indices of the matching lines, which provides
a very low margin for error. Either the index is correctly
identified or the output is wrong. The quality metric is the

SAFARI Technical Report No. 2015-002 (February 28, 2015)

@ (32E,2Th) W (B4E,2Th) (32E,8Th) + (128E,2Th) [@ (192E,2Th)| O (64E,8Th)
B (32E,32Th) @ (128E,8Th) X (192E,8Th) A (B4E,32Th) A (128E,32Th) @ (192E,32Th)
502

+
RFVP GPU Predictor (192E,2Th) = 14 KB

4
n
=
T X A A s

20 40 60 80 100 120 140 160 180 200 226
Predictor Size (KB)

Figure 11: GPU predictor design space exploration and Pareto
analysis. A predictor configuration of (192E,2Th), which is our
default configuration, is the most Pareto optimal design point.
In this graph, lower and left is better. The normalization base-
line is the execution without RFVP. The (xE,yTh) represents
the configuration with y parallel predictors each with x entries.
All the predictors are 4-way set associative.

percentage of the correctly matched lines. During search,
even if a single character is incorrect, the likelihood of
matching the words and identifying the correct lines is low.

-
o

=3
=

Normalized Energy X
Normalized Delay X Erro
S

o
&
S

Even though stringmatch shows 61% speedup and 44% energy
reduction with 25% drop rate, its quality loss of 60% is not ac-
ceptable. In fact, stringmatch is an example of an application that
cannot benefit from RFVP due to low error tolerance.

As Figure 9 shows, each application tolerates the effects of
RFVP approximation differently. For some applications, such
as gaussian and fastwalsh, as the rate of approximation (drop
rate) increases, speedup, energy reduction and quality loss
gradually increase. In other applications such as matrixmul and
similarityscore, the performance and energy benefits increase
sharply while the quality degradation increases gradually. For
example in similarityscore, increasing the drop rate from 25% to
50% yields a jump in speedup (from 28% to 59%) and energy
reduction (from 10% to 57%), while quality loss only rises 2%.

Those applications, which experience a jump in benefits, are
usually the ones that show the most sensitivity to the available
off-chip communication bandwidth (see Figure 1).

6.1.4. Design Space Exploration and Pareto Analysis The
two main design parameters of the GPU predictor are the
number of parallel predictors and the number of entries in each
predictor. We vary these two parameters to explore the design
space of the GPU predictor and perform a Pareto analysis to
find the optimal configuration. Figure 11 shows the result
of this design space exploration. The x-axis captures the
complexity of the predictor in terms of size in KBytes. The
y-axis is the Normalized Energy x Normalized Delay x Error
across all the GPU applications. The normalization baseline
is the execution without RFVP. This product simultaneously
captures the three metrics of interest, namely performance,
energy, and quality. The optimal predictor minimizes size
(left on the x-axis), energy dissipation, execution delay, and
error (lower on the y-axis). In Figure 11, (xE,yTh) represents

a configuration with y parallel predictors each with x entries.

All the predictors are 4-way set associative.

Table 3: CPU applications, input data, and quality metrics.

Name Suite Domain ?Af(“? Profiling Set Test Set ‘I_%';?sx
bwaves CFP2006 |Scientific NRMSE Test Set Reference Set 26
g cactusADM|CFP2006 |Scientific NRMSE Test Set Reference Set 28
E fma3D CFP2000 |Scientific NRMSE Test Set Reference Set 27
<& lgemsFDTD [CFP2006 |Scientific NRMSE Test Set Reference Set 23
E soplex CFP2006 |Optimization NRMSE Test Set Reference Set 21
B swim CFP2000 |Scientific NRMSE Test Set Reference Set 23

In Figure 11, the knee of the curve is the most cost-effective point.
This Pareto-optimal design is the (192E,2Th) configuration, which
requires 14 KB of storage, and is our default configuration.

