RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen

Richard Veras

Onur Mutlu

Carnegie Mellon University
{jamiel,bjaiyen, rveras,onur}@cmu.edu

Abstract

Dynamic random-access memory (DRAM) is the building
block of modern main memory systems. DRAM cells must be
periodically refreshed to prevent loss of data. These refresh
operations waste energy and degrade system performance by
interfering with memory accesses. The negative effects of
DRAM refresh increase as DRAM device capacity increases.
Existing DRAM devices refresh all cells at a rate determined
by the leakiest cell in the device. However, most DRAM cells
can retain data for significantly longer. Therefore, many of
these refreshes are unnecessary.

In this paper, we propose RAIDR (Retention-Aware Intelli-
gent DRAM Refresh), a low-cost mechanism that can identify
and skip unnecessary refreshes using knowledge of cell reten-
tion times. Our key idea is to group DRAM rows into retention
time bins and apply a different refresh rate to each bin. As a re-
sult, rows containing leaky cells are refreshed as frequently as
normal, while most rows are refreshed less frequently. RAIDR
uses Bloom filters to efficiently implement retention time bins.
RAIDR requires no modification to DRAM and minimal mod-
ification to the memory controller. In an 8-core system with
32 GB DRAM, RAIDR achieves a 74.6% refresh reduction, an
average DRAM power reduction of 16.1%, and an average
system performance improvement of 8.6% over existing sys-
tems, at a modest storage overhead of 1.25 KB in the memory
controller. RAIDR’s benefits are robust to variation in DRAM
system configuration, and increase as memory capacity in-
creases.

1. Introduction

Modern main memory is composed of dynamic random-access
memory (DRAM) cells. A DRAM cell stores data as charge
on a capacitor. Over time, this charge leaks, causing the
stored data to be lost. To prevent this, data stored in DRAM
must be periodically read out and rewritten, a process called
refreshing. DRAM refresh operations waste energy and also
degrade performance by delaying memory requests. These
problems are expected to worsen as DRAM scales to higher
densities.

Previous work has attacked the problems caused by DRAM
refresh from both hardware and software angles. Some
hardware-only approaches have proposed modifying DRAM
devices to refresh DRAM cells at different rates [19, 20, 37,
52], but these incur 5-20% area overheads on the DRAM
die [20, 37] and are therefore difficult to implement given
the cost-sensitive DRAM market. Other hardware-only ap-
proaches have proposed modifying memory controllers, ei-
ther to avoid unnecessary refreshes [7] or decrease refresh

rate and tolerate retention errors using error-correcting codes
(ECC) [5, 17, 51], but these suffer from significant storage or
bandwidth overheads. Hardware-software cooperative tech-
niques have been proposed to decrease refresh rate and allow
retention errors only in unused [11, 50] or non-critical [26]
regions of memory, but these substantially complicate the
operating system while still requiring significant hardware
support.

In this paper, our goal is to minimize the number of re-
fresh operations performed without significantly increasing
hardware or software complexity and without making mod-
ifications to DRAM chips. We exploit the observation that
only a small number of weak DRAM cells require the conser-
vative minimum refresh interval of 64 ms that is common in
current DRAM standards. For example, Figure 1 shows that
in a 32 GB DRAM system, fewer than 1000 cells (out of over
10“) require a refresh interval shorter than 256 ms, which is
four times the minimum refresh interval. Therefore, refreshing
most DRAM cells at a low rate, while selectively refreshing
weak cells at a higher rate, can result in a significant decrease
in refresh overhead. To this end, we propose Retention-Aware
Intelligent DRAM Refresh (RAIDR). RAIDR groups DRAM
rows into retention time bins based on the refresh rate they
require to retain data. Rows in each bin are refreshed at a
different rate, so that rows are only refreshed frequently if
they require a high refresh rate. RAIDR stores retention time
bins in the memory controller, avoiding the need to modify
DRAM devices. Retention time bins are stored using Bloom
filters [2]. This allows for low storage overhead and ensures
that bins never overflow, yielding correct operation regardless
of variation in DRAM system capacity or in retention time
distribution between DRAM chips.

Our experimental results show that a configuration of
RAIDR with only two retention time bins is able to reduce
DRAM system power by 16.1% while improving system per-
formance by 8.6% in a 32 GB DRAM system at a modest
storage overhead of 1.25 KB in the memory controller. We
compare our mechanism to previous mechanisms that reduce
refresh overhead and show that RAIDR results in the highest
energy savings and performance gains.

Our contributions are as follows:

e We propose a low-cost mechanism that exploits inter-cell
variation in retention time in order to decrease refresh rate.
In a configuration with only two retention time bins, RAIDR
achieves a 74.6% refresh reduction with no modifications
to DRAM and only 1.25 KB storage overhead in a 32 GB
memory controller.

4103
0 1 < 1000 cell failures @ 256 ms 10
10~ :
10-12 109
102 107! 10° 10! 102 103 10*

Cumulative cell failure probability
)
[=2)

Number of cells in 32 GB DRAM

Refresh interval (s)

(a) Overview

=~ 1000 cells @ 256 ms

=~ 30 cells @ 128 ms

Cutoff @ 64 ms

,,,

102 10" ‘ 10°
Refresh interval (s)

Cumulative cell failure probability
2
in

(b) Detailed view

Figure 1: DRAM cell retention time distribution in a 60 nm process (based on data from [21])

Channel
Rank Rank

Processor

_—Bitlines—__

Word
lines :

| |
Memory
Core Controller : |

Rank Rank
Channel

(a) DRAM hierarchy

B2 B3 B2
Sense Sense | . Sense Row
Amp Amp Amp Buffer

(b) DRAM bank structure

Figure 2: DRAM system organization

e We show that RAIDR is configurable, allowing a system
designer to balance implementation overhead and refresh
reduction. We show that RAIDR scales effectively to pro-
jected future systems, offering increasing performance and
energy benefits as DRAM devices scale in density.

2. Background and Motivation

2.1. DRAM Organization and Operation

We present a brief outline of the organization and operation of
a modern DRAM main memory system. Physical structures
such as the DIMM, chip, and sub-array are abstracted by the
logical structures of rank and bank for clarity where possible.
More details can be found in [18].

A modern DRAM main memory system is organized hi-
erarchically as shown in Figure 2a. The highest level of the
hierarchy is the channel. Each channel has command, address,
and data buses that are independent from those of other chan-
nels, allowing for fully concurrent access between channels.
A channel contains one or more ranks. Each rank corresponds
to an independent set of DRAM devices. Hence, all ranks
in a channel can operate in parallel, although this rank-level
parallelism is constrained by the shared channel bandwidth.
Within each rank is one or more banks. Each bank corresponds
to a distinct DRAM cell array. As such, all banks in a rank
can operate in parallel, although this bank-level parallelism is
constrained both by the shared channel bandwidth as well as
by resources that are shared between banks on each DRAM
device, such as device power.

Each DRAM bank consists of a two-dimensional array of
DRAM cells, as shown in Figure 2b. A DRAM cell consists

of a capacitor and an access transistor. Each access transistor
connects a capacitor to a wire called a bitline and is controlled
by a wire called a wordline. Cells sharing a wordline form a
row. Each bank also contains a row of sense amplifiers, where
each sense amplifier is connected to a single bitline. This row
of sense amplifiers is called the bank’s row buffer.

Data is represented by charge on a DRAM cell capacitor.
In order to access data in DRAM, the row containing the
data must first be opened (or activated) to place the data on
the bitlines. To open a row, all bitlines must previously be
precharged to Vpp /2. The row’s wordline is enabled, connect-
ing all capacitors in that row to their respective bitlines. This
causes charge to flow from the capacitor to the bitline (if the
capacitor is charged to Vpp) or vice versa (if the capacitor is
at 0 V). In either case, the sense amplifier connected to that
bitline detects the voltage change and amplifies it, driving the
bitline fully to either Vpp or 0 V. Data in the open row can
then be read or written by sensing or driving the voltage on
the appropriate bitlines.

