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Simulation in Computer Architecture

 Slow for large-scale multiprocessor studies

 Full-system fidelity + long benchmarks

How can we make it faster?

 Speed, accuracy, flexibility trade-off

Full-system simulators sacrifice 
accuracy for speed and flexibility

Speed

Accuracy Flexibility

 Accelerate simulation with FPGAs

 Can simulate up to millions of gates
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Orders of magnitude simulation speedup
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The FIST Project
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 Explores fast NoC models for full-system simulations
 FPGA-friendly, but avoid direct implementation
 Low error, many topologies, >10M packets/sec

 Simpler requirements of full-system simulation
 Estimate packet latencies, capture high-order effects
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CALCM Computer Architecture Lab at  Carnegie Mellon

FIST Approach

 View NoC as set of routers/links
 Abstract router into black-box
 Represent by load-delay curves
 Specific to each router configuration and traffic pattern
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FIST Approach

 Treat each hop as a set of load-delay curves
 Trade-off between model complexity and fidelity

 Keep track of load at each node
 To track router load monitor traffic over window of time
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FIST in Action

 Route packet from source to destination 
 Determine routers that will be traversed

 Sum up the delays for each traversed router
 Index load-delay curves using current load at each router
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Outline

 Introduction to FIST
 FIST-based Network Models
 Evaluation
 Related Work & Conclusions
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Putting FIST Into Context

Train Curves Use Curves

 Network models within full-system simulators
 Model network within a broader simulated system

 Assign delay to each packet traversing the network

 Traffic generated by real workloads
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 Detailed network models
 Cycle-accurate network simulators (e.g. BookSim)

 Analytical network models

 Typically study networks under synthetic traffic patterns
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Offline and Online FIST

 Offline FIST
 Detailed network simulator generates curves offline
 Can use synthetic or actual workload traffic
 Load curves into FIST and run experiment

Detailed 
Network Model

 Online FIST (tolerates dynamic changes in network behavior)
 Initialization of curves same as offline
 Periodically run detailed network simulator on the side
 Compare accuracy and, if necessary, update curves

Detailed 
Network Model

Provide feedback and receive updated curves 
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Online Training in Action
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FIST Applicability

 “FIST-Friendly” Networks

 Exhibit stable, predictable behavior as load fluctuates

 Actual traffic similar to training traffic

 FIST Limitations

 Depends on fidelity, representativeness of training models

 Higher loads and large buffers can limit FIST’s accuracy

 High network load  increased packet latency variance

 Large buffers  increased range of observed packet latencies

 Cannot capture fine-grain packet interactions

 Cannot replace cycle-accurate detailed network models

FIST only as good as its training data
12
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Applying FIST to NoCs

NoCs affected by on-chip limitations and scarce resources

 Employ simple routing algorithms

 Usually simple deterministic routing

 Operate at low loads

 NoCs usually over-provisioned to handle worst-case

 Have been observed to operate at low injection rates

 Small buffers

 On-chip abundance of wires reduces buffering requirements

 Amount of buffering in NoCs is limited or even eliminated

NoCs are “FIST-Friendly”
13



CALCM Computer Architecture Lab at  Carnegie Mellon

Outline

 Introduction to FIST
 FIST-based Network Models
 Evaluation
 Related Work & Conclusions
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FIST Implementations
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 Software Implementation of FIST (written in C++)
 Implements online and offline FIST models

 Hardware Implementation (written in Bluespec) 
 Precisely replicates software-based FIST
 Block diagram of architecture
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Peeking Under The Hood

 Similar issues arise for load tracking & dynamic training

 Tracking Latency T 567 4 23 H
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Use separate injection and traversal latency curves per router 
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Methodology

 Examined online and offline FIST models
 Replaced cycle-accurate NoC model in tiled CMP simulator

 Network and system configuration
 4x4, 8x8, 16x16 wormhole-routed mesh
 Each network node hosts core+coherent L1 and a slice of L2

 Multiprogrammed and multithreaded workloads
 26 SPEC CPU2006 benchmarks of varying network intensity
 8 SPLASH-2 and 2 PARSEC workloads

 Traffic generated by cache misses

 Consists of control, data and coherence packets

 Offline and Online FIST models with two curves per router
 Curves represent injection and traversal latency at each router
 Initial training using uniform random synthetic traffic

 Please see paper for more details!
17
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Accuracy Results (offline)

 8x8 mesh using FIST offline model

 Average Latency and Aggregate IPC Error
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Accuracy Results (online)
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 8x8 mesh using FIST online model

 Average Latency and Aggregate IPC Error

Both Latency and IPC Error below 3%
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What about a very simple model?

Very high error for both latency and IPC!
20
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 8x8 mesh using hop-based model
 How does simple network model affect high-order results? 

FIST models always within this range
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Performance Results

 Qualitative comparison
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1K

SW NoC Sims
(e.g. BookSim)

 SW-based speedup results for 16x16 mesh
 Offline FIST: 43x
 Online FIST: 18x

 HW-based speedup (offline): ~3-4 orders of magnitude
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Hardware Implementation Results

 FPGA resource usage & clock frequency 

 Different mesh configurations

 Xilinx Virtex-5 LX155T FPGA

FIST Model Direct Implementation

Size FPGA  Area Freq. FPGA  Area Freq.

4x4 4% 380 MHz 61% 130 MHz

8x8 15% 263 MHz - -

12x12 34% 250 MHz - -

16x16 60% 214 MHz - -

20x20 94% 200 MHz - -

FIST can scale to large NoCs with many routers

Will not fit
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Outline

 Introduction to FIST
 FIST-based Network Models
 Evaluation
 Related Work & Conclusions



CALCM Computer Architecture Lab at  Carnegie Mellon

Related Work

 Vast body of work on network modeling 

 Analytical models, hardware prototyping, etc.

 Abstract network modeling

 Performance vs. accuracy trade-off studies [Burger 95]

 Load-delay curve representation of network [Lugones 09]

 FPGAs for network modeling

 Cycle-accurate fidelity at the cost of limited scalability

 Time-multiplexing can help with scalability [Wang 10]

 But still suffer from high implementation complexity
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Conclusions & Future Directions

Conclusions
 Full-system simulators can tolerate small inaccuracies

 FIST can provide fast SW- or HW-based NoC models

 SW model provides 18x-43x average speedup w/ <2% error

 HW model can scale to 100s routers with >1000x speedup

 NoCs within a CMP are “FIST-friendly”

 But not all networks good candidates for FIST modeling

Future Directions
 FPGA-friendly NoC models at multiple levels of fidelity

 Configurable generation of hardware NoC models
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Thanks!

Questions?