This design space exploration shows that the number of
entries in the prediction table has a clear effect on the potential
benefits. Increasing the number of entries from 32 to 192 pro-
vides 1.4x improvement in Normalized Energy x Normalized
Delay xError. A higher number of entries lowers the chance
of destructive aliasing in the prediction table that leads to
eviction of value history from the prediction tables. However,
adding more parallel predictors beyond a certain point does
not provide any significant benefit and wastes area. With fewer
predictors, RFVP relies more on the value locality across
the threads, which is a common case in GPU applications.

Exploiting value locality reduces RFVP’s area overhead without
significantly degrading output quality.

Finally, we compare the benefits of RFVP with the bene-
fits that can be achieved by simply enlarging the caches by
the RFVP predictor size. We found that, for the studied ap-
plications, the increased L1 size in each SM results in 4%
performance improvement and 1% energy savings on average.
The increased L2 size yields only 2% performance improve-
ment and 1% energy savings on average. RFVP provides
significantly higher benefits with the same overhead by trad-
ing output quality for performance and energy gains.

7. CPU Experiments

To understand the effectiveness of of RFVP in a system where
latency is the primary concern, we investigate the application
of RFVP in a single core CPU system.

7.1. Methodology

Applications. As Table 3 shows, we evaluate RFVP for
CPUs using an approximable subset of SPEC CFP2000/2006.
The applications come from the domains of scientific com-
puting and optimization. As the work in [55] discusses, the
CFP2000/2006 benchmarks have some natural tolerance to
approximation. When these floating point applications dis-
cretize continuous-time inputs, the resulting data is naturally
imprecise. We compile the benchmarks using gcc version 4.6.

Quality metrics. As discussed below, our subset of the
SPEC applications produce numerical outputs. Therefore,
we use NRMSE to measure the quality loss. For swim, the
output consist of all diagonal elements of the velocity fields of
a fluid model. In fma3d, the outputs are position and velocity
values for 3D solids. In bwaves, the outputs define the behavior
of blast waves in 3D viscous flow. The cactusADM benchmark
outputs a set of coordinate values for space-time in response to

SAFARI Technical Report No. 2015-002 (February 28, 2015)

Table 4: CPU microarchitectural parameters.
Processor: Fetch/lssue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store Queue:
48-entry/32-entry, ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical
Registers: 256/256, Branch Predictor: Tournament 48 KB, BTB Sets/Ways: 1024/4,
RAS Entries: 64, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB
Entries: 128/256; L1: 32 KB I$, 32 KB D$, 64B line, 8-Way, Latency: 2 cycles; L2:
2 MB, 64B line, 8-Way, Latency: 20 cycles; Memory Latency: 200 cycles

matter content. The soplex benchmark solves a linear program-
ming problem and outputs the solution. Finally, GemsFDTD
outputs the radar cross section of a perfectly conducting object
using the Maxwell equations.

Profiling and load identification. As in the GPU evalua-
tions, we use smaller (SPEC test) data sets for profiling and
larger (SPEC reference) data sets for the performance, energy,
and quality evaluations. We use Valgrind with the Cachegrind
tool [42] for both the profiling and final quality of result evalu-
ation. We modify Cachegrind to support rollback-free value
prediction. Valgrind is fast enough to both perform the profil-
ing and run our applications until completion with reference
data sets. Thus, we use Valgrind plus Cachegrind for profiling,
approximate loads selection, and final quality assessments.

Cycle-accurate simulations. We implement RFVP in the
MARSSx86 cycle-accurate simulator [43]. The baseline mem-
ory system includes a 32 KB L1 cache, a 2 MB LLC, and
external memory with 200-cycle access latency. In modern
processors, the LLC size is often 2 MB x number of cores.
Thus, we use a 2 MB LLC for our single core experiments.
Furthermore, the simulations accurately model port and inter-
connect contention at all levels of the memory hierarchy. The
core model follows the Intel Nehalem microarchitecture [37].
Because simulation until completion is impractical for SPEC
applications with reference data sets, we use Simpoint [21]
to identify the representative application phases. We perform
all the measurements for the same amount of work in the ap-
plication using markers in the code. Table 4 summarizes the
microarchitectural parameters for the CPU simulations. As in
the GPU evaluations, we run each application 10 times and
report the average to account for random events in simulation.
Energy modeling and overheads. We use McPAT [26] and
CACTI [38] to measure energy benefits while considering all
the overheads associated with RFVP. The caching overheads
are incorporated into the statistics that Marssx86 produces for
MCcPAT. As in the GPU case, we estimate the prediction table
overhead using CACTI version 6.5, and extract the arithmetic
operations overhead from McPAT. The energy evaluations use
a 45 nm process, 0.9 Vdd and 3.0 GHz core clock frequency.