Successive accesses to the same row, called row hits, can
be serviced without opening a new row. Accesses to different
rows in the same bank, called row misses, require a different
row to be opened. Since all rows in the bank share the same
bitlines, only one row can be open at a time. To close a row,
the row’s word line is disabled, disconnecting the capacitors
from the bitlines, and the bitlines are precharged to Vpp/2
so that another row can be opened. Opening a row requires
driving the row’s wordline as well as all of the bitlines; due
to the high parasitic capacitance of each wire, opening a row
is expensive both in latency and in power. Therefore, row

(953
n
S

I Refresh power
1 Non-refresh power

Future

02
(=3
(=

Future

DDR3

2500 100
< | _ DDR3
22000 ; £ 80
k| Past | Future é
2 1500 7 60
£ &
g 5
8 1000 & 40
g @
& g
5 500 £ 20
S
z :

6Gb 0

32Gb 48Gb
Device capacity

64 Gb

(a) Refresh latency

:
2Gb 4Gb 8Gb 16Gb 32Gb 64Gb
Device capacity

(b) Throughput loss

Power consumption per device (mW)

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

(c) Power consumption

Figure 3: Adverse effects of refresh in contemporary and future DRAM devices

hits are serviced with both lower latency and lower energy
consumption than row misses.

The capacity of a DRAM device is the number of rows
in the device times the number of bits per row. Increasing
the number of bits per row increases the latency and power
consumption of opening a row due to longer wordlines and the
increased number of bitlines driven per activation [18]. Hence,
the size of each row has remained limited to between 1 KB
and 2 KB for several DRAM generations, while the number
of rows per device has scaled linearly with DRAM device
capacity [13, 14, 15].

2.2. DRAM Refresh

DRAM cells lose data because capacitors leak charge over
time. In order to preserve data integrity, the charge on each
capacitor must be periodically restored or refreshed. When
a row is opened, sense amplifiers drive each bit line fully to
either Vpp or 0 V. This causes the opened row’s cell capacitors
to be fully charged to Vpp or discharged to O V as well. Hence,
a row is refreshed by opening it.! The refresh interval (time
between refreshes for a given cell) has remained constant at
64 ms for several DRAM generations [13, 14, 15, 18].

In typical modern DRAM systems, the memory controller
periodically issues an auto-refresh command to the DRAM.?
The DRAM chip then chooses which rows to refresh using
an internal counter, and refreshes a number of rows based
on the device capacity. During normal temperature opera-
tion (below 85 °C), the average time between auto-refresh
commands (called tggry) is 7.8 us [15]. In the extended tem-
perature range (between 85 °C and 95 °C), the temperature
range in which dense server environments operate [10] and
3D-stacked DRAMs are expected to operate [1], the time be-
tween auto-refresh commands is halved to 3.9 us [15]. An
auto-refresh operation occupies all banks on the rank simul-
taneously (preventing the rank from servicing any requests)
for a length of time fgrc, Where tgpc depends on the num-
ber of rows being refreshed.’ Previous DRAM generations

! After the refresh operation, it is of course necessary to precharge the bank
before another row can be opened to service requests.

2 Auto-refresh is sometimes called CAS-before-RAS refresh [30].

3Some devices support per-bank refresh commands, which refresh several
rows at a single bank [16], allowing for bank-level parallelism at a rank during
refreshes. However, this feature is not available in most DRAM devices.

also allowed the memory controller to perform refreshes by
opening rows one-by-one (called RAS-only refresh [30]), but
this method has been deprecated due to the additional power
required to send row addresses on the bus.

Refresh operations negatively impact both performance and
energy efficiency. Refresh operations degrade performance in
three ways:

1. Loss of bank-level parallelism: A DRAM bank cannot
service requests whenever it is refreshing, which results in
decreased memory system throughput.

2. Increased memory access latency: Any accesses to a
DRAM bank that is refreshing must wait for the refresh la-
tency fgrc, which is on the order of 300 ns in contemporary
DRAM [15].

3. Decreased row hit rate: A refresh operation causes all open
rows at a rank to be closed, which causes a large number of
row misses after each refresh operation, leading to reduced
memory throughput and increased memory latency.
Refresh operations also degrade energy efficiency, both by

consuming significant amounts of energy (since opening a row
is a high power operation) and by reducing memory system
performance (as increased execution time results in increased
static energy consumption). The power cost of refresh oper-
ations also limits the extent to which refresh operations can
be parallelized to overlap their latencies, exacerbating the
performance problem.

All of these problems are expected to worsen as DRAM
device capacity increases. We estimate refresh latency by lin-
early extrapolating fgrc from its value in previous and current
DRAM generations, as shown in Figure 3a. Note that even
with conservative estimates to account for future innovations
in DRAM technology, the refresh operation latency exceeds
1 us by the 32 Gb density node, because power constraints
force refresh latency to increase approximately linearly with
DRAM density. Next, we estimate throughput loss from re-
fresh operations by observing that it is equal to the time spent
refreshing per refresh command (tzrc) divided by the time
interval between refresh commands (fzgp;). This estimated
throughput loss (in extended-temperature operation) is shown
in Figure 3b. Throughput loss caused by refreshing quickly
becomes untenable, reaching nearly 50% at the 64 Gb density
node. Finally, to estimate refresh energy consumption, we

No
‘ Get time since row's last refresh }—>‘ Last refresh 128ms ago? H Last refresh 256ms ago?

‘ @ Profile retention time of all rows

¢ No

Store rows into bins Choose a refresh

Yes

@ by retention time

128ms bin?

candidate row —{ Row in 64-

‘ Row in 128-256ms bin? Yes No

I every 64ms
Y £

Memory controller issues
@ refreshes when necessary

Yes

Yes

Do not refresh
Refresh the row |J«—— @

Figure 4: RAIDR operation

apply the power evaluation methodology described in [31],
extrapolating from previous and current DRAM devices, as
shown in Figure 3c. Refresh power rapidly becomes the domi-
nant component of DRAM power, since as DRAM scales in
density, other components of DRAM power increase slowly
or not at all.* Hence, DRAM refresh poses a clear scaling
challenge due to both performance and energy considerations.

2.3. DRAM Retention Time Distribution

The time before a DRAM cell loses data depends on the leak-
age current for that cell’s capacitor, which varies between cells
within a device. This gives each DRAM cell a characteristic
retention time. Previous studies have shown that DRAM cell
retention time can be modeled by categorizing cells as either
normal or leaky. Retention time within each category follows
a log-normal distribution [8, 21, 25]. The overall retention
time distribution is therefore as shown in Figure 1 2113

The DRAM refresh interval is set by the DRAM cell with
the lowest retention time. However, the vast majority of cells
can tolerate a much longer refresh interval. Figure 1b shows
that in a 32 GB DRAM system, on average only ~ 30 cells
cannot tolerate a refresh interval that is twice as long, and
only ~ 103 cells cannot tolerate a refresh interval four times
longer. For the vast majority of the 10!! cells in the system,
the refresh interval of 64 ms represents a significant waste of
energy and time.

Our goal in this paper is to design a mechanism to minimize
this waste. By refreshing only rows containing low-retention
cells at the maximum refresh rate, while decreasing the refresh
rate for other rows, we aim to significantly reduce the number
of refresh operations performed.

3. Retention-Aware Intelligent DRAM Refresh

3.1. Overview

A conceptual overview of our mechanism is shown in Figure 4.
We define a row’s retention time as the minimum retention time
across all cells in that row. A set of bins is added to the memory
controller, each associated with a range of retention times.
Each bin contains all of the rows whose retention time falls

4DRAM static power dissipation is dominated by leakage in periphery
such as I/O ports, which does not usually scale with density. Outside of refresh
operations, DRAM dynamic power consumption is dominated by activation
power and I/O power. Activation power is limited by activation latency, which
has remained roughly constant, while I/O power is limited by bus frequency,
which scales much more slowly than device capacity [12].

