
• Assumption: the frequency of any single seed of the read is already known
• Baseline: enumerate all possible seed combinations, O(Le+1) possibilities
• OSS: reduce the complexity to O(e*L)
• Induction: m seeds m+1 seeds

1. Assuming the least frequent m seeds are already known for any substring of 
the read, R

2. For any substring, S, it can then be divided into two parts by a divider, P: 
an m-seed part and an 1-seed part

3. The least frequent m+1 seeds of S can be found by moving the divider, P, |S| 
times and select the optimal divider with the minimum total seed frequency

• Insight: consecutive optimal seeds of the read must also be the optimal seeds of 
the substring containing them (Fig 1)

Optimal Seed Solver: Optimizing Seed Selection in Read Mapping

Hongyi Xin1, Richard Zhu1, Sunny Nahar, John Emmons1, Gennady Pekhimenko1, Carl Kingsford1, Can Alkan2, Onur Mutlu1

1 Departments of Computer Science and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2 Dept. of Computer Engineering, Bilkent University, Ankara, Turkey

• NGS mappers can be divided into two categories: backtrack based vs. seed-and-
extend based

1. Backtrack based mappers (i.e. bwa, bowtie2) find the best mappings fast but 
lose high-error mappings

2. Seed-and-extend based mappers (i.e., mrfast, shrimp, RazerS3) finds all 
mappings but waste resources on rejecting incorrect mappings

• Problem: seed-and-extend mappers select high frequency seeds
• Our goal: increase the efficiency of seed-and-extend based mappers by selecting 
the set of least frequent e+1 seeds with linear complexity

• OSS-DP iterates from 1 to e+1 seeds while in each iteration calculates the optimal solution of all 
O(e*L2) substrings
• Two key observations:

1. Only substrings that starts at the beginning of R is needed, reduce to O(e*L) total substrings
2. The first optimal divider, P, of a shorter substring must come first than a longer substring (Fig 2)

• Mechanism: Longer substrings are processed first, which helps reduce the search space of shorter 
substrings

1 2

3 4

Problem: Optimal Seed Solver (OSS)

The core dynamic-programming algorithm of OSS (OSS-DP) Optimal Divider Cascading (ODC)

• Challenge:  large search space. Seeds can start at any position with any length; generate O(Le+1) 
possibilities
• Key idea: use dynamic-programming method to find the optimal seeds of substrings of the read

1. Find optimal seed positions
2. Find optimal seed lengths

• Key recurrence relationship: reuse the solutions of m seeds to calculate m+1 seeds
• OSS consists of two optimizations:

1. Optimal divider cascading: carrying over information between substrings
2. Early divider termination: further reducing the search space of each substring

1

Fig 1: SA and SB are two combinations that occupies the same amount of 
letters. The total seed frequency of SA is smaller. In this case, it is easy to 
prove that the total seed frequency of SA’ will also be smaller than SB’

2-seed part 1-seed part

2

Fig 2: In OSS, only substrings that starts from the beginning of R is examined. 
Among all substrings, the first optimal divider,  , of a shorter substring comes 
earlier than a longer substring, therefore, “cascading” the optimal dividers

5

• ODC confines the right bound of the optimal divider of a substring
• Goal: introduce a left bound
• Key observation: longer substrings have equal or less total seed frequency
• Key idea: move the divider, P, from right to left, stop when the frequency increase 
of the left part outweighs the total frequency of the right part (Fig 3)
• Key result: with ODC and EDT, the empirical average number of comparisons to 
find the optimal divider of a substring is reduced to 5.25

Early Divider Termination (EDT)

TTCCCAGCACAGACGCATAGCCTGGTC

TTCCCAGCACAGACGCATAGCCTGGTC

TTCCCAGCACAGACGCATAGCCTGGTC

TTCCCAGCACAGACGCATAGCCTGGTC

TTCCCAGCACAGACGCATAGCCTGGTC

191 212

233 177

321 102

332 56

522 43

42

88

11

190

Frequency increase

Fig 3: EDT in action. When the frequency increase of the left part outweighs the 
optimal 1-seed frequency of the right part, STOP.

3

6 Results
• OSS is compared against 5 previous seed 
selection mechanisms:

1. Cheap K-mer Selection (CKS)
2. Optimal Pre-fix Selection (OPS)
3. Adaptive Seeds Finder (ASF)
4. Spaced Seeds (SS)
5. Naïve (Fixed length, fixed placement)

• Categorization: length vs. placement
1. CKS: fixed length, flexible placement
2. OPS: fixed length, flexible placement
3. ASF: flexible length, fixed placement
4. SS: fixed length, fixed placement*
5. Naïve: fixed length, fixed placement

• Methodology: 4 million 101-bp reads 
from 1000 Genome Project (ERR240726)

1. CKS: 12-14 bp seeds
2. OPS: 12-14 bp seeds
3. ASF: T = 5, 10, 100, 500, 1000 (if a 

read fails to produce enough seeds, 
ASF will roll back to CKS-12)

4. SS: pattern = 110100110010101111
• Qualitative comparison: (Table 1)

1. Average case complexity
2. Number of seed lookups

• Quantitative comparison: (Fig 4)
1. Average frequency per seed

• Key results:
1. OSS achieves linear average case 

complexity
2. OSS provides 3x average seed 

frequency reduction than the second 
best seed selection algorithm (OPS)

4

mrFAST

Hobbes

GEM

PatternHunter

Table 1: Provides the qualitative 
comparison between OSS, ASF, CKS, 
OPS, SS and naïve. Note that OSS 
achieves linear average case complexity. 
In this table, x is the number of seeds 
while L is the length of read

7

*Spaced seeds use special patterns to balance out frequencies among seeds

Conclusion and future work
• Conclusion: 

1. OSS finds the least frequent e+1 non-overlapping seeds of a read
2. OSS achieves linear average case complexity, O(e*L)
3. OSS requires a large number of seed lookups ( O(L2) )
4. There is still room to improve the seed selection heuristics: the second best 

seed selection mechanism, OPS, provides 3x more frequent seeds
• Future work:

1. Develop better seed selection heuristics that approximates the optimal seeds 
with much fewer seed lookups and simpler algorithms

2. Develop a fast seed lookup implementation that accommodates OSS

8Acknowledgement and availability
• This study is supported by two NIH grants (HG006004 to C. Alkan and O. Mutlu;
HG007104 to C. Kingsford) and a Marie Curie Career Integration Grant (PCIG-2011-
303772) to C. Alkan
• The full manuscript of this work is available at:
Safari tech report: http://www.ece.cmu.edu/~safari/tr.html
arXiv.org: http://arxiv.org/abs/1506.08235
• The code is publically available at:
https://github.com/CMU-SAFARI/optimal-seed-solver

http://www.ece.cmu.edu/~safari/tr.html
http://arxiv.org/abs/1506.08235
https://github.com/CMU-SAFARI/optimal-seed-solver