7.2. Results

Figure 12 shows the speedup, energy reduction, and quality
degradation with RFVP. The baseline is the execution with
no approximation. In this case, RFVP aims to mitigate the
long memory access latencies. Thus, RFVP predicts all miss-
ing approximate load requests but does not drop any of them.
We experimented with dropping requests in the CPU experi-
ments. However, there was no significant benefit since these
single-threaded CPU workloads are not sensitive to the off-
chip communication bandwidth.

10

Table 5: CPU L2 MPKI comparison with and without RFVP.

bwaves |cactusADM| fma3d |gemsFDTD| soplex swim
Baseline 11.6 5 1.5 23.1 26.5 3.9
RFVP 22 3.9 0.6 10.3 21.4 2.4

As Figure 12 shows, RFVP provides 8% average speedup and

6% energy reduction with a single-core CPU. The average quality
loss is 0.9%.
While the CPU benefits are lower than the GPU benefits, the
CPU quality degradations are also comparatively low. The
GPU applications in our workload pool are more amenable
to approximation than the CPU applications. That is, a
larger fraction of the performance-critical loads are safe to
approximate in GPU workloads. Nevertheless, Figure 12
shows that bwaves gains 19% speedup and 16% energy
reduction with only 1.8% quality degradation.

To better understand the CPU performance and energy bene-
fits, we examine MPKI reduction in the L2 cache, and present
the results in Table 5. RFVP reduces MPKI by enabling the
core to continue without stalling for memory to supply data.
Usually, a larger reduction in MPKI leads to larger benefits.
For example, for bwaves the L2 MPKI drops from 11.6 to 2.2,
leading to 19% speedup and 16% energy reduction.

To understand the low quality degradations of the CPU
applications with RFVP, we also study the distribution the
fraction of the load values that receive approximate and precise
values during execution. The trends are similar to the ones
that we observed for the GPU experiment (see Figure 10). In
the CPU case, on average only 1.5% of all the dynamic loads
receive imprecise values.

Due to the overall low rate at which load instructions return
imprecise data to the CPU, the applications experience low quality
degradation in the final output. In fact, RFVP in the CPU case
achieves performance and energy gains that are one order of
magnitude greater than the quality loss.

The value prediction accuracy in the CPU case is on par with
prior work [16, 20, 9] and the GPU case. Once again, the pro-
filing phase focuses approximation on the safe-to-approximate
loads that do not significantly degrade the output quality.
These results show that RFVP effectively mitigates the long
memory access latency with a low degradation in quality.

8. Related Work

General-purpose approximate computing. Recent work ex-
plored a variety of approximation techniques. However, ap-
proximation techniques that tackle memory subsystem per-
formance bottlenecks are lacking. This paper defines a new
technique that mitigates the memory subsystem bottlenecks of
long access latency and limited off-chip bandwidth.

The existing techniques include (a) approximate stor-
age designs [33, 51] that trades quality of data for re-
duced energy [33] and larger capacity [51], (b) voltage over-
scaling [17, 10, 40, 23, 24], (c) loop perforation [56, 36, 46],
(d) loop early termination [6], (e) computation substitu-
tion [49, 6, 4, 53], (f) memoization [2, 48, 5], (g) lim-
ited fault recovery [15, 27, 28, 14, 36, 19, 61], (h) preci-
sion scaling [50, 59], and (i) approximate circuit synthe-
sis [45, 60, 34, 41, 29, 30]. Most of these techniques (1)

SAFARI Technical Report No. 2015-002 (February 28, 2015)