SNote that the curve is truncated on the left at 64 ms because a cell with
retention time less than 64 ms results in the die being discarded.

into that bin’s range. The shortest retention time covered by a
given bin is the bin’s refresh interval. The shortest retention
time that is not covered by any bins is the new default refresh
interval. In the example shown in Figure 4, there are 2 bins.
One bin contains all rows with retention time between 64 and
128 ms; its bin refresh interval is 64 ms. The other bin contains
all rows with retention time between 128 and 256 ms; its bin
refresh interval is 128 ms. The new default refresh interval
is set to 256 ms. The number of bins is an implementation
choice that we will investigate in Section 6.5.

A retention time profiling step determines each row’s reten-
tion time (O in Figure 4). For each row, if the row’s retention
time is less than the new default refresh interval, the memory
controller inserts it into the appropriate bin @). During system
operation 3, the memory controller ensures that each row is
chosen as a refresh candidate every 64 ms. Whenever a row is
chosen as a refresh candidate, the memory controller checks
each bin to determine the row’s retention time. If the row
appears in a bin, the memory controller issues a refresh opera-
tion for the row if the bin’s refresh interval has elapsed since
the row was last refreshed. Otherwise, the memory controller
issues a refresh operation for the row if the default refresh
interval has elapsed since the row was last refreshed. Since
each row is refreshed at an interval that is equal to or shorter
than its measured retention time, data integrity is guaranteed.

Our idea consists of three key components: (1) retention
time profiling, (2) storing rows into retention time bins, and
(3) issuing refreshes to rows when necessary. We discuss how
to implement each of these components in turn in order to
design an efficient implementation of our mechanism.

3.2. Retention Time Profiling

Measuring row retention times requires measuring the reten-
tion time of each cell in the row. The straightforward method
of conducting these measurements is to write a small number
of static patterns (such as “all 1s” or “all 0s”), turning off
refreshes, and observing when the first bit changes [50].5
Before the row retention times for a system are collected, the
memory controller performs refreshes using the baseline auto-
refresh mechanism. After the row retention times for a system
have been measured, the results can be saved in a file by the
operating system. During future boot-ups, the results can be

®Circuit-level crosstalk effects cause retention times to vary depending
on the values stored in nearby bits, and the values that cause the worst-case
retention time depend on the DRAM bit array architecture of a particular
device [36, 25]. We leave further analysis of this problem to future work.

m =16 bits

(Dinsert(x) (@insert(y)

k =3 hash functions

‘ Refresh Rate Scaler Period ‘

‘ Period Counter F—{ Row Counter }«—

[oJoJ1JoJ1J1JoJoJo]1

[0To[1TOo[1[O]

Qtest(x)=1& 1 & 1=1

Btest(z) =1& 0 & 0=0
(present)

(not present)

(a) Bloom filter operation

1
Gtestw)=1& 1 & 1 =1

64-128ms Bloom Filter ‘ Refresh Rate Scaler Counter ‘

(present) 128-256ms Bloom Filter

(b) RAIDR components

Figure 5: RAIDR implementation details

restored into the memory controller without requiring further
profiling, since retention time does not change significantly
over a DRAM cell’s lifetime [8].”

3.3. Storing Retention Time Bins: Bloom Filters

The memory controller must store the set of rows in each bin.
A naive approach to storing retention time bins would use a
table of rows for each bin. However, the exact number of rows
in each bin will vary depending on the amount of DRAM in
the system, as well as due to retention time variation between
DRAM chips (especially between chips from different man-
ufacturing processes). If a table’s capacity is inadequate to
store all of the rows that fall into a bin, this implementation
no longer provides correctness (because a row not in the ta-
ble could be refreshed less frequently than needed) and the
memory controller must fall back to refreshing all rows at
the maximum refresh rate. Therefore, tables must be sized
conservatively (i.e. assuming a large number of rows with
short retention times), leading to large hardware cost for table
storage.

To overcome these difficulties, we propose the use of Bloom
filters [2] to implement retention time bins. A Bloom filter
is a structure that provides a compact way of representing
set membership and can be implemented efficiently in hard-
ware [4, 28].

A Bloom filter consists of a bit array of length m and &
distinct hash functions that map each element to positions in
the array. Figure 5a shows an example Bloom filter with a
bit array of length m = 16 and k = 3 hash functions. All bits
in the bit array are initially set to 0. To insert an element
into the Bloom filter, the element is hashed by all k£ hash
functions, and all of the bits in the corresponding positions
are set to 1 (O in Figure 5a). To test if an element is in the
Bloom filter, the element is hashed by all k£ hash functions.
If all of the bits at the corresponding bit positions are 1, the
element is declared to be present in the set @. If any of the
corresponding bits are 0, the element is declared to be not
present in the set @). An element can never be removed from
a Bloom filter. Many different elements may map to the same
bit, so inserting other elements () may lead to a false positive,
where an element is incorrectly declared to be present in the
set even though it was never inserted into the Bloom filter (.
However, because bits are never reset to 0, an element can
never be incorrectly declared to be not present in the set; that
is, a false negative can never occur. A Bloom filter is therefore

TRetention time is significantly affected by temperature. We will discuss
how temperature variation is handled in Section 3.5.

a highly storage-efficient set representation in situations where
the possibility of false positives and the inability to remove
elements are acceptable. We observe that the problem of
storing retention time bins is such a situation. Furthermore,
unlike the previously discussed table implementation, a Bloom
filter can contain any number of elements; the probability of a
false positive gradually increases with the number of elements
inserted into the Bloom filter, but false negatives will never
occur. In the context of our mechanism, this means that rows
may be refreshed more frequently than necessary, but a row is
never refreshed less frequently than necessary, so data integrity
is guaranteed.

The Bloom filter parameters m and k can be optimally cho-
sen based on expected capacity and desired false positive
probability [23]. The particular hash functions used to in-
dex the Bloom filter are an implementation choice. However,
the effectiveness of our mechanism is largely insensitive to
the choice of hash function, since weak cells are already dis-
tributed randomly throughout DRAM [8]. The results pre-
sented in Section 6 use a hash function based on the xorshift
pseudo-random number generator [29], which in our evalua-
tion is comparable in effectiveness to Hz hash functions that
can be easily implemented in hardware [3, 40].

3.4. Performing Refresh Operations

During operation, the memory controller periodically chooses
a candidate row to be considered for refreshing, decides if it
should be refreshed, and then issues the refresh operation if
necessary. We discuss how to implement each of these in turn.
Selecting A Refresh Candidate Row We choose all refresh
intervals to be multiples of 64 ms, so that the problem of
choosing rows as refresh candidates simply requires that each
row is selected as a refresh candidate every 64 ms. This is
implemented with a row counter that counts through every
row address sequentially. The rate at which the row counter
increments is chosen such that it rolls over every 64 ms.

If the row counter were to select every row in a given bank
consecutively as a refresh candidate, it would be possible
for accesses to that bank to become starved, since refreshes
are prioritized over accesses for correctness. To avoid this,
consecutive refresh candidates from the row counter are striped
across banks. For example, if the system contains 8 banks,
then every 8th refresh candidate is at the same bank.
Determining Time Since Last Refresh Determining if a row
needs to be refreshed requires determining how many 64 ms
intervals have elapsed since its last refresh. To simplify this
problem, we choose all refresh intervals to be power-of-2 mul-

tiples of 64 ms. We then add a second counter, called the
period counter, which increments whenever the row counter
resets. The period counter counts to the default refresh in-
terval divided by 64 ms, and then rolls over. For example, if
the default refresh interval is 256 ms = 4 x 64 ms, the period
counter is 2 bits and counts from 0 to 3.

