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Introduction

 Simultaneous Multithreaded (SMT) processors

 execute multiple instructions from several threads at the 

same time

 resource sharing still hits with the memory wall

 memory-intensive thread

 streams of long latency memory accesses

 holds too many resources

- starves other threads of available resources

- prevents their forward progress as well
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Runahead Threads (RaT)

 Multithreaded approach of Runahead paradigm

 interesting way of using resources in SMT in the 

presence of long-latency memory instructions

 speculative thread  runahead thread

 a runahead thread executes speculative instructions 

while a long-latency load is resolving

 follow the program path instead of being stalled

 overlap prefetch accesses with the main load

long-latency miss

normal thread

runahead thread

prefetches

time

thread 1

thread 2
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 Allow memory-bound threads going speculatively 

in advance doing prefetching

 provide speedup increasing memory-level parallelism

 improve individual performance of this thread

 Prevent memory bounded thread monopolization

 transform a resource hoarder thread into a light-

consumer thread

 shared resources can be fairly used by other threads

RaT benefits

don’t use resources free resources faster

runahead thread

prefetches exploit MLP
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RaT shortcoming

 RaT causes extra work due to more extra 

executed instructions

more instructions  more energy

Impact on performance-energy efficiency

RaT increase ~50% 

power consumption
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Proposal

 Improving RaT efficiency
 avoid inefficient cases: no prefetching useless instructions

 only useful executions that maximize the performance 

 control the number of useless instructions executed by runahead
threads

 Our goal 

 reduce instruction without losing                                        
performance 

 reduce power

RaT

POWER
PERFORMANCE

long-latency miss

runahead thread

no LLL  useless work

energy-performance balance
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Our approach

 Propose a mechanism to improve RaT efficiency
 based on features of own runahead threads

 Idea
 capture the useful lifetime of a runahead thread

 to exploit as much MLP as possible

 with the minimum number of speculative instructions

 balance between prefetching and useless instructions

load is resolved

Thread

long-latency miss

runahead thread

Prefetch (MLP) Useless instructions
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Useful Runahead Distance

 By limiting the runahead execution of a thread, we

generate efficient runahead threads that

 avoid unnecesary speculative execution and 

 enhance runahead threads efficiency

 control the number of useless speculative instructions while 

obtaining the maximum performance for a given thread

Useful Runahead distance

Thread

long-latency miss

LLL1 LLL2 LLL3 LLL4

Efficient runahead thread

how far thread should run ahead speculatively such 

that execution will be efficient
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Using useful runahead distance

 With the useful runahead distance we can help the 

processor to decide

 whether or not a runahead thread should be initiated on an L2-

miss load

 eliminate useless runahead threads

 indicate how long the runahead execution period should be when 

a runahead thread is initiated

 reduce unnecessary extra work done by useful runahead threads

load is resolved

Thread

useless runahead thread

load is resolved

Thread

efficient runahead thread

Useless instructions
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Runahead Distance Prediction

 RDP operation
 calculate the useful runahead distances of runahead thread 

executions

 use that useful runahead distance for predicting future runahead 

periods caused by the same static load instruction

 RDP implementation

 use two useful runahead distances (full and last)

 improve reliability of the useful distance information

 runahead thread information is associated to its causing 

long-latency load

 store this information in a table 
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RDP mechanism (I)

 First time: no useful distance information for a load

 execute fully a runahead thread and compute the new 

useful runahead distance

 both full and last distances are updated with the obtained

useful runahead distance

Ld PC1
LLL1 LLL2 LLL3 LLL4

Useful Runahead distance

full runahead distance

last runahead distance
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RDP mechanism (II)

 Next times: check whether distances are reliable

 No when full and last distances are very different 

 based on a threshold: Distance Difference Threshold

 full – last > DDT  

 execute fully the runahead thread 

 and update both (full and last) runahead distances

Ld PC1
LLL1 LLL2

new Useful Runahead distance

full runahead distance

last runahead distance
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RDP mechanism (III)

 Next times: check whether distances are reliable

 Yes   full - last <= DDT 

 take the last distance as useful runahead distance

 decide to start the runahead thread ?

– if last < activation threshold do not start runahead thread

 how long executes the runahead thread

– else start the runahead thread executing as many

instructions as last useful distance indicates

Ld PC1
LLL1 LLL2

Useful Runahead distancelast runahead distance 



RDP mechanism (IV)

 Ensuring reliability of small usefull distances

 some loads have initial small runahead distances…

 but useful runahead distance becomes larger later

 26% of loads increase its useful runahead distance

 Use a simple heuristic

 provide an additional confidence mechanism that 

determine whether or not a small distance is reliable

 while useful runahead distance < activation threshold 

during N times (N=3)  execute full runahead execution
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Framework

 Tools

 derived SMTSIM exec-driven simulator

 enhanced Wattch power model integrated

 CACTI

 Benchmarks

 Multiprogrammed workloads of 2 and 4 threads mix from 

SPEC 2000 benchmarks

 ILP,MEM,MIX

 Methodology
 FAME

 ensure multithreaded state continuously 

 threads fairly represented in the final measurements
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Framework