100%

Energy Reduction
>

9
3

| e mmm
bwaves cactusADM fma3d gemsFDTD soplex swim igeomean

(a) Speedup

bwaves cactusADM fma3d gemsFDTD soplex

(b) Energy Reduction

ion

80%]|
60%|

40%|

o
3
B3

1.8% 0.3% 1.6% 0.5% 1.8% 0.2% 0.9%

Quality Degradati

Q
2

swim igeomean ° “bwaves cactusADM fma3d gemsFDTD soplex swim {geomean

(c) Quality Degradation

Figure 12: Employing RFVP in a single-core CPU. (a) speedup, (b) energy reduction, and (c) quality degradation.

operate at the coarse granularity of a loop body or a functional
call; (2) are agnostic to and unaware of micro-architectural
events; (3) and are explicitly invoked by the code. In con-
trast, rollback-free value prediction (1) operates at the fine-
granularity of a single load instruction and (2) is triggered
by microarchitectural events, (3) without direct and explicit
runtime software invocation. In this context, we discuss the
most related work.

EnerJ [50] is a language for approximate computing. Its
corresponding architecture, Truffle [17], leverages only volt-
age overscaling, floating point bitwidth reduction, and reduced
DRAM refresh. We borrow the programming constructs and
ISA augmentation approach from EnerJ and Truffle, respec-
tively. However, we define our own novel microarchitectural
approximation technique. EnerJ and Truffle reduce energy
consumption in CPUs, while we improve both performance
and energy efficiency in GPUs as well as CPUs. The work in
[33] and [51] design approximate DRAM and Flash storage
blocks. Flikker [33] reduced the DRAM refresh rate when ap-
proximate data is stored in main memory. The work in [5] uses
hardware memoization to reduce redundant computation in
GPUs. However, while this work eliminates execution within
the SMs, it still requires data inputs to be read from memory.
Some bandwidth savings may arise by eliminating these execu-
tions, but our work fundamentally differs in that it attacks the
bandwidth wall directly by completely eliminating memory
traffic. The work in [51] uses faulty flash blocks for storing
approximate data to prolong its lifetime. This work also aims
to improve the density and access latency of flash memory
using multi-level cells with small error margins. The tech-
nique in [53] exploits approximation to mitigate branch and
memory divergence in GPUs. In case of branch divergence,
authors force all the threads to execute the most popular path.
In case of memory divergence, they force all the threads to
access the most commonly demanded memory block. Their
work is agnostic to cache misses and does not leverage value
prediction nor it drops memory requests. In contrast, our novel
approximation technique predicts the value of the approximate
loads that miss in the cache without ever recovering from the
misprediction. Further, we reduce the bandwidth demand and
memory contention by dropping a fraction of the approximate
load requests after predicting their value. Our approach can
be potentially combined with many of the prior works on ap-
proximation since it exclusively focuses on mitigating off-chip
communication limitations.

Value prediction. RFVP takes inspiration from prior work
that explores exact value prediction [54, 32, 62, 16, 57, 20, 44].
However, our work fundamentally differs from these tech-

11

niques because it does not check for mispredictions and does
not rollback from them. Furthermore, we drop a fraction of
the load requests to reduce off-chip memory traffic. Among
these techniques, Zhou et al. [62] use value prediction to spec-
ulatively prefetch cache misses that are normally serviced
sequentially. They used value prediction to break dependence
chains where one missing load’s address depends on the pre-
vious missing load’s value. However, they do not allow the
speculative state to contaminate the microarchitectural state
of the processor or the memory. Since their technique only
initiates prefetches, they do not need to recover from value mis-
predictions. Our technique, however, is not used for prefetch
requests. Instead, the predictor directly feeds the predicted
value to the processor as an approximation of the load value.
Recently, in a concurrent submission, San Miguel et al. [52],
proposed a technique which utilizes approximate load han-
dling via value prediction without checks for misprediction to
address the memory latency bottleneck. Concurrently to [52],
Thwaites et al. [58] proposed in a short paper a similar idea:
predict the values of safe-to-approximate loads to reduce aver-
age memory access time in latency-critical applications. How-
ever, these works only use approximate load handing to solve
latency bottlenecks in CPU systems. Our work differs from
both works in the following ways: (1) we evaluate our tech-
niques in a GPU environment, thus showing that RFVP is
an effective tool for mitigating both latency and bandwidth
constraints, (2) we drop a portion of missing load requests,
thus addressing the fundamentally different bottleneck of lim-
ited off-chip bandwidth, and (3) we utilize the inherent value
similarity of accesses across adjacent threads to develop a
multi-value predictor capable of producing values for many
simultaneously-missing loads with low overhead.