The least significant bit of the period counter is 0 with

period 128 ms, the 2 least significant bits of the period counter
are 00 with period 256 ms, etc. Therefore, a straightforward
method of using the period counter in our two-bin example
would be to probe the 64 ms—128 ms bin regardless of the
value of the period counter (at a period of 64 ms), only probe
the 128 ms—256 ms bin when the period counter’s LSB is 0
(at a period of 128 ms), and refresh all rows when the period
counter is 00 (at a period of 256 ms). While this results in
correct operation, this may lead to an undesirable “bursting”
pattern of refreshes, in which every row is refreshed in certain
64 ms periods while other periods have very few refreshes.
This may have an adverse effect on performance. In order
to distribute refreshes more evenly in time, the LSBs of the
row counter are compared to the LSBs of the period counter.
For example, a row with LSB 0 that must be refreshed every
128 ms is refreshed when the LSB of the period counter is O,
while a row with LSB 1 with the same requirement is refreshed
when the LSB of the period counter is 1.
Issuing Refreshes In order to refresh a specific row, the mem-
ory controller simply activates that row, essentially performing
a RAS-only refresh (as described in Section 2.2). Although
RAS-only refresh is deprecated due to the power consumed
by issuing row addresses over the DRAM address bus, we ac-
count for this additional power consumption in our evaluations
and show that the energy saved by RAIDR outweighs it.

3.5. Tolerating Temperature Variation: Refresh Rate

Scaling

Increasing operational temperature causes DRAM retention
time to decrease. For instance, the DDR3 specification re-
quires a doubled refresh rate for DRAM being operated in the
extended temperature range of 85 °C to 95 °C [15]. However,
change in retention time as a function of temperature is pre-
dictable and consistent across all affected cells [8]. We lever-
age this property to implement a refresh rate scaling mecha-
nism to compensate for changes in temperature, by allowing
the refresh rate for all cells to be adjusted by a multiplicative
factor. This rate scaling mechanism resembles the temperature-
compensated self-refresh feature available in some mobile
DRAMs (e.g. [32]), but is applicable to any DRAM system.
The refresh rate scaling mechanism consists of two parts.
First, when a row’s retention time is determined, the measured
time is converted to the retention time at some reference tem-
perature Tgrgr based on the current device temperature. This
temperature-compensated retention time is used to determine
which bin the row belongs to. Second, the row counter is mod-
ified so that it only increments whenever a third counter, called
the refresh rate scaler, rolls over. The refresh rate scaler incre-
ments at a constant frequency, but has a programmable period
chosen based on the temperature. At Tger, the rate scaler’s

period is set such that the row counter rolls over every 64 ms.
At higher temperatures, the memory controller decreases the
rate scaler’s period such that the row counter increments and
rolls over more frequently. This increases the refresh rate for
all rows by a constant factor, maintaining correctness.

The reference temperature and the bit length of the refresh
rate scaler are implementation choices. In the simplest imple-
mentation, Trgr = 85 °C and the refresh rate scaler is 1 bit,
with the refresh rate doubling above 85 °C. This is equivalent
to how temperature variation is handled in existing systems, as
discussed in Section 2.2. However, a rate scaler with more than
1 bit allows more fine-grained control of the refresh interval
than is normally available to the memory controller.

3.6. Summary

Figure 5b summarizes the major components that RAIDR
adds to the memory controller. In total, RAIDR requires (1)
three counters, (2) bit arrays to store the Bloom filters, and
(3) hash functions to index the Bloom filters. The counters
are relatively short; the longest counter, the row counter, is
limited in length to the longest row address supported by the
memory controller, which in current systems is on the order
of 24 bits. The majority of RAIDR’s hardware overhead is in
the Bloom filters, which we discuss in Section 6.3. The logic
required by RAIDR lies off the critical path of execution, since
the frequency of refreshes is much smaller than a processor’s
clock frequency, and refreshes are generated in parallel with
the memory controller’s normal functionality.

3.7. Applicability to eDRAM and 3D-Stacked DRAM

So far, we have discussed RAIDR only in the context of a
memory controller for a conventional DRAM system. In this
section, we briefly discuss RAIDR’s applicability to two rela-
tively new types of DRAM systems, 3D die-stacked DRAMs
and embedded DRAM (eDRAM).

In the context of DRAM, 3D die-stacking has been proposed
to improve memory latency and bandwidth by stacking DRAM
dies on processor logic dies [1, 39], as well as to improve
DRAM performance and efficiency by stacking DRAM dies
onto a sophisticated controller die [9]. While 3D stacking may
allow for increased throughput and bank-parallelism, this does
not alleviate refresh overhead; as discussed in Section 2.2, the
rate at which refresh operations can be performed is limited
by their power consumption, which 3D die stacking does not
circumvent. Furthermore, DRAM integrated in a 3D stack
will operate at temperatures over 90 °C [1], leading to reduced
retention times (as discussed in Section 3.5) and exacerbating
the problems caused by DRAM refresh. Therefore, refresh is
likely to be of significant concern in a 3D die-stacked DRAM.

eDRAM is now increasingly integrated onto processor dies
in order to implement on-chip caches that are much more
dense than traditional SRAM arrays, e.g. [43]. Refresh power
is the dominant power component in an eDRAM [51], because
although eDRAM follows the same retention time distribution
(featuring normal and leaky cells) described in Section 2.3,
retention times are approximately three orders of magnitude
smaller [24].

RAIDR is applicable to both 3D die-stacked DRAM and
eDRAM systems, and is synergistic with several character-
istics of both. In a 3D die-stacked or eDRAM system, the
controller logic is permanently fused to the DRAM. Hence,
the attached DRAM can be retention-profiled once, and the
results stored permanently in the memory controller, since
the DRAM system will never change. In such a design, the
Bloom filters could be implemented using laser- or electrically-
programmable fuses or ROMs. Furthermore, if the logic die
and DRAM reside on the same chip, then the power overhead
of RAS-only refreshes decreases, improving RAIDR’s effi-
ciency and allowing it to reduce idle power more effectively.
Finally, in the context of 3D die-stacked DRAM, the large
logic die area may allow more flexibility in choosing more ag-
gressive configurations for RAIDR that result in greater power
savings, as discussed in Section 6.5. Therefore, we believe
that RAIDR’s potential applications to 3D die-stacked DRAM
and eDRAM systems are quite promising.

4. Related Work

To our knowledge, RAIDR is the first work to propose a low-
cost memory controller modification that reduces DRAM re-
fresh operations by exploiting variability in DRAM cell re-
tention times. In this section, we discuss prior work that has
aimed to reduce the negative effects of DRAM refresh.

4.1. Modifications to DRAM Devices

Kim and Papaefthymiou [19, 20] propose to modify DRAM
devices to allow them to be refreshed on a finer block-based
granularity with refresh intervals varying between blocks. In
addition, their proposal adds redundancy within each block to
further decrease refresh intervals. Their modifications impose
a DRAM die area overhead on the order of 5%. Yanagi-
sawa [52] and Ohsawa et al. [37] propose storing the retention
time of each row in registers in DRAM devices and varying
refresh rates based on this stored data. Ohsawa et al. [37] esti-
mate that the required modifications impose a DRAM die area
overhead between 7% and 20%. [37] additionally proposes
modifications to DRAM, called Selective Refresh Architec-
ture (SRA), to allow software to mark DRAM rows as unused,
preventing them from being refreshed. This latter mechanism
carries a DRAM die area overhead of 5% and is orthogonal
to RAIDR. All of these proposals are potentially unattractive
since DRAM die area overhead results in an increase in the
cost per DRAM bit. RAIDR avoids this cost since it does not
modify DRAM.