 SMT model with a complete resource sharing 

organization

Processor core

Processor depth 10 stages

Processor width 8 way (2 or 4 contexts)

Reorder buffer size 64 entries per context

INT/FP registers 48 regs per context

INT / FP /LS issue queues 64 / 64 / 64

INT / FP /LdSt unit 4 / 4 / 2

Hardware prefetcher Stream buffers (16)

Memory subsystem

Icache 64 KB, 4-way, pipelined

Dcache 64 KB, 4-way, 3 cyc latency

L2 Cache 1 MB, 8-way, 20 cyc latency

Caches line size 64 bytes

Main memory latency 300 cycles minimum



Evaluation

 Performance and energy-efficiency analysis

 throughput, hmean of thread weighted speedups

 extra instructions, power, ED2

 Comparison with state-of-the-art mechanisms

 MLP-aware Flush (MLP-Flush)

 MLP-aware Runahead thread (MLP-RaT)

 RaT + single-thread execution techniques (RaT-SET)

 Efficient Runahead Threads (RDP)
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Performance

 IPC throughput and Hmean

 RDP preserves the performance of RaT better than other

mechanisms

within ~2% throughput and ~4% hmean deviation
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Extra Instructions

 RDP achieves the highest extra work reduction

 come from eliminating both useless runahead threads 

and useless instructions out of runahead distance
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Power
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 RDP effectively reduces the power consumption

compared to RaT
 RDP:  -14%



Energy-efficiency

 Efficiency measured as energy-delay square (ED2)

 RDP presents the best ratio (10% better)

 provide similar performance with RaT

 cause less power consumption (-14% on average)
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– ED2 normalized to the SMT+RaT
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Runahead threads behavior with RDP

 Controlled runahead threads distribution

 RDP generates small runahead threads

 but providing the same usefulness

0

50

100

150

200

250

300

350

#
R

u
n

a
h

e
a
d

 T
h

re
a
d

s
 (

th
o

u
s
a
n

d
s
)

Range of runahead distances

RDP RAT



 Introduction

 RaT problem

 Proposal

 Efficient Runahead Threads

 Useful Runahead Distance

 Runahead Distance Prediction (RDP)

 Evaluation

 Framework

 Results

 Conclusions

Efficient Runahead Threads 25Tanausú Ramírez  (UPC)

Talk outline



Efficient Runahead Threads 26Tanausú Ramírez  (UPC)

Conclusions

 RaT has a shortcoming
 increase the extra work executed due to speculative

instructions

 efficiency

 performance gain vs. extra energy consumption

 Our approach: efficient runahead threads
 Useful runahead distance prediction (RDP)

 eliminate at a fine-grain the useless portion of runahead
threads

 reduces extra instructions while maintaining the 
performance benefits of runahead threads

 RDP shows significant performance and ED2

advantage over state-of-the-art techniques
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Runahead Threads (RaT)

 Multithreaded approach of Runahead paradigm

 speculative thread  runahead thread

 a runahead thread executes speculative instructions 

while a long-latency load is resolving

 follow the program path instead of being stalled

 independent execution of long-latency misses

Thread 1

long-latency miss

time

runahead thread
Thread 2
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Starting a runahead thread

Thread 1

load 1

normal thread

time

normal thread

runahead thread

 When a thread is stalled by L2 cache miss
 turn the thread into runahead thread

 checkpoint architectural state

 retire the miss

 enter runahead mode (context switch is not needed)

Reorder buffer (ROB)
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Executing a runahead thread

 Instructions are speculatively executed 

 L2-miss dependent instructions are marked invalid and 

dropped

 status are tracked through the registers (INV bits)

 Valid instructions are executed 

 loads are issue to memory

long-latency miss

normal thread

runahead thread

other loads

time

Thread 1

Thread 2
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Executing a runahead thread

 A runahead thread use and release faster shared 

resources to other threads

long-latency miss

runahead thread

don’t use resourcesINValid instructions

free resources fasterValid instructions

time

Long-latency loads generate prefetches

Thread 1

Thread 2

normal thread
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Finishing a runahead thread

load is resolved

time

runahead thread

checkpoint recovery

normal thread

 Leave runahead when L2 miss resolves

 flush pipeline,

 restore state from the checkpoint and,

 resume to normal execution

normal threadThread 1

Thread 2
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RaT benefit results

 each thread is faster without 

disturbing the other threads

 Overall SMT processor 

performance is improved

Performance of 2-thread mix of a memory-

bound and ILP-bound

 single-thread performance is improved

 resource clogging is avoided
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Evaluation Framework

 Methodology
 FAME

 ensure multithreaded state continuously 

 threads fairly represented in the final measurements

 Metrics
 performance

 throughput

– sum of individual IPCs 

 harmonic mean (hmean)

– performance/fairness balance

 energy efficiency 

 energy-delay2 (ED2)

– ratio of performance and energy consumption



RDIT

 RDIT related data

 4-way table of 1024 entries

 size ~ 4.5KB

 indexed by (PC) XORed (2-bits GHR)

 power 1.09 Watts based on CACTI
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DDT analysis

 Distance Difference threshold study
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Distribution of RDP decisions
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