9. Conclusions

This paper introduces Rollback-Free Value Prediction (RFVP)
and demonstrates its effectiveness in tackling two major mem-
ory system bottlenecks—limited off-chip bandwidth and long
memory access latency. RFVP predicts the values of safe-to-
approximate loads only when they miss in the cache with no
checks or recovery from misspeculations. We utilize program-
mer annotations to guarantee safety, while a profile-directed
compilation workflow applies approximation only to the loads
which provide the most performance improvement with the
least quality degradation. We extend and use a light-weight
and fast-learning prediction mechanism, which is capable of
adapting to rapidly-changing value patterns between individ-
ual loads with low hardware overhead.

RFVP uses these predicted values both to hide the memory
latency and ease bandwidth limitations. The drop rate becomes

SAFARI Technical Report No. 2015-002 (February 28, 2015)

a knob that controls the tradeoff between quality of results and
performance/energy gains. Our extensive evaluation shows
that RFVP for GPUs yields average 40% performance in-
crease and 31% energy reduction with average 8.8% quality

loss.

Thus, RFVP achieves significant energy savings and

performance improvement with limited loss of quality. The
results support the effectiveness of RFVP in mitigating the
two memory subsystem bottlenecks.

References

(1]
[2]

[3]

[4]

[5]

[6]

(7]
[8]

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

(21]

[22]

NVIDIA corporation. NVIDIA CUDA SDK code samples. [Online].
Available: https://developer.nvidia.com/gpu-computing-sdk.

C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Trans. Comput., vol. 54, no. 7,
2005.

R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” in ISCA, 2014.

J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe, “Petabricks: a language and compiler for algo-
rithmic choice,” in PLDI, 2009.

J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Eliminating
redundant fragment shader executions on a mobile gpu via
hardware memoization,” in Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ser. ISCA *14.
Piscataway, NJ, USA: IEEE Press, 2014, pp. 529-540. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665748

W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI, 2010.

A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in ISPASS, 2009.

M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in OOP-
SLA, 2013.

L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “Cava: Using
checkpoint-assisted value prediction to hide 12 misses,” ACM Transac-
tions on Architecture and Code Optimization, vol. 3, no. 2, 2006.

L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology,” in
DATE, 2006.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in ZISWC, 2009.

E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip het-
erogeneous computing: Does the future include custom logic, FPGAs,
and GPUs?” in MICRO, 2010.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen, “Speculative precomputation: Long-range prefetching
of delinquent loads,” in ISCA, 2001.

M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerg-
ing workloads and silicon reliability trends,” in SELSE, 2009.

M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA,
2010.

R. J. Eickemeyer and S. Vassiliadis, “A load-instruction unit for
pipelined processors,” IBM Journal of Research and Development,
vol. 37, no. 4, 1993.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.
H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.
Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of
digital systems for error tolerant video applications,” in ATS, 2011.

B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential
fcm: Increasing value prediction accuracy by improving table usage
efficiency,” in HPCA, 2001.

G. Hamerly, E. Perelman, and B. Calder, “How to use simpoint to
pick simulation points,” ACM SIGMETRICS Performance Evaluation
Review, vol. 31, no. 4, 2004.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
mapreduce framework on graphics processors,” in PACT, 2008.

12

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]
[49]

[50]

[51]

R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010.