Emma et al. [6] propose to suppress refreshes and mark
data in DRAM as invalid if the data is older than the refresh
interval. While this may be suitable in systems where DRAM
is used as a cache, allowing arbitrary data in DRAM to become
invalid is not suitable for conventional DRAM systems.

Song [45] proposes to associate each DRAM row with a
referenced bit that is set whenever a row is accessed. When
a row becomes a refresh candidate, if its referenced bit is set,
its referenced bit is cleared and the refresh is skipped. This
exploits the fact that opening a row causes it to be refreshed.
Patel et al. [38] note that DRAM retention errors are unidirec-

tional (since charge only leaks off of a capacitor and not onto
it), and propose to deactivate refresh operations for clusters of
cells containing non-leaking values. These mechanisms are
orthogonal to RAIDR.

4.2. Modifications to Memory Controllers

Katayama et al. [17] propose to decrease refresh rate and
tolerate the resulting retention errors using ECC. Emma et
al. [5] propose a similar idea in the context of eDRAM caches.
Both schemes impose a storage overhead of 12.5%. Wilkerson
et al. [51] propose an ECC scheme for eDRAM caches with
2% storage overhead. However, their mechanism depends on
having long (1 KB) ECC code words. This means that reading
any part of the code word (such as a single 64-byte cache
line) requires reading the entire 1 KB code word, which would
introduce significant bandwidth overhead in a conventional
DRAM context.

Ghosh and Lee [7] exploit the same observation as
Song [45]. Their Smart Refresh proposal maintains a timeout
counter for each row that is reset when the row is accessed or
refreshed, and refreshes a row only when its counter expires.
Hence accesses to a row cause its refresh to be skipped. Smart
Refresh is unable to reduce idle power, requires very high stor-
age overhead (a 3-bit counter for every row in a 32 GB system
requires up to 1.5 MB of storage), and requires workloads
with large working sets to be effective (since its effectiveness
depends on a large number of rows being activated and there-
fore not requiring refreshes). In addition, their mechanism is
orthogonal to ours.

The DDR3 DRAM specification allows for some flexibility
in refresh scheduling by allowing up to 8 consecutive refresh
commands to be postponed or issued in advance. Stuecheli et
al. [47] attempt to predict when the DRAM will remain idle
for an extended period of time and schedule refresh operations
during these idle periods, in order to reduce the interference
caused by refresh operations and thus mitigate their perfor-
mance impact. However, refresh energy is not substantially
affected, since the number of refresh operations is not de-
creased. In addition, their proposed idle period prediction
mechanism is orthogonal to our mechanism.

4.3. Modifications to Software

Venkatesan et al. [50] propose to modify the operating sys-
tem so that it preferentially allocates data to rows with higher
retention times, and refreshes the DRAM only at the lowest
refresh interval of all allocated pages. Their mechanism’s ef-
fectiveness decreases as memory capacity utilization increases.
Furthermore, moving refresh management into the operating
system can substantially complicate the OS, since it must
perform hard-deadline scheduling in order to guarantee that
DRAM refresh is handled in a timely manner.

Isen et al. [11] propose modifications to the ISA to enable
memory allocation libraries to make use of Ohsawa et al.’s
SRA proposal [37], discussed previously in Section 4.1. [11]
builds directly on SRA, which is orthogonal to RAIDR, so [11]
is orthogonal to RAIDR as well.

Table 1: Evaluated system configuration

Component Specifications

Processor

Per-core cache
Memory controller
DRAM organization
DRAM device

8-core, 4 GHz, 3-wide issue, 128-entry instruction window, 16 MSHRs per core
512 KB, 16-way, 64 B cache line size

FR-FCEFS scheduling [41, 54], line-interleaved mapping, open-page policy

32 GB, 2 channels, 4 ranks/channel, 8 banks/rank, 64K rows/bank, 8 KB rows
64x Micron MT41J512M8RA-15E (DDR3-1333) [33]

Table 2: Bloom filter properties

Retention range Bloom filter size m Number of hash functions k' Rows in bin False positive probability
64 ms — 128 ms 256 B 10 28 1.16-107°
128 ms — 256 ms 1 KB 6 978 0.0179

Liu et al. [26] propose Flikker, in which programmers des-
ignate data as non-critical, and non-critical data is refreshed at
a much lower rate, allowing retention errors to occur. Flikker
requires substantial programmer effort to identify non-critical
data, and is complementary to RAIDR.

5. Evaluation Methodology

To evaluate our mechanism, we use an in-house x86 simulator
with a cycle-accurate DRAM timing model validated against
DRAMsim2 [42], driven by a frontend based on Pin [27].
Benchmarks are drawn from SPEC CPU2006 [46] and TPC-
C and TPC-H [49]. Each simulation is run for 1.024 bil-
lion cycles, corresponding to 256 ms given our 4 GHz clock
frequency.® DRAM system power was calculated using the
methodology described in [31]. DRAM device power pa-
rameters are taken from [33], while I/O termination power
parameters are taken from [53].

Except where otherwise noted, our system configuration is
as shown in Table 1. DRAM retention distribution parameters
correspond to the 60 nm technology data provided in [21]. A
set of retention times was generated using these parameters,
from which Bloom filter parameters were chosen as shown
in Table 2, under the constraint that all Bloom filters were
required to have power-of-2 size to simplify hash function
implementation. We then generated a second set of retention
times using the same parameters and performed all of our
evaluations using this second data set.

For our main evaluations, we classify each benchmark as
memory-intensive or non-memory-intensive based on its last-
level cache misses per 1000 instructions (MPKI). Benchmarks
with MPKI > 5 are memory-intensive, while benchmarks with
MPKI < 5 are non-memory-intensive. We construct 5 different
categories of workloads based on the fraction of memory-
intensive benchmarks in each workload (0%, 25%, 50%, 75%,
100%). We randomly generate 32 multiprogrammed 8-core
workloads for each category.

We report system performance using the commonly-used
weighted speedup metric [44], where each application’s in-
structions per cycle (IPC) is normalized to its IPC when run-

8The pattern of refreshes repeats on a period of 32, 64, 128, or 256 ms,
depending on refresh mechanism and temperature. Hence, 256 ms always
corresponds to an integer number of “refresh cycles”, which is sufficient to
evaluate the impact of refresh.

ning alone on the same system on the baseline auto-refresh con-
figuration at the same temperature, and the weighted speedup
of a workload is the sum of normalized IPCs for all applica-
tions in the workload.

We perform each simulation for a fixed number of cycles
rather than a fixed number of instructions, since refresh timing
is based on wall time. However, higher-performing mecha-
nisms execute more instructions and therefore generate more
memory accesses, which causes their total DRAM energy con-
sumption to be inflated. In order to achieve a fair comparison,
we report DRAM system power as energy per memory access
serviced.

6. Results

We compare RAIDR to the following mechanisms:

e The auto-refresh baseline discussed in Section 2.2, in which
the memory controller periodically issues auto-refresh com-
mands, and each DRAM chip refreshes several rows per
command,’ as is implemented in existing systems [15].

e A “distributed” refresh scheme, in which the memory con-
troller performs the same number of refreshes as in the
baseline, but does so by refreshing one row at a time us-
ing RAS-only refreshes. This improves performance by
allowing the memory controller to make use of bank-level
parallelism while refresh operations are in progress, and
by decreasing the latency of each refresh operation. How-
ever, it potentially increases energy consumption due to
the energy cost of sending row addresses with RAS-only
refreshes, as explained in Section 2.2.

e Smart Refresh [7], as described in Section 4.2. Smart Re-
fresh also uses RAS-only refreshes, since it also requires
control of refresh operations on a per-row granularity.

e An ideal scheme that performs no refreshes. While this
is infeasible in practice, some ECC-based schemes may
decrease refresh rate sufficiently to approximate it, though
these come with significant overheads that may negate the
benefits of eliminating refreshes, as discussed in Section 4.2.

For each refresh mechanism, we evaluate both the normal

temperature range (for which a 64 ms refresh interval is pre-

scribed) and the extended temperature range (where all reten-
tion times and refresh intervals are halved).

°In our evaluated system, each auto-refresh command causes 64 rows to
be refreshed.

40210

8.5 8.5
. Auto. I Smart ‘ - Auto C_JRAIDR 6.1% - Auto C_JRAIDR

3.5 [Distributed E—JRAIDR 3.0 2.9% [Distributed HENo Refresh 8.0r™ [Distributed HENo Refresh
32 T I Smart 8.4% | Smart
£ 3.0 75 75
5 Ey £y
% 25 E 7.0 £7.0 9.3%
= 26.5 26.5
G 2.0] 9 4.1%]
Z 74.6% 26.0 26.0
12} = =9
E15 T E) 5
2] 5.5 355
= 1.0 74.6% = 50 = 50
< . .

0.5 4.5 4.5

0.0 Normal temperature Extended temperature 4.0 0% 25% 50% 75% 100% Avg 4.0 0% 25% 50% 75% 100% Avg

Memory-intensive benchmarks in workload

(a) Normal temperature range

Figure 6: Number of refreshes

Memory-intensive benchmarks in workload

(b) Extended temperature range

Figure 7: Effect of refresh mechanism on performance (RAIDR improvement over

auto-refresh in percent)

100 100 § 5
I Auto [JRAIDR I Auto [JRAIDR < I Auto I RAIDR
[Distributed HINo Refresh 18.9% [Distributed HINo Refresh 5 [Self Refresh [INo Refresh
,é 8010.1% I Smart ,é\ 80 I Smart '34
5 5 g 19.6%
] g 60 17.3%] 3
3 9.0% 3 15.4% S 12.2%
s 7.9% =z 13.7% 12,6 5
g . 6.9% 6.4% 3 - g
i i 40 52
g 2 oy
2 2 <§:
= = 20 @1
[a)
L
0 0 =0

0%
Memory-intensive benchmarks in workload

25% 50% 75% 100%

0%
Memory-intensive benchmarks in workload

Avg 25% 50%

(a) Normal temperature range

(b) Extended temperature range

75% 100% Avg Normal temperature ~ Extended temperature

(c) Idle power consumption

Figure 8: Effect of refresh mechanism on energy consumption (RAIDR improvement over auto-refresh in percent)

6.1. Refresh Reduction

Figure 6 shows the number of refreshes performed by each
mechanism.'® A mechanism that refreshes each row every
256 ms instead of every 64 ms would reduce refreshes by 75%
compared to the auto-refresh baseline. RAIDR provides a
74.6% refresh reduction, indicating that the number of re-
freshes performed more frequently than every 256 ms (includ-
ing both rows requiring more frequent refreshes and rows that
are refreshed more frequently due to false positives in the
Bloom filters) is very low. The distributed refresh mechanism
performs the same number of refreshes as the auto-refresh
baseline. Smart Refresh does not substantially reduce the
number of refreshes since the working sets of our workloads
are small compared to the size of DRAM, and Smart Refresh
can only eliminate refreshes to accessed rows.

6.2. Performance Analysis

Figure 7 compares the system performance of each refresh
mechanism as memory intensity varies. RAIDR consistently
provides significant performance gains in both the normal
and extended temperature ranges, averaging a 4.1% (8.6%)
improvement over auto-refresh.!! Part of this performance
improvement is a result of distributing refreshes, for the rea-

10For these results, we do not categorize workloads by memory intensity
because the number of refreshes is identical in all cases for all mechanisms
except for Smart Refresh, and very similar in all workloads for Smart Refresh.
The no-refresh mechanism is omitted because it performs zero refreshes.

"I'This result, and further results, are given as “normal temperature (ex-
tended temperature)”.

sons described in Section 6. However, RAIDR averages 1.2%
(4.0%) performance improvement over distributed refresh,
since reducing the number of refreshes reduces interference
beyond what is possible through distributing refreshes alone.
RAIDR’s performance gains over auto-refresh increase with
increasing memory intensity, to an average of 4.8% (9.8%)
for workloads in the 100% memory intensity category. This is
because increased memory intensity means there are a larger
number of memory requests, so more requests encounter inter-
ference from refreshes.

Surprisingly, RAIDR outperforms the no-refresh system
at low memory intensities. This unintuitive result occurs be-
cause while the common FR-FCFS memory scheduling policy
maximizes memory throughput, it does not necessarily max-
imize system performance; applications with high row hit
rates can starve applications with low row hit rates [34, 35].
However, refresh operations force rows to be closed, disrupt-
ing sequences of row hits and guaranteeing that the oldest
memory request in the memory controller’s request queue will
be serviced. This alleviates starvation, thus providing better
fairness. At low memory intensities, this fairness improve-
ment outweighs the throughput and latency penalties caused
by RAIDR’s relatively infrequent refreshes.

6.3. Energy Analysis
We model the Bloom filters as a 1.25 KB direct-mapped cache
with 64-bit line size, for ease of analysis using CACTI [48].

According to CACTI 5.3, for a 45 nm technology, such a cache
requires 0.013 mm? area, consumes 0.98 mW standby leakage

power, and requires 3.05 pJ energy per access. We include
this power consumption in our evaluations.

Figure 8 compares the energy per access for each refresh
mechanism as memory intensity varies. RAIDR decreases en-
ergy per access by 8.3% (16.1%) on average compared to the
auto-refresh baseline, and comes within 2.2% (4.6%) of the
energy per access for no-refresh ideal. Despite the additional
energy consumed by transmitting row addresses on the bus
for RAS-only refresh in all mechanisms except for the base-
line, all refresh mechanisms result in a net energy per access
decrease compared to the auto-refresh baseline because the
improvements in performance reduce the average static energy
per memory access. The relative improvement for all mecha-
nisms, including RAIDR, decreases asymptotically as memory
intensity increases, since increased memory intensity results
in increased DRAM dynamic power consumption, reducing
the fraction of DRAM energy consumed by refresh.!> Nev-
ertheless, even for workloads in the 100% memory intensity
category, RAIDR provides a 6.4% (12.6%) energy efficiency
improvement over the baseline.

6.4. Idle Power Consumption

We compare three refresh mechanisms for situations where

the memory system is idle (receives no requests).

e In the auto-refresh mechanism employed while idle, the
DRAM is put in its lowest-power power-down mode [15],
where all banks are closed and the DRAM’s internal delay-
locked loop (DLL) is turned off. In order to perform re-
freshes, the DRAM is woken up, an auto-refresh command
is issued, and the DRAM is returned to the power-down
mode when the refresh completes.

o In the self-refresh mechanism, the DRAM is put in its self-
refresh mode [15], where the DRAM manages refreshes
internally without any input from the memory controller.

e In RAIDR, the DRAM is put in its lowest-power power-
down mode (as in the auto-refresh mechanism used while
idle), except that the DRAM is woken up for RAIDR row
refreshes rather than auto-refresh commands.

‘We do not examine an “idle distributed refresh” mechanism,

since performance is not a concern during idle periods, and

distributing refreshes would simply increase how frequently
the DRAM would be woken up and waste energy transmitting
row addresses. We also do not examine Smart Refresh, as it

does not reduce idle power, as discussed in Section 4.2.
Figure 8c shows the system power consumption for each

mechanism, as well as the no-refresh case for reference. Using

RAIDR during long idle periods results in the lowest DRAM

power usage in the extended temperature range (a 19.6% im-

provement over auto-refresh). The self-refresh mechanism has

lower power consumption in the normal temperature range.