J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture. ACM, 2013, pp. 487—498.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

X. Li and D. Yeung, “Application-level correctness and its impact on
fault tolerance,” in HPCA, 2007.

X. Li and D. Yeung, “Exploiting application-level correctness for low-
cost fault tolerance,” J. Instruction-Level Parallelism, 2008.

A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing par-
simonious inexact circuits through probabilistic design techniques,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, 2013.

A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V. Palem,
and C. Piguet, “Algorithmic methodologies for ultra-efficient inexact
architectures for sustaining technology scaling,” in CF, 2012.

M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in MICRO, 1996.

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load
value prediction,” in ASPLOS, 1996.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning,”
in ASPLOS, 2011.

J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic syn-
thesis under general error magnitude and frequency constraints,” in
ICCAD, 2013.

S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
reliability-and accuracy-aware optimization of approximate computa-
tional kernels,” in Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applica-
tions. ACM, 2014, pp. 309-328.

S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in /CSE, 2010.

D. Molka, D. Hackenberg, R. Schone, and M. Muller, “Memory Per-
formance and Cache Coherency Effects on an Intel Nehalem Multipro-
cessor System,” in PACT, 2009.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

M. Murase, “Linear feedback shift register,” 1992, US Patent.

S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in DATE, 2010.

K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,” in
DATE, 2014.

N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007.

A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in DAC, 2011.

A. Perais and A. Seznec, “Practical Data Value Speculation for Future
High-end Processors,” in HPCA, 2014.

A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in DATE, 2014.
M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou, ‘“Patterns
and statistical analysis for understanding reduced resource computing,”
in Onward!, 2010.

B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
scaling,” in ISCA, 2009.

M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: pattern-
based approximation for data parallel applications,” in ASPLOS, 2014.
M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
self-tuning approximation for graphics engines,” in MICRO, 2013.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in MICRO, 2013.

https://developer.nvidia.com/gpu-computing-sdk.
http://dl.acm.org/citation.cfm?id=2665671.2665748

SAFARI Technical Report No. 2015-002 (February 28, 2015)

[52] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in MICRO, 2014.

[53] J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant gpu applications,” Multime-
dia, IEEE Transactions on, vol. 15, no. 2, 2013.

[54] Y. Sazeides and J. E. Smith, “The predictability of data values,” in
MICRO, 1997.

[55] S. Sethumadhavan, R. Roberts, and Y. Tsividis, “A case for hybrid
discrete-continuous architectures,” Computer Architecture Letters,
vol. 11, no. 1, pp. 14, Jan 2012.

[56] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[57] R.Thomas and M. Franklin, “Using dataflow based context for accurate
value prediction,” in PACT, 2001.

[58] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh,
O. Mutlu, J. Park, G. Mururu, and T. Mowry, “Rollback-free value
prediction with approximate loads,” in Proceedings of the 23rd inter-
national conference on Parallel architectures and compilation, 2014,
pp- 493-494.

[59] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Quality programmable vector processors for ap-
proximate computing,” in MICRO, 2013.

[60] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC, 2012.

[61] V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in SELSE, 2006.

[62] H.Zhou and T. M. Conte, “Enhancing memory-level parallelism via
recovery-free value prediction,” IEEE Trans. Comput., vol. 54, 2005.

13

	Introduction
	Architecture Design for RFVP
	Rollback-Free Value Prediction
	Safe Approximation with RFVP
	Instruction Set Architecture to Support RFVP
	Integrating RFVP in the Microarchitecture

	Language and Software Support for RFVP
	Providing Safety Guarantees
	Targeting Performance-Critical Loads
	Avoiding Significant Quality Degradations

	Value Predictor Design for RFVP
	Base Predictor for RFVP
	Rollback-Free Value Predictor for GPUs

	Experimental Methodology
	Experimental Methodology for GPUs

	Experimental Results
	GPU Measurements
	Performance, Energy, Bandwidth, and Quality
	Sources of Quality Degradation
	Quality Tradeoffs with Drop Rate
	Design Space Exploration and Pareto Analysis

	CPU Experiments
	Methodology
	Results

	Related Work
	Conclusions