This is for two reasons. First, in the self-refresh mechanism, no

communication needs to occur between the memory controller

12However, note that although we only evaluate the energy efficiency of
the DRAM, the energy efficiency of the entire system also improves due
to improved performance, and this energy efficiency gain increases with
increased memory intensity since RAIDR’s performance gains increase with
increased memory intensity, as shown in Section 6.2.

10

and the DRAM, saving I/O power. Second, in self-refresh, the
DRAM internal clocking logic is disabled, reducing power
consumption significantly. However, for the latter reason,
when a DRAM device is woken up from self-refresh, there is
a 512-cycle latency (768 ns in DDR3-1333) before any data
can be read [15]. In contrast, a DRAM device waking up
from the lowest-power power-down mode only incurs a 24 ns
latency before data can be read [15]. This significant latency
difference may make RAIDR the preferable refresh mecha-
nism during idle periods in many systems. In addition, as
refresh overhead increases (due to increased DRAM density
or temperature), the energy saved by RAIDR due to fewer re-
freshes begins to outweigh the energy saved by self-refresh, as
shown by RAIDR’s lower power consumption in the extended
temperature range. This suggests that RAIDR may become
strictly better than self-refresh as DRAM devices increase in
density.

6.5. Design Space Exploration

The number of bins and the size of the Bloom filters used to
represent them are an implementation choice. We examined a
variety of Bloom filter configurations, and found that in gen-
eral RAIDR’s performance effects were not sensitive to the
configuration chosen. However, RAIDR’s energy savings are
affected by the configuration, since the chosen configuration
affects how many refreshes are performed. Figure 9a shows
how the number of refreshes RAIDR performs varies with
the configurations shown in Table 3. The number of bins has
the greatest effect on refresh reduction, since this determines
the default refresh interval. The number of refreshes asymp-
totically decreases as the number of bits used to store each
bin increases, since this reduces the false positive rate of the
Bloom filters. As DRAM device capacities increase, it is likely
worth using a larger number of bins to keep performance and
energy degradation under control.

6.6. Scalability

The impact of refreshes is expected to continue to increase as
DRAM device capacity increases. We evaluate how RAIDR
scales with DRAM device capacity. We assume throughout
that the amount of space allocated to RAIDR’s Bloom filters
scales linearly with the size of DRAM.!3 For these results we
only evaluated the 32 workloads with 50% memory-intensive
benchmarks, as this scenario of balanced memory-intensive
and non-memory-intensive benchmarks is likely to be com-
mon in future systems [22]. We also focus on the extended-
temperature range. Refresh times are assumed to scale approx-
imately linearly with device density, as detailed in Section 2.2.

Figure 9b shows the effect of device capacity scaling on
performance. As device capacity increases from 4 Gb to
64 Gb, the auto-refresh system’s performance degrades by
63.7%, while RAIDR’s performance degrades by 30.8%. At
the 64 Gb device capacity, RAIDR’s performance is 107.9%
higher than the auto-refresh baseline. Figure 9c shows a sim-

13This seems to be a reasonable assumption; at the 64 Gb density, this
would correspond to an overhead of only 20 KB to manage a 512 GB DRAM
system.

Table 3: Tested RAIDR configurations

Key Description Storage Overhead
Auto Auto-refresh N/A
RAIDR Default RAIDR: 2 bins (64—128 ms, m = 2048; 128-256 ms, m = 8192) 1.25 KB
1 bin (1) 1 bin (64128 ms, m = 512) 64 B
1 bin (2) 1 bin (64-128 ms, m = 1024) 128 B
2 bins (1) 2 bins (64—128 ms, m = 2048; 128-256 ms, m = 2048) 512B
2 bins (2) 2 bins (64-128 ms, m = 2048; 128-256 ms, m = 4096) 768 B
2 bins (3) 2 bins (64-128 ms, m = 2048; 128-256 ms, m = 16384) 2.25 KB
2 bins (4) 2 bins (64128 ms, m = 2048; 128-256 ms, m = 32768) 4.25 KB
3bins (1) 3 bins (64-128 ms, m = 2048; 128-256 ms, m = 8192; 256-512 ms, m = 32768) 5.25 KB
3 bins (2) 3 bins (64-128 ms, m = 2048; 128-256 ms, m = 8192; 256-512 ms, m = 65536) 9.25 KB
3 bins (3) 3 bins (64-128 ms, m = 2048; 128-256 ms, m = 8192; 256-512 ms, m = 131072) 17.25 KB
3 bins (4) 3 bins (64—128 ms, m = 2048; 128-256 ms, m = 8192; 256-512 ms, m = 262144) 33.25 KB
3 bins (5) 3 bins (64128 ms, m = 2048; 128-256 ms, m = 8192; 256-512 ms, m = 524288) 65.25 KB
7
4,010 8 160
[Auto
'q‘é 3.5 7 2 140/ | gy RAIDR
£3.0 N =120
b 2 2
825 ;&5 g 100
E 2.0 24 E 80
gis 53 S 60
5] 3 &3
=10 =2 g 40
=[] | .
O'O@ < 12 1234 12345 0°ZGb — 8Gb 16Gb 32Gb 64 Gb 0°ZGb — 8Gb 16Gb 32Gb 64 Gb
Y$ ij@ 1Bin 2 Bins 3 Bins Device capacity Device capacity

(a) RAIDR configurations

(b) Performance scaling

(c) Energy scaling

Figure 9: RAIDR sensitivity studies

ilar trend for the effect of device capacity scaling on energy.
As device capacity scales from 4 Gb to 64 Gb, the auto-refresh
system’s access energy increases by 187.6%, while RAIDR’s
access energy increases by 71.0%. At the 64 Gb device ca-
pacity, RAIDR’s access energy savings over the auto-refresh
baseline is 49.7%. These results indicate that RAIDR scales
well to future DRAM densities in terms of both energy and
performance.

Although these densities may seem farfetched, these re-
sults are potentially immediately relevant to 3D die-stacked
DRAMSs. As discussed in Section 3.7, a 3D die-stacked
DRAM is likely to operate in the extended temperature range,
and its ability to parallelize refreshes to hide refresh overhead
is limited by shared chip power. Therefore, a DRAM chip
composed of multiple stacked dies is likely to suffer from the
same throughput, latency, and energy problems caused by re-
fresh as a single DRAM die with the same capacity operating
at high temperatures. As a result, RAIDR may be applicable
to 3D die-stacked DRAM devices in the near future.

6.7. Retention Error Sensitivity

As mentioned in Section 2.3, a DRAM cell’s retention time is
largely dependent on whether it is normal or leaky. Variations
between DRAM manufacturing processes may affect the num-
ber of leaky cells in a device. We swept the fraction of leaky
cells from 107® to 107>, Even with an order of magnitude
increase in the number of leaky cells, RAIDR’s performance
improvement decreases by only 0.1%, and energy savings
decreases by only 0.7%.

11

6.8. Future Trends in Retention Time Distribution

Kim and Lee [21] show that as DRAM scales to smaller tech-
nology nodes, both the normal and leaky parts of the retention
time distribution will narrow, as shown in Figure 10. Since
this would lead to a decrease in the proportion of very weak
cells in an array, RAIDR should remain effective. To confirm
this, we generated a set of retention times corresponding to the
distribution in Figure 10b and confirmed that RAIDR’s perfor-
mance improvement and energy savings changed negligibly
(i.e. by less than 0.1%).

7. Conclusion

We presented Retention-Aware Intelligent DRAM Refresh
(RAIDR), a low-cost modification to the memory controller
that reduces the energy and performance impact of DRAM
refresh. RAIDR groups rows into bins depending on their
required refresh rate, and applies a different refresh rate to each
bin, decreasing the refresh rate for most rows while ensuring
that rows with low retention times do not lose data. To our
knowledge, RAIDR is the first work to propose a low-cost
memory controller modification that reduces DRAM refresh
operations by exploiting variability in DRAM cell retention
times.

Our experimental evaluations show that RAIDR is effective
in improving system performance and energy efficiency with
modest overhead in the memory controller. RAIDR’s flexible
configurability makes it potentially applicable to a variety of
systems, and its benefits increase as DRAM capacity increases.

100 10°

2 2

&10°3 1073

2 2

= B

1076 E10°°

c c

Ay =%

10700150 I 2 3 10705 =T 790 T 2 3
10 10 10 10 10 10 10 10 10 100 10 10

Retention time (s) Retention time (s)

(a) Current technology (60 nm) (b) Future technologies ([21])

Figure 10: Trend in retention time distribution

We conclude that RAIDR can effectively mitigate the overhead
of refresh operations in current and future DRAM systems.

Acknowledgments

We thank the anonymous reviewers and members of the
SAFARI research group for their feedback. We grate-
fully acknowledge Uksong Kang, Hak-soo Yu, Churoo Park,
Jung-Bae Lee, and Joo Sun Choi at Samsung for feedback.
Jamie Liu is partially supported by the Benjamin Garver
Lamme/Westinghouse Graduate Fellowship and an NSERC
Postgraduate Scholarship. Ben Jaiyen is partially supported by
the Jack and Mildred Bowers Scholarship. We acknowledge
the generous support of AMD, Intel, Oracle, and Samsung.
This research was partially supported by grants from NSF (CA-
REER Award CCF-0953246), GSRC, and Intel ARO Memory
Hierarchy Program.

References

[1] B. Black et al., “Die stacking (3D) microarchitecture,” in MICRO-39,
2006.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, 1970.

[3] J.L. Carter and M. N. Wegman, “Universal classes of hash functions,”
in STOC-9, 1977.

[4] Y. Chen, A. Kumar, and J. Xu, “A new design of Bloom filter for packet
inspection speedup,” in GLOBECOM, 2007.

[5] P. G. Emma, W. R. Reohr, and M. Meterelliyoz, “Rethinking refresh:

Increasing availability and reducing power in DRAM for cache appli-

cations,” IEEE Micro, 2008.

P. G. Emma, W. R. Reohr, and L.-K. Wang, “Restore tracking system

for DRAM,” U.S. patent number 6389505, 2002.

M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory

controller design for reducing energy in conventional and 3D die-

stacked DRAMSs,” in MICRO-40, 2007.

T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time dis-

tribution of dynamic random access memory (DRAM),” IEEE Trans-

actions on Electron Devices, 1998.

Hybrid Memory Cube Consortium, “Hybrid Memory Cube,” 2011.

Available: http://www.hybridmemorycube.org/

[6]
[7]

[8]

[9]

[10] Influent Corp., “Reducing server power consumption by 20% with
pulsed air jet cooling,” White paper, 2009.

[11] C.Isen and L. K. John, “ESKIMO: Energy savings using semantic
knowledge of inconsequential memory occupancy for DRAM subsys-
tem,” in MICRO-42, 2009.

[12] ITRS, “International Technology Roadmap for Semiconductors,” 2010.

[13] JEDEC, “DDR SDRAM Specification,” 2008.

[14] JEDEC, “DDR2 SDRAM Specification,” 2009.

[15] JEDEC, “DDR3 SDRAM Specification,” 2010.

[16] JEDEC, “LPDDR2 SDRAM Specification,” 2010.

[17] Y. Katayama et al., “Fault-tolerant refresh power reduction of DRAMs
for quasi-nonvolatile data retention,” in DFT-14, 1999.

[18] B. Keeth et al., DRAM Circuit Design: Fundamental and High-Speed
Topics. Wiley-Interscience, 2008.

[19] J. Kim and M. C. Papaefthymiou, “Dynamic memory design for low

data-retention power,” in PATMOS-10, 2000.

12

[20]

[21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]
[49]

[50]

[51]
[52]
[53]

[54]

J. Kim and M. C. Papaefthymiou, “Block-based multiperiod dynamic
memory design for low data-retention power,” IEEE Transactions on
VLSI Systems, 2003.

K. Kim and J. Lee, “A new investigation of data retention time in truly
nanoscaled DRAMS,” IEEE Electron Device Letters, 2009.

Y. Kim et al., “ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers,” in HPCA-16, 2010.

D. E. Knuth, The Art of Computer Programming, 2nd ed. Addison-
Wesley, 1998, vol. 3.

W. Kong et al., “Analysis of retention time distribution of embedded
DRAM — a new method to characterize across-chip threshold voltage
variation,” in ITC, 2008.

Y. Li et al., “DRAM yield analysis and optimization by a statistical
design approach,” IEEE Transactions on Circuits and Systems, 2011.
S. Liu et al., “Flikker: Saving DRAM refresh-power through critical
data partitioning,” in ASPLOS-16, 2011.

C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” in PLDI, 2005.

M. J. Lyons and D. Brooks, “The design of a Bloom filter hardware
accelerator for ultra low power systems,” in ISLPED-14, 2009.

G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, 2003.
Micron Technology, “Various methods of DRAM refresh,” 1999.
Micron Technology, “Calculating memory system power for DDR3,”
2007.

Micron Technology, “Power-saving features of mobile LPDRAM,”
2009.

Micron Technology, “4Gb: x4, x8, x16 DDR3 SDRAM,” 2011.

T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial
of memory service in multi-core systems,” in USENIX Security, 2007.
O. Mutlu and T. Moscibroda, “Stall-time fair memory access schedul-
ing for chip multiprocessors,” in MICRO-40, 2007.

Y. Nakagome et al., “The impact of data-line interference noise on
DRAM scaling,” IEEE Journal of Solid-State Circuits, 1988.

T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM refresh
count for merged DRAM/logic LSIs,” in ISLPED, 1998.

K. Patel et al., “Energy-efficient value based selective refresh for em-
bedded DRAMSs,” Journal of Low Power Electronics, 2006.

L. A. Polka et al., “Package technology to address the memory band-
width challenge for tera-scale computing,” Intel Technology Journal,
2007.

M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Transactions
on Computers, 1997.

S. Rixner et al., “Memory access scheduling,” in ISCA-27, 2000.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMsim2: A cycle
accurate memory system simulator,” IEEE Computer Architecture
Letters, 2011.

B. Sinharoy et al., “IBM POWER7 multicore server processor,” IBM
Journal of Research and Development, 2011.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simulta-
neous multithreaded processor,” in ASPLOS-9, 2000.

S. P. Song, “Method and system for selective DRAM refresh to reduce
power consumption,” U.S. patent number 6094705, 2000.

Standard Performance Evaluation Corporation, “SPEC CPU2006,”
2006. Available: http://www.spec.org/cpu2006/

J. Stuecheli et al., “Elastic refresh: Techniques to mitigate refresh
penalties in high density memory,” in MICRO-43, 2010.

S. Thoziyoor et al., “CACTI 5.1,” HP Laboratories, Tech. Rep., 2008.
Transaction Processing Performance Council, “TPC,” 2011. Available:
http://www.tpc.org/

R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware place-
ment in DRAM (RAPID): Software methods for quasi-non-volatile
DRAM,” in HPCA-12, 2006.

C. Wilkerson et al., “Reducing cache power with low-cost, multi-bit
error-correcting codes,” in ISCA-37, 2010.

K. Yanagisawa, “Semiconductor memory,” U.S. patent number
4736344, 1988.

H. Zheng et al., “Mini-rank: Adaptive DRAM architecture for improv-
ing memory power efficiency,” in MICRO-41, 2008.

W. K. Zuravleff and T. Robinson, “Controller for a synchronous DRAM
that maximizes throughput by allowing memory requests and com-
mands to be issued out of order,” U.S. patent number 5630096, 1997.